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A priori estimates

We consider is the periodic stationary MFG,{
−ε∆u + |Du|2

2 + V (x) = g(m) + H

−ε∆m − div(mDu) = 0,
(1)

where the unknowns are u : Td → R, m : Td → R, with m ≥ 0
and

∫
m = 1, and H ∈ R.



A priori estimates

We suppose that V : Td → R is C∞, g : R+ → R (or
g : R+

0 → R), C∞ in the set m > 0, satisfying∫
Td

g(m) ≤ C +
1

2

∫
Td

mg(m).

We say that (u,m,H) or (u,m) is a classical solution of,
respectively, (1) if u and m are C∞, m > 0, (u,m) solves (1).



A priori estimates

Maximum principle bounds

Bounds for H

Proposition

Let u be a classical solution of (1). Suppose that g ≥ 0. Then,

H ≤ sup
Td

V .



A priori estimates

Maximum principle bounds

Proof

Because u is periodic, it achieves a minimum at a point, x0. At
this point, Du(x0) = 0 and ∆u ≥ 0. Consequently,

V (x0) ≥ H + g(m) ≥ H.

Hence, H ≤ supV .



A priori estimates

First-order estimates

Proposition

There exists a constant, C , such that, for any classical solution,
(u,m,H), of (1), we have∫

Td

|Du|2

2
(1 + m) +

1

2
g(m)mdx ≤ C .



A priori estimates

First-order estimates

Proof

Multiply the Hamilton-Jacobi equation by (m − 1) and Fokker
Planck equation by −u, adding them , and integrating by parts
gives∫

Td

|Du|2

2
(1 + m) + mg(m)dx =

∫
Td

V (m − 1) + g(m)dx .

Using the assumption on g , we obtain the result.



A priori estimates

First-order estimates

Corollary

Let (u,m,H) be a classical solution of (1). Suppose that g ≥ 0.
Then, there exists a constant, C , not depending on the particular
solution, such that

|H| ≤ C .



A priori estimates

First-order estimates

Proof

We have:

I |Du|2
2 ∈ L1.

I From the assumptions and the preceding estimate, g(m) ∈ L1.

Therefore, integrating the Hamilton-Jacobi equation, we obtain the
bound for H.



A priori estimates

Integral Bernstein estimate

Bernstein estimates

Here, we examine the Hamilton-Jacobi equation,

−∆u(x) +
|Du(x)|2

2
+ V (x) = H̄,

with V ∈ Lp. Our goal is to bound the norm of Du in Lq for some
q > 1.



A priori estimates

Integral Bernstein estimate

Lemma
Let u ∈ C 3 and v = |Du|2. Suppose that V ∈ C 1. Then, there
exist, c ,C > 0, which do not depend on u or V such that, for
every p > 1,

−
∫
Td

vp∆vdx ≥
4pc

(p + 1)2

(∫
Td

v
(p+1)d
d−2 dx

) d−2
d
− C

(∫
Td

vp+2
dx

) p+1
p+2



and
−2

∫
Td

DV · Du vpdx ≤
1

2

∫
Td

∣∣∣D2u
∣∣∣2 vpdx + Cp

∫
Td
|V |2 vpdx.



A priori estimates

Integral Bernstein estimate

Proof

By integration by parts, we have the identity

−
∫
Td

vp∆vdx =

∫
Td

pvp−1|Dv |2dx =
4p

(p + 1)2

∫
Td

|Dv
p+1

2 |2dx .

Next, we use Sobolev’s inequality to obtain∫
Td

|Dv
p+1

2 |2dx+

∫
Td

vp+1dx ≥ c
∥∥∥v p+1

2

∥∥∥2

2∗
= c

(∫
Td

v
(p+1)d
d−2 dx

) d−2
d

,

moreover, from Young’s inequality,∫
Td

vp+1dx ≤
(∫

Td

vp+2dx

) p+1
p+2

,



A priori estimates

Integral Bernstein estimate

Proof

For the second inequality, we integrate again by parts to get

−
∫
Td

DV · Du vpdx =

∫
Td

V∆u vpdx + p

∫
Td

V vp−1Dv · Dudx .

