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Tamer Başar (ECE/CSL, UIUC) IPAM GSS on MFGs & Applications, UCLA 2018 June 19-20, 2018 3 / 37



Introduction: Mean Field Games

Decentralized or distributed optimal decision making problem for a large
number of weakly coupled players through a mean field

Mean field: mass behavior, average behavior of all agents (e.g. 1
N

∑N
i=1 xi (t))

Initiated by P. L. Lions, 2007 (PDE approach)

Applications: optimal decentralized control of large-scale multi-agent systems

I smart grid, traffic networks, social networks, economics, biology, etc.
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Introduction: Mean Field Games

Applications
I finance (Lasry and Lions, Jap. Journal of Math, 2007)

I economics with a large number of firms (Weintraub et al.,
Econometrica, 2008)

I consensus and social networks (Nourian et al., TAC, 2013)

I control of a large number of oscillators (Yin et al., TAC, 2012)

I wireless power control (Huang et al., CDC, 2003)

I the planning problem (Achdou, et al., SICON, 2012)

I electric vehicle charging (Ma et al., CST, 2013)

I smart grid (Chen et al., TAC, 2017)

I biology (Zhu et al., CDC, 2011)

Tamer Başar (ECE/CSL, UIUC) IPAM GSS on MFGs & Applications, UCLA 2018 June 19-20, 2018 5 / 37



Introduction: Mean Field Games

Major challenges faced in stochastic DGs with NE
I Existence (and uniqueness) of Nash equilibria

I Centralized optimization: It is hard to find a Nash equilibrium when N is
very large (curse of dimensionality, R. Bellman)

I Informational constraint: Each player needs to know or deduce state
information of all other players (informational restrictions)

I Strategic interactions and difficulties due to nonlinearity

I Challenges of distributed control (Blondel and Tsitsiklis, SICON, 1997)
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Introduction: Mean Field Games

(Risk-sensitive) Mean field analysis
I Consider the situation when N →∞
I The empirical distribution νN converges to some probability measure

(needs to be justified)

I The impact of each player on other players becomes negligible when N is
large

I The problem reduces to solving the (risk-sensitive) stochastic optimal
control problem and the associated fixed point problem

Obtain an efficient algorithm for risk-sensitive mean field games

Characterize a suboptimal (approximated) decentralized Nash equilibrium
I Individual Nash control u∗i : decentralized (function of the local state

information)
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Introduction: Mean Field Games

Some observations on games with a large number of
players: Theory of Games and Economic Behavior
(von Neumann and Morgenstern, 1944, pp.13-14)

“When the number of participants becomes really
great....... a more conventional theory becomes
possible.”

Very great numbers are often easier to handle than
those of medium size...... This is of course, due to
the excellent possibility of applying the laws of
statistics and probabilities in the first case
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2 Risk-Neutral Mean Field Games
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Risk-Neutral Mean Field Games

Risk-neutral MFGs: Huang et al (2007), Lasry and Lions (2007), Tao and
Zhang (2008)

Stochastic differential equation for player i (linear dynamics)

dxi (t) = (Aix(t) + Biui (t))dt + DidWi (t)

The (quadratic) risk-neutral cost function for agent i

JNi (ui , u−i ) = E
∫ T

0

∥∥∥xi (t)− 1

N

N∑
i=1

xi (t)
∥∥∥2

Q
+ ‖ui (t)‖2

Rdt

Agents are coupled with each other through the mean field term

Agents have access to local state information only, but with finite N
obtaining NE is a (very) challenging problem
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Risk-Neutral Mean Field Games

ε-Nash equilibrium

JNi (u∗i , u
∗
−i ) ≤ JNi (ui , u

∗
−i ) + ε

u∗i : decentralized ε-Nash strategy
I u∗i is a function of local state information

Obtain MF equilibrium for the infinite population, and use it for the N-player
game ⇒ ε(N) NE
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3 Risk-Sensitive Mean Field Games with Coupled PDEs
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Risk-Sensitive Mean Field Games with Coupled PDEs

Stochastic differential equation of player i , 1 ≤ i ≤ N

dxi (t) = f (t, xi , νN , ui )dt + σ(t)dWi (t)

νN : The empirical distribution (mean field) of the N players

νN(t) =
1

N

N∑
i=1

δxi (t)(dx)

Risk-sensitive objective function for player i (γ > 0)

Ji (ui , u−i ) = γ logE
[
exp{ 1

γ

∫ T

0

l(t, xi , νN , ui )dt +
1

γ
m(T , xi , νN)}

]

Tembine, Zhu and Başar, IEEE-TAC, 2014
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Risk-Sensitive Mean Field Games with Coupled PDEs

Consider the symmetric problem

By taking N →∞, the empirical measure νN converges to some probability
measure due to the law of large numbers if the following coupled PDEs have
the solution

Hamilton-Jacobi-Bellman and Fokker-Plank-Kolmogorov coupled PDEs
(scalar case)

∂

∂t
V (t, x) +

σ2(t)

2

∂2

∂x2
V (t, x) + H(t, x , ν,

∂

∂x
V (t, x), u∗, γ) = 0

∂

∂t
ν(t)− σ2(t)

