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A priori estimates

We consider is the periodic stationary MFG,

{—eAu+@+ V(x)=g(m)+H (1)

—eAm — div(mDu) = 0,

where the unknoer areu: T >R, m:TY = R, with m>0
and [m=1,and HeR.

)
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A priori estimates

We suppose that V : T¢ = R is C*®, g : Rt — R (or
g : Ry — R), C* in the set m > 0, satisfying

[em<ces [ mem).

We say that (u, m, H) or (u, m) is a classical solution of,
respectively, (1) if v and m are C*°, m > 0, (u, m) solves (1).
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Maximum principle bounds
Bounds for H

Proposition

Let u be a classical solution of (1). Suppose that g > 0. Then,

H <supV.
Td

Uaid




A priori estimates

Maximum principle bounds

Proof

Because u is periodic, it achieves a minimum at a point, xp. At
this point, Du(xp) = 0 and Au > 0. Consequently,

V(xo) > H+ g(m) > H.

Hence, H < sup V.
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A priori estimates
First-order estimates

Proposition

There exists a constant, C, such that, for any classical solution,
(u,m,H), of (1), we have

Dul? 1
/ %(l—i—m)—i—ag(m)mdng.
Td

%')))},
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A priori estimates

First-order estimates

Proof

Multiply the Hamilton-Jacobi equation by (m — 1) and Fokker
Planck equation by —u, adding them , and integrating by parts
gives

|Dul? B B .
[, 55 m)+ me(myax = [ Vim—1) + g(max.

Using the assumption on g, we obtain the result.
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A priori estimates
First-order estimates

Corollary

Let (u,m, H) be a classical solution of (1). Suppose that g > 0.
Then, there exists a constant, C, not depending on the particular
solution, such that

|Hl < C.
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A priori estimates

First-order estimates

Proof

We have:
2
» Do e g1,
» From the assumptions and the preceding estimate, g(m) € L.

Therefore, integrating the Hamilton-Jacobi equation, we obtain the
bound for H.
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A priori estimates

Integral Bernstein estimate

Bernstein estimates

Here, we examine the Hamilton-Jacobi equation,

| Du(x)[”

— Au(x) + >

+V(x)=H,

with V € LP. Our goal is to bound the norm of Du in L9 for some
qg> 1.
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A priori estimates
Integral Bernstein estimate

Lemma
Let u € C3 and v = |Du|?. Suppose that V € C'. Then, there

exist, ¢, C > 0, which do not depend on u or V such that, for
every p > 1,

+1

d—2
(p+1)d =2 ptl
7/ vPAvdx > Ape / v d=2 dx ¢ —C (/ vp+2dx> P2
Td ~ (p+1)2 Td Td

and
3 1 212 p 2 p
—2/ DV.-DuvPdx < - (D u| Vax+ G, [V vPdx.
Td 2 Jrd Td
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A priori estimates
Integral Bernstein estimate

Proof

By integration by parts, we have the identity

4
—/ vPAvdx:/ pvp_1|Dv|2dx:—p/ |Dv%1|2dx.
Td Td (p+1)? Jpa

Next, we use Sobolev’s inequality to obtain

d—2
il pr1]|2 (p+1)d e
|Dv= [Pdx+ [ vPTldx > CHV 2 =c v a2 dx
Td Td 2% Td
moreover, from Young's inequality,

=

p+

vPHldx < vPT2dx ,
Td Td

X



A priori estimates

Integral Bernstein estimate

Proof
For the second inequality, we integrate again by parts to get

—/ DV - Du vPdx :/ VAuvPdx + p/ V vP~1Dv - Dudx.
Td Td Td

Next, we apply a weighted Cauchy inequality to each of the terms
in the prior identity to get

1
/ V.- AuvPdx < —/ |D2u‘2 vpdx-l-C/ V]2 vPdx.
Td 8 Td Td

Next, because v = |Du|?, we have Dv = 2D?uDu, hence

_ 1 2
p/ VP =10y . Dudx < Zp/ V| vP|D?uldx < 7/ 0% dex+c,,/ V|2 vPdx.
Td Td 8 Jrd Td

((((oé
e

Using the two preceding bounds, we get the second estimate.