Next, we apply a weighted Cauchy inequality to each of the terms
in the prior identity to get∫

Td

V ·∆u vpdx ≤ 1

8

∫
Td

∣∣D2u
∣∣2 vpdx + C

∫
Td

|V |2 vpdx .

Next, because v = |Du|2, we have Dv = 2D2uDu, hence

p

∫
Td

V vp−1Dv · Dudx ≤ 2p

∫
Td
|V | vp |D2u|dx ≤

1

8

∫
Td

∣∣∣D2u
∣∣∣2 vpdx + Cp

∫
Td
|V |2 vpdx.

Using the two preceding bounds, we get the second estimate.



A priori estimates

Integral Bernstein estimate

Bernstein estimate

Theorem
Let u be C 3 and V ∈ C 1. Then, for any p > 1, there exists a
constant, Cp > 0, that depends only on |H̄|, such that

‖Du‖
L

2d(p+1)
d−2 (Td )

≤ Cp

(
1 + ‖V ‖

L
2d(1+p)
d+2p (Td )

)
.

Note that γp = 2d(1+p)
d+2p → d when p →∞ and that γp is

increasing when d > 2.



A priori estimates

Integral Bernstein estimate

Proof

We set v = |Du|2. Differentiating the Hamilton-Jacobi equation

∆uxi =
1

2
vxi + Vxi .

Thus,

−∆v = −2
d∑

i ,j=1

(
uxixj

)2 − 2
d∑

i=1

uxi ∆uxi (2)

= −2
d∑

i ,j=1

(
uxixj

)2 − 2
d∑

i=1

uxi

(
1

2
vxi + Vxi

)
.



A priori estimates

Integral Bernstein estimate

Proof

By multiplying (2) by vp and integrating over Td , we have

−
∫
Td

vp∆vdx + 2

∫
Td

∣∣D2u
∣∣2 vpdx

= −
∫
Td

Du · Dv vpdx − 2

∫
Td

DV · Du vpdx .

The Lemma provides bounds for the first term on the left-hand
side and the last term on the right-hand side.
For δ > 0, there exists a constant, Cδ > 0, such that

−
∫
Td

Du · Dv vpdx ≤ δ

∫
Td

∣∣D2u
∣∣2 vpdx +

Cδ
p + 1

∫
Td

vp+2dx ,

for every p > 1.



A priori estimates

Integral Bernstein estimate

Proof

Now, we claim that for any large enough p > 1, there exists
Cp > 0 that does not depend on u, such that

(∫
Td

v
d(p+1)
d−2 dx

) (d−2)
d(p+1)

≤ Cp

(∫
Td

|V |2βp dx
) 1
βp

+ Cp, (3)

where βp is the conjugate exponent of d(p+1)
(d−2)p . Further, βp → d

2
when p →∞.



A priori estimates

Integral Bernstein estimate

Proof

To prove the previous claim, we use the lemma to get

cp

(∫
Td

v
d(p+1)
d−2 dx

) d−2
d

+ 2

∫
Td

∣∣D2u
∣∣2 vpdx ≤

cp

(∫
Td

vp+2dx

) p+1
p+2

−
∫
Td

Du · Dv vpdx − 2

∫
Td

DV · Du vpdx ,

where cp := 4pC̃
(p+1)2 , for some constant C̃ .



A priori estimates

Integral Bernstein estimate

Proof

From the second estimate in the Lemma, and Young’s inequality,

(z
p+1
p+2 ≤ εz + Cp,ε), we have

cp

(∫
Td

v
d(p+1)
d−2 dx

) d−2
d

+

[
2−

(
1

2
+ δ

)]∫
Td

∣∣D2u
∣∣2 vpdx ≤

Cp

∫
Td

|V |2 vpdx +

(
Cδ

p + 1
+ δ

)∫
Td

vp+2dx + Cp,δ.



A priori estimates

Integral Bernstein estimate

Proof

The key idea is now to use the Hamilton-Jacobi equation again:∫
Td

∣∣D2u
∣∣2 vpdx ≥ 1

d

∫
Td

|∆u|2 vpdx =
1

d

∫
Td

∣∣∣v
2

+ V − H
∣∣∣2 vpdx

≥ 1

3d

∫
Td

v2vpdx − 1

d

∫
Td

V 2vpdx − 1

d
C

∫
vpdx

≥ c

∫
Td

vp+2dx − C

∫
Td

V 2vpdx − Cp,

where the second inequality follows from
(a− b − c)2 ≥ 1

3a
2 − b2 − c2.



A priori estimates

Integral Bernstein estimate

Proof

For a small δ and a large enough p, the preceding inequalities give(∫
Td

v
d(p+1)
d−2 dx

) d−2
d

≤ Cp

∫
Td

|V |2 vpdx + Cp

≤ Cp

(∫
Td

v
d(p+1)
d−2 dx

) (d−2)p
d(p+1)

(∫
Td

|V |2βp dx
) 1
βp

+ Cp.

Hence,(∫
Td

v
d(p+1)
d−2 dx

) (d−2)
d(p+1)

≤ Cp

(∫
Td

|V |2βp dx
) 1
βp

+ Cp.

This last estimate gives (3), and the theorem follows.



A priori estimates

The Bernstein method for MFGs

We fix a C 2 potential, V : Td → R, and look for a solution,
(u,m,H), of the MFG

−∆u(x) + |Du(x)|2
2 + V (x) = H̄ + mα,

−∆m − div (mDu) = 0,∫
udx = 0,

∫
mdx = 1,

(4)

with u,m : Td → R and H ∈ R.



A priori estimates

The Bernstein method for MFGs

Theorem
Let (u,m,H) solve (4) and 0 < α ≤ 1

d−1 . Suppose that

u,m ∈ C 2(Td). Then, for every q > 1, there exists a constant,
Cq > 0, that depends only on ‖V ‖

L1+ 1
α (Td )

, such that

‖Du‖Lq(Td ) ≤ Cq.



A priori estimates

The Bernstein method for MFGs

Proof

I We use Bernstein’s estimate with V replaced by V (x)−mα.

I By the previous results, we have

|H̄| ≤ C , ‖mα‖
L1+ 1

α (Td )
≤ C .

I Because d ≤ 1 + 1
α , γp ≤ 1 + 1

α , Bernstein estimate gives

‖Du‖Lq(Td ) ≤ Cq for every q > 1.



A priori estimates

Bootstrapping regularity

Proposition

Let (u,m,H) solve (4) with u and m in C∞(Td), and let m > 0.
Then, there exists a constant, C > 0, such that

‖lnm‖W 1,q(Td ) ≤ C .

Hence, m, 1
m ∈ L∞.



A priori estimates

Bootstrapping regularity

Proof

Standard elliptic regularity theory applied to Hamilton-Jacobi
equation yields

‖u‖W 2,q(Td ) ≤ Cq,

for every q > 1. Therefore, Morrey’s Embedding Theorem implies
that u ∈ C 1,β(Td), for some β ∈ (0, 1).



A priori estimates

Bootstrapping regularity

Proof

Next, set w = −2 lnm. Straightforward computations show that w
satisfies

−∆w +
1

2
|Dw |2 − Du · Dw + 2 div(Du) = 0.

Integrating, we conclude that Dw ∈ L2.



A priori estimates

Bootstrapping regularity

Proof

The Bernstein estimate gives

‖Dw‖
L

2d(p+1)
d−2 (Td )

≤ Cp

C + ‖Du · Dw‖
L

2d(1+p)
d+2p (Td )

+ ‖ div(Du)‖
L

2d(1+p)
d+2p (Td )

 .