A priori estimates

Integral Bernstein estimate

Bernstein estimate

Theorem
Let u be C3 and V € C. Then, for any p > 1, there exists a
constant, C, > 0, that depends only on |H|, such that

||DU|| 2d(p+1) < CP (1 + ”VH 2d(1+p )
L d=2 (Td) dt2p (T)

Note that y, = 241-2)

increasing when d > 2.

— d when p — oo and that v, is

) J
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A priori estimates

Integral Bernstein estimate

Proof

We set v = |Dul?. Differentiating the Hamilton-Jacobi equation
1
Au,, = EVX,. + V.
Thus,

d d
—Av = =2 Z (uX,.Xj)2 — 2ZUX,AUX,. (2)
i=1

ij=1
d ) d 1
= 2 Z (uXin) - 22 Ux; (EVX:' + VX;) .
ij=1 i—1
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A priori estimates

Integral Bernstein estimate

Proof
By multiplying (2) by vP and integrating over T9, we have
—/ vPAvdx + 2 |D2u‘2 vPdx
Td Td

=— / Du - Dv vPdx — 2/ DV - DuvPdx.
Td Td
The Lemma provides bounds for the first term on the left-hand
side and the last term on the right-hand side.
For 6 > 0, there exists a constant, C5 > 0, such that

C
—/ Du-DvvPdx < § ‘D2u|2 vPdx + —2 / vPH2dx,
Td Td p+ 1 Td

for every p > 1.

X



A priori estimates
Integral Bernstein estimate

Proof

Now, we claim that for any large enough p > 1, there exists
Cp > 0 that does not depend on u, such that

(d—2) 1
(p+1) d(p+1) Bp
(/Td VT dx) " <G (/Td |V[?Pe dx) "4 G, (3)

where 3, is the conjugate exponent of Ej(pJ’)l) Further, B, — g
when p — co.
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A priori estimates
|

ntegral Bernstein estimate

Proof

To prove the previous claim, we use the lemma to get

d—2

d(p+1) d
Cp (/ v d—2 dx) +2/ ’Dzu‘2 vPdx <
Td Td

+1

o2
Cp (/ vp+2dx> — / Du - Dv vPdx — 2/ DV - DuvPdx,
Td Td Td

L 4pC'
where ¢ := iy, for some constant C.
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A priori estimates

Integral Bernstein estimate

Proof

From the second estimate in the Lemma, and Young's inequality,
pt1
(zr2 <€z 4+ Cp,), we have

d—2
( ) Td 1
e[, ) *[”(‘”)U D] vPdx <
2 Td
/ V|2 dex+( +5>/ vPP2dx + Cy 5
Td
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A priori estimates

Integral Bernstein estimate

Proof

The key idea is now to use the Hamilton-Jacobi equation again:

1 1 v _
D22Pd>—/A2pd:—/‘— V_H
/11‘d| u‘ vPdx = - Td‘ u|® vPdx d ) 2+

1 1 1
> —/ v2v”dx——/ Vzvpdx——C/vpdx
3d d Jro d

> c/ vPH2dx — C V2vPdx — Cp,
T Td

2
vPdx

where the second inequality follows from
(a—b—c)?>3a%—b*— 2
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A priori estimates

Integral Bernstein estimate

Proof

For a small § and a large enough p, the preceding inequalities give

d(p+1)
v a=2 dx <G 2vPdx  + G,
Td
1
d(p+1) ( 1) Pp
<G, (/ v dx) . (/ |V\2ﬂf’dx) "+ G
Td Td

Hence,

(d—=2) 1
d(p+1) d(p+1) B
(/ = dx) <, </ |\/|25de) "+ G,
Td Td

This last estimate gives (3), and the theorem follows.