Since 2d(p+1)
d−2 > 2d(1+p)

d+2p , we get Dw ∈ Lq for any q ≥ 1.



A priori estimates

Bootstrapping regularity

Proof

Hence, lnm is a Hölder continuous function. Because∫
Td mdx = 1, m is bounded from above and from below.

Consequently, ‖ lnm‖Lq(Td ) is a priori bounded by some universal
constant that depends only on q.



A priori estimates

Bootstrapping regularity

Proposition

Let (u,m,H) solve (4) with u and m in C∞(Td), and let m > 0.
For any k ≥ 1 and q > 1, there exists a constant, Ck,q > 0, such
that ∥∥∥Dku

∥∥∥
Lq(Td )

,
∥∥∥Dkm

∥∥∥
Lq(Td )

≤ Ck,q.



A priori estimates

Bootstrapping regularity

Proof

The preceding results give

‖u‖W 2,a(Td ) ≤ Ca

for every 1 < a <∞. Also, Proposition 7 gives

‖lnm‖W 1,a(Td ) ≤ C

for any 1 < a <∞. By differentiating the first equation in (4), we
obtain

− Dx∆u = Dxg(m)− D2uDu. (5)

Finally, we observe that the right-hand side of (5) is bounded in
La(Td). Thus,

‖u‖W 3,a(Td ) ≤ C3,a,

which leads to
‖m‖W 2,a(Td ) ≤ C2,a.

The proof proceeds by iterating this procedure up to order k.



A priori estimates

Continuation method – stationary problems

Here, we illustrate the continuation method by proving the
existence of smooth solutions of

−∆u + |Du|2
2 + V (x) = H + g(m),

−∆m − div (Dum) = 0,∫
Td u = 0,

∫
Td m = 1.

(6)



A priori estimates

Continuation method – stationary problems

First, for 0 ≤ λ ≤ 1, we consider the family of problems
−∆mλ − div(Duλmλ) = 0,

∆uλ − |Duλ|2
2 − λV + Hλ + g(mλ) = 0,∫

Td uλ = 0,
∫
Td mλ = 1.

(7)



A priori estimates

Continuation method – stationary problems

I Set

Ḣk(Td ,R) =

{
f ∈ Hk(Td ,R) :

∫
Td

f dx = 0

}
and consider F k = Ḣk(Td ,R)× Hk(Td ,R)× R,, which is a
Hilber space with norm

‖w‖2
F k = ‖ψ‖2

Ḣk (Td ,R)
+ ‖f ‖2

Hk (Td ,R) + |h|2

for w = (ψ, f , h) ∈ F k .

I Hk
+(Td ,R), for k > d

2 is the set of (everywhere) positive
functions in Hk(Td ,R).

I For any k > d
2 , let

F k
+ = Ḣk(Td ,R)× Hk

+(Td ,R)× R.

A classical solution is a tuple, (uλ,mλ,Hλ) ∈
⋂
k≥0

F k
+.



A priori estimates

Continuation method – stationary problems

Theorem
Assume that g , V ∈ C∞(Td) with g ′(z) > 0 for z ∈ (0,+∞) and
that we have the a priori estimate for any solution of (7):

|H|+
∥∥∥∥ 1

mλ

∥∥∥∥
L∞(Td )

+ ‖uλ‖W k,p(Td ) + ‖mλ‖W k,p(Td ) ≤ Ck,p.

Then, there exists a classical solution to (6).



A priori estimates

Continuation method – stationary problems

Proof

For large enough k , define E : R× F k
+ → F k−2 by

E (λ, u,m,H) =

 −∆m − div(Dum)

∆u − |Du|2
2 − λV + H + g(m)
−
∫
Td m + 1

 .

Our system equivalent to E (λ, vλ) = 0, where vλ = (uλ,mλ,Hλ).



A priori estimates

Continuation method – stationary problems

Proof

The partial derivative of E in the second variable at
vλ = (uλ,mλ,Hλ),

Lλ = D2E (λ, vλ) : F k → F k−2,

is

Lλ(w)(x) =

 −∆f (x)− div(Duλf (x) + mλDψ)
∆ψ(x)− DuλDψ + g ′(mλ(x))f (x) + h

−
∫
Td f

 ,

where w = (ψ, f , h) ∈ F k . In principle, Lλ is a linear map on F k

for a large enough k . However, it is easy to see that it admits a
unique extension to F k for any k > 1.



A priori estimates

Continuation method – stationary problems

Proof

I Let

Λ := {λ | 0 ≤ λ ≤ 1, (7) has a classical solution (uλ,mλ,Hλ) }.

I Note that 0 ∈ Λ as (u0,m0,H0) ≡ (0, 1,−g(1)) is a solution
to (7) for λ = 0.

I Our goal is to prove Λ = [0, 1].

I The a priori bounds in the statement mean that Λ is a closed
set.

I To prove that Λ is open, we s apply the implicit function
theorem.



A priori estimates

Continuation method – stationary problems

Proof

Let F = F 1. For w1,w2 ∈ F with smooth components, set

Bλ[w1,w2] =

∫
Td

w2 · Lλ(w1).

For smooth w1,w2,

Bλ[w1,w2] =

∫
Td

[mλDψ1 · Dψ2 + f1DuλDψ2 − f2DuλDψ1

+ g ′(mλ)f1f2 + Df1Dψ2 − Df2Dψ1 + h1f2 − h2f1].

This last expression defines a bilinear form Bλ : F × F → R.



A priori estimates

Continuation method – stationary problems

Proof

Claim
Bλ is bounded, i.e.,

|Bλ[w1,w2]| ≤ C‖w1‖F‖w2‖F .

To prove the claim, we use Holder’s inequality on each summand.



A priori estimates

Continuation method – stationary problems

Proof

Claim
There exists a linear bounded mapping, A : F → F , such that
Bλ[w1,w2] = (Aw1,w2)F .

This claim follows from Claim 10 and the Riesz Representation
Theorem.



A priori estimates

Continuation method – stationary problems

Proof

Claim
There exists a positive constant, c, such that ‖Aw‖F ≥ c‖w‖F for
all w ∈ F .

If the previous claim were false, then there would exist a sequence,
wn ∈ F , with ‖wn‖F = 1 such that Awn → 0.



A priori estimates

Continuation method – stationary problems

Proof

Let wn = (ψn, fn, hn). Then,∫
Td

mλ|Dψn|2 + g ′(mλ)f 2
n = Bλ[wn,wn]→ 0. (8)

By combining the a priori estimates on 1
mλ

with the fact that g is

strictly increasing and smooth, we have g ′(mλ) > δ > 0.



A priori estimates

Continuation method – stationary problems

Proof

Then, (8) implies that ψn → 0 in Ḣ1
0 and fn → 0 in L2. Taking

w̌n = (fn −
∫
fn, 0, 0) ∈ F , we get∫

Td

[|Dfn|2 + mλDψn · Dfn + fnDuλDfn] = B[wn, w̌n] = (Awn, w̌n),

Therefore,

1

2
‖Dfn‖2

L2(Td ) − C
(
‖Dψn‖2

L2(Td ) + ‖fn‖2
L2(Td )

)
≤ (Awn, w̌n)→ 0,

where the constant, C , depends only on uλ. Because Dψn, fn → 0
in L2, we have fn → 0 in H1(Td).



A priori estimates

Continuation method – stationary problems

Proof

Finally, we take w̆ = (0, 1, 0). Accordingly, we get∫
Td

[−DuλDψn + g ′(mλ)fn] + hn = B[wn, w̆ ] = (Awn, w̆)→ 0.