X



The Bernstein method for MFGs

We fix a C? potential, V : T — R, and look for a solution,
(u, m, H), of the MFG

—Au(x) + M + V(x) = H+ m®,
—Am — div(mDu) = 0, (4)
Judx =0, [mdx =1,

with u,m:T9 - R and H € R.

)
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The Bernstein method for MFGs

Theorem

Let (u, m, H) solve (4) and 0 < a < J1=. Suppose that

u,m € C%(T9). Then, for every q > 1, there exists a constant,
Cq > 0, that depends only on || V|| such that

L1+& (Td)’
| Dul| a1y < Cq-

) J
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The Bernstein method for MFGs
Proof

» We use Bernstein's estimate with V replaced by V/(x) — m®.

> By the previous results, we have

A < C, [Im®] <C

LM& (Td) =
> Because d <1+ é Yo <1+ % Bernstein estimate gives

| Dul|a(ay < Cq for every g > 1.
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Bootstrapping regularity

Proposition
Let (u, m, H) solve (4) with u and m in C>=(T9), and let m > 0.
Then, there exists a constant, C > 0, such that

I mll g0y < C.

Hence, m, # € L™,

) J

(]



A priori estimates

Bootstrapping regularity

Proof

Standard elliptic regularity theory applied to Hamilton-Jacobi
equation yields

||”||W2,q(11~d) < (g,
for every g > 1. Therefore, Morrey's Embedding Theorem implies
that u € CHA(TY), for some 3 € (0, 1).
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A priori estimates

Bootstrapping regularity

Proof

Next, set w = —2In m. Straightforward computations show that w
satisfies

1
—Aw + 5|Dw|2 — Du - Dw + 2div(Du) = 0.

Integrating, we conclude that Dw € 2.

) J
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B

ootstrapping regularity

Proof

The Bernstein estimate gives

10wl 2¢(pr1) < Cp (C+ 1Du-Dwll 2dq(14p)  + V(DU 2d(1p) .
L d=2 (7d) L d+2p (1d) L d+2p (1d)

2d(p+1) - 2d(1+p)
d—2

dr2p » We get Dw € L9 for any g > 1.

Since

U J
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Bootstrapping regularity

Proof

Hence, In m is a Holder continuous function. Because

de mdx = 1, m is bounded from above and from below.
Consequently, || In m| q(ta) is a priori bounded by some universal
constant that depends only on q.

) J
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A priori estimates

Bootstrapping regularity

Proposition
Let (u, m, H) solve (4) with u and m in C>(T9), and let m > 0.
For any k > 1 and q > 1, there exists a constant, Cy q > 0, such

that
H Dku‘ Ck,q-

km‘

, <
La(T9) La(Td) —

) J
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A priori estimates

Bootstrapping regularity

Proof

The preceding results give
lullwoseray < Ga

for every 1 < a < oco. Also, Proposition 7 gives
[n mllya0pey < C

for any 1 < a < co. By differentiating the first equation in (4), we
obtain
— D Au = Dyg(m) — D*uDu. (5)

Finally, we observe that the right-hand side of (5) is bounded in
L3(T9). Thus,

ull waarey < G,
which leads to

”mHWZa(Td) < Qa

((((oé
e

The proof proceeds by iterating this procedure up to order k.



C

ontinuation method — stationary problems

Here, we illustrate the continuation method by proving the
existence of smooth solutions of

2 —
—Au+ P 4 v(x) = H+ g(m),
—Am — div(Dum) =0, (6)
deu:O, demzl.

) J
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C

ontinuation method — stationary problems

First, for 0 < A < 1, we consider the family of problems

—Am)\ — diV(DU)\m)\) = 0,
AUA—M—)\V‘*—HAﬁ‘g(mA):Ov (7)

Jraux =0, [Jramy=1.