Because Dψn, fn → 0 in L2, we have hn → 0. Hence, ‖wn‖F → 0,
which contradicts ‖wn‖F = 1.



A priori estimates

Continuation method – stationary problems

Proof

Claim
R(A) is closed in F .

This claim follows from the preceding one.



A priori estimates

Continuation method – stationary problems

Proof

Claim
R(A) = F .

By contradiction, suppose that R(A) 6= F .

I Then, because R(A) is closed in F , there exists a vector,
w 6= 0, with w⊥R(A). Let w = (ψ, f , h). Then,

0 = (Aw ,w) = Bλ[w ,w ] ≥
∫
Td

θ|Dψ|2 + δ|f |2.

Therefore, ψ = 0 and f = 0.

I Next, we choose w̄ = (0, 1, 0). Similarly, we have
h = Bλ[w̄ ,w ] = (Aw̄ ,w) = 0. Thus, w = 0, and,
consequently, R(A) = F .



A priori estimates

Continuation method – stationary problems

Proof I

Claim
For any w0 ∈ F 0, there exists a unique w ∈ F such that
Bλ[w , w̃ ] = (w0, w̃)F 0 for all w̃ ∈ F . Consequently, w is the unique
weak solution of the equation Lλ(w) = w0. Moreover, w ∈ F 2 and
Lλ(w) = w0 in the sense of F 2.



A priori estimates

Continuation method – stationary problems

Proof

Consider the functional w̃ 7→ (w0, w̃)F 0 on F . By the Riesz
Representation Theorem, there exists ω ∈ F such that
(w0, w̃)F 0 = (ω, w̃)F . Taking w = A−1ω, we get

B[w , w̃ ] = (Aw , w̃)F = (ω, w̃)F = (w0, w̃)F 0 .

Therefore, f is a weak solution to

−∆f − div(mλDψ + fDuλ) = ψ0

and ψ is a weak solution to

∆ψ − DuλDψ + g ′(mλ)f + h = f0.



A priori estimates

Continuation method – stationary problems

Proof

I Standard results from the regularity theory for elliptic
equations combined with bootstrapping arguments give
w = (ψ, f , h) ∈ F 2. Thus, Lλ(w) = w0.

I Consequently, Lλ is a bijective operator from F 2 to F 0. Then,
Lλ is injective as an operator from F k to F k−2 for any k ≥ 2.

I To prove that it is also surjective, take any w0 ∈ F k−2. Then,
there exists w ∈ F 2 such that Lλ(w) = w0.

I Finally elliptic regularity and bootstrapping imply that
w ∈ F k . Hence, Lλ : F k → F k−2 is surjective and, therefore,
also bijective.



A priori estimates

Continuation method – stationary problems

Proof

Claim
Lλ is an isomorphism from F k to F k−2 for any k ≥ 2.

Because Lλ : F k → F k−2 is bijective, we just need to check that it
is also bounded. The boundedness follows directly from bounds on
uλ and mλ and the smoothness of V and g .



A priori estimates

Continuation method – stationary problems

Proof

Claim
The set Λ is open.



A priori estimates

Continuation method – stationary problems

Proof

I We choose k > d/2 + 1 so that Hk−1(Td ,R) is an algebra.

I For each λ0 ∈ Λ, the partial derivative,
L = D2E (λ0, vλ0) : F k → F k−2, is an isomorphism.

I By the Implicit Function Theorem, there exists a unique
solution vλ ∈ F k

+ to E (λ, vλ) = 0, in some neighborhood, U,
of λ0.

Finally, because Hk−1(Td ,R) is an algebra, bootstrapping yields
that uλ and mλ are smooth. Therefore, vλ is a classical solution to
(6). Hence, U ⊂ Λ, which proves that Λ is open.



A priori estimates

Continuation method – stationary problems

Proof

We have proven that Λ is both open and closed; hence, Λ = [0, 1].
This argument ends the proof of the theorem.
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