%')))},
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A priori estimates

Continuation method — stationary problems

> Set

HX(T9,R) = { fe HYTYR): [ fdx= o}

Td
and consider FK = HK(T9,R) x H*(T9 R) x R,, which is a
Hilber space with norm

IwllZe = 103 o gy + 1 F 1oy + 112

for w = (¢, f, h) € FX.

> HX(TY R), for k > %is the set of (everywhere) positive
functions in Hk('JI‘d R).
» For any k > , let

F¥ = HK(T? R) x HX(T?,R) x R.

X

A classical solution is a tuple, (uy, my, Hy) € Ff;.
k>0



C

ontinuation method — stationary problems

Theorem

Assume that g, V € C®(T9) with g’(z) > 0 for z € (0, 40c0) and
that we have the a priori estimate for any solution of (7):

— 1
H| + H—
my

+ llunllwrecray + [Imallwpcray < Cip-
Lo°(T9)

Then, there exists a classical solution to (6).

) J
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A priori estimates

Continuation method — stationary problems

Proof

For large enough k, define E: R x Ff; — Fk=2 by

—Am — div(Dum)
E\umH) =] Au-— |D"| — AV + H+g(m)
—Jram+1

Our system equivalent to E(), vy) = 0, where vy = (uy, my, Hy).

%')))},
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A priori estimates
Continuation method — stationary problems

Proof

The partial derivative of E in the second variable at
vax = (ux, my, Hy),

Ly=DE(\ vy): F¥ — Fk2

—Af(x) — div(Duxf(x) + myDv)
La(w)(x) = | Av(x) - DUAD1/"|f‘g/(m)\(X))f(X) +h |,
— s f

where w = (¢, f, h) € F¥. In principle, £y is a linear map on F*
for a large enough k. However, it is easy to see that it admits a
unique extension to F¥ for any k > 1.

X



A priori estimates
Continuation method — stationary problems

Proof

> Let
A:={X|] 0<X<1,(7) has a classical solution (uy, my, Hy) }.

» Note that 0 € A as (ug, mg, Ho) = (0,1, —g(1)) is a solution
to (7) for A = 0.

» Our goal is to prove A = [0, 1].

» The a priori bounds in the statement mean that A is a closed
set.

» To prove that A is open, we s apply the implicit function
theorem.

D
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A priori estimates

Continuation method — stationary problems

Proof

Let F = FL. For wi, wp € F with smooth components, set

B)\[Wl,Wzl :/ Wo -,C)\(Wl).
Td

For smooth wy, ws,

By[wi, wo] = /d[m/\D%Z)l - Do + DuyDpp — f,Duy Dy
T
+ g’ (m)\)fifa + DA Dips — DDy + hifa — hofh].

This last expression defines a bilinear form By: F x F — R.

((((0\%
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C

ontinuation method — stationary problems

Proof

Claim
B, is bounded, i.e.,

|Bx[wi, wo]| < Cllwi || l[wal|F.

To prove the claim, we use Holder's inequality on each summand.

) J
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A priori estimates
Continuation method — stationary problems

Proof

Claim

There exists a linear bounded mapping, A: F — F, such that
B)\[Wl, W2] = (AWl, W2)F.

This claim follows from Claim 10 and the Riesz Representation
Theorem.

) J
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C

ontinuation method — stationary problems

Proof

Claim
There exists a positive constant, c, such that |Aw||r > c||w||g for
allw e F.

If the previous claim were false, then there would exist a sequence,
w, € F, with ||w,||[F = 1 such that Aw, — 0.

) J
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C

ontinuation method — stationary problems

Proof

Let wp, = (Yn, fn, hp). Then,
/ | DU + g/ (my)£2 = Bx[wa, wa] — 0. (8)
Td

By combining the a priori estimates on mi with the fact that g is
A
strictly increasing and smooth, we have g’(my) > § > 0.

) J
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Continuation method — stationary problems
Proof
Then, (8) implies that ¢, — 0 in H(} and f, — 0 in L2. Taking
wn = (fp — [ £,,0,0) € F, we get
/ [|Dfo|? + m\D1p, - Df,, + f,DuyDFf,] = Blwn, Ws] = (Aw,, W,),
Td
Therefore,

1 .
IDE sy = € (I1DYallZa(rey + 1falZogray ) < (Avin W) = 0,

where the constant, C, depends only on uy. Because D, f, — 0
in L2, we have f, — 0 in H}(T).



A priori estimates

Continuation method — stationary problems

Proof

Finally, we take w = (0,1,0). Accordingly, we get
/d[—Du,\qu,, + g/ (m)E] + hn = Blwn, ] = (Awp, i) — 0.
T

Because Dy, f, — 0 in L2, we have h, — 0. Hence, ||w,|F — 0,
which contradicts ||w,||F = 1.
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Continuation method — stationary problems

Claim
R(A) is closed in F.

This claim follows from the preceding one.

((( =\
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A priori estimates

Continuation method — stationary problems

Proof

Claim
R(A) = F.
By contradiction, suppose that R(A) # F.

» Then, because R(A) is closed in F, there exists a vector,
w # 0, with wLR(A). Let w = (¢, f, h). Then,

0= (Aw,w) = Bxlw,w] = | 6IDuP + 7P
Td

Therefore, 1 =0 and f = 0.

» Next, we choose w = (0, 1,0). Similarly, we have
h = By[w,w] = (Aw,w) = 0. Thus, w =0, and,
consequently, R(A) = F.

X



C

ontinuation method — stationary problems

Proof |

Claim

For any wy € FO, there exists a unique w € F such that

By[w, W] = (wp, W)go for all w € F. Consequently, w is the unique
weak solution of the equation Ly(w) = wy. Moreover, w € F? and
L(w) = wp in the sense of F2.
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A priori estimates

Continuation method — stationary problems

Proof

Consider the functional W — (wp, W)po on F. By the Riesz
Representation Theorem, there exists w € F such that
(wo, W)po = (w, W)g. Taking w = A~ 1w, we get

Blw,w] = (Aw, W)r = (w, w)r = (wp, W) Fo.
Therefore, f is a weak solution to
—Af —div(myD1 + fDuy) = 1y
and 1 is a weak solution to

Ay — DuyDy + g'(m)\)f + h = fo.

X



C

ontinuation method — stationary problems

Proof

» Standard results from the regularity theory for elliptic
equations combined with bootstrapping arguments give
w = (1, f, h) € F2. Thus, L)(w) = wo.

» Consequently, £ is a bijective operator from F? to FO. Then,
L is injective as an operator from F* to FK=2 for any k > 2.

» To prove that it is also surjective, take any wy € F¥=2. Then,
there exists w € F2 such that £)(w) = wyp.

» Finally elliptic regularity and bootstrapping imply that
w € FK. Hence, £y: F¥ — F¥=2 is surjective and, therefore,
also bijective.
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C

ontinuation method — stationary problems

Proof

Claim

Ly is an isomorphism from F* to F¥=2 for any k > 2.

Because £y: FK — Fk=2 is bijective, we just need to check that it
is also bounded. The boundedness follows directly from bounds on
uy and my and the smoothness of V and g.
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Continuation method — stationary problems

Claim

The set N\ is open.

o
[m] = =

¢




C

ontinuation method — stationary problems

Proof

» We choose k > d/2 + 1 so that H¥=1(T9 R) is an algebra.
» For each \g € A, the partial derivative,

L = DyE(N,v,): FX — F¥=2is an isomorphism.
» By the Implicit Function Theorem, there exists a unique

solution vy, € Ff; to E(\, vy) = 0, in some neighborhood, U,
of )\0.

Finally, because H=1(T9 R) is an algebra, bootstrapping yields
that uy and m, are smooth. Therefore, v, is a classical solution to
(6). Hence, U C A, which proves that A is open.
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C

ontinuation method — stationary problems

Proof

We have proven that A is both open and closed; hence, A = [0, 1].
This argument ends the proof of the theorem.
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