2

∂2

∂x2
ν(t) +

∂

∂x
(f (t, x , ν, u∗) · ν(t)) = 0

Initial and boundary conditions: V (T , x) = m(T , x , ν), ν(0) = δx(0)
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Risk-Sensitive Mean Field Games with Coupled PDEs

Hamilton-Jacobi-Bellman and Fokker-Plank-Kolmogorov coupled PDEs
(scalar case)

∂

∂t
V (t, x) +

σ2(t)

2

∂2

∂x2
V (t, x) + H(t, x , ν,

∂

∂x
V (t, x), u∗, γ) = 0

∂

∂t
ν(t)− σ2(t)

2

∂2

∂x2
ν(t) +

∂

∂x
(f (t, x , ν, u∗) · ν(t)) = 0

Initial and boundary conditions: V (T , x) = m(T , x , ν), ν(0) = δx(0)

HJB PDE: stochastic optimal control (backward)

FPK PDE: evolution of the state probability distribution (forward)

Existence and uniqueness of the solution of the couple PDEs
⇒ Very challenging question (especially for risk-sensitive mean field games)

The solution (u∗, ν) is known as a mean field equilibrium
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4 Linear-Quadratic Risk-Sensitive Mean Field Games
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Problem Formulation (P1)

Stochastic differential equation (SDE) for agent i , 1 ≤ i ≤ N

dxi (t) = (A(θi )xi (t) + B(θi )ui (t))dt +
√
µD(θi )dWi (t)

The risk-sensitive cost function for agent i with δ > 0

JNi (ui , u−i ) = lim sup
T→∞

δ

T
logE

{
exp[

1

δ
φi (x , fN , u)]

}
φi (x , fN , u) :=

∫ T

0

∥∥∥xi (t)− 1

N

N∑
i=1

xi (t)
∥∥∥2

Q
+ ‖ui (t)‖2

Rdt

fN(t) := 1
N

∑N
i=1 xi (t): mean field (mass behavior, empirical distribution)

Agents are coupled with each other through the mean field term

Individual agents want to follow (track through their states) the mean field fN

The heterogeneous case ⇒ need the prior distribution F (θ)

The limit δ →∞ captures the risk-neutral case [Note: θ in Lecture I is 1/δ
here, ε there is µ here, and Wi is standard Wiener process]

Moon and Başar, CDC (2014), IEEE-TAC (62(3), 2017), IJC (89(7), 2016)
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Problem Formulation (P1)

Motivation of the risk-sensitive cost function
I The risk-sensitive cost function entails a weighted sum of all the

moments of the integral cost φi ⇒ H∞ robustness and performance

JNi (ui , u−i ) = lim sup
T→∞

1

T

[
E
{
φi
}

+
1

2δ
Var{φi}+ o(

1

δ
)
]

I T →∞: mean-square stability

I Large deviation limit w.r.t. µ (will not be covered in this talk)

Objective

Obtain {u∗i , 1 ≤ i ≤ N} that minimize the cost functions
⇒ Characterize a (centralized) Nash equilibrium, {u∗i , 1 ≤ i ≤ N},

JNi (u∗i , u
∗
−i ) ≤ inf

ui
JNi (ui , u

∗
−i ), 1 ≤ i ≤ N
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LQ Robust MFGs, Problem 2 (P2)

Stochastic differential equation (SDE) for agent i , 1 ≤ i ≤ N

dxi (t) = (A(θi )xi (t) + B(θi )ui (t) + D(θi )vi (t))dt +
√
µD(θi )dbi (t)

The worst-case risk-neutral cost function for agent i

P2: JN2,i (ui , u−i ) = sup
vi∈Vi

lim sup
T→∞

1

T
E{φ2

i (x , fN , u, v)}

φ2
i (x , fN , u, v) :=

∫ T

0

‖xi (t)− 1

N

N∑
i=1

xi (t)‖2
Q + ‖ui (t)‖2

R − γ2‖vi (t)‖2dt

vi can be viewed as a fictitious player (or adversary) of agent i , which strives
for a worst-case cost function for agent i

Agents are coupled with each other through the mean field term
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Mean Field Analysis for P1 and P2

Solve the individual local robust control problem with g instead of fN

P1: J̄1(u, g) = lim sup
T→∞

δ

T
logE

{
exp[

1

δ

∫ T

0

‖x(t)− g(t)‖2
Q + ‖u(t)‖2

Rdt]
}

P2: J̄2(u, v , g) = lim sup
T→∞

1

T
E
{∫ T

0

‖x(t)− g(t)‖2
Q + ‖u(t)‖2

R − γ2‖v(t)‖2dt
}

Characterize g∗ that is a best estimate of
the mean field fN

I need to construct a mean field system
T (g)(t)

I obtain a fixed point of T (g)(t), i.e.,
g∗ = T (g∗)
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Robust Tracking Control for P1 and P2

Proposition: Individual robust control problems for P1 and P2

Suppose that (A,B) is stabilizable and (A,Q1/2) is detectable. Suppose that for a
fixed γ =

√
δ/2µ > 0, there is a matrix P ≥ 0 that solves the following GARE

ATP + PA + Q − P(BR−1BT − 1

γ2
DDT )P = 0

Then [Rec]

H := A− BR−1BTP + 1
γ2 DD

TP and G := A− BR−1BTP are Hurwitz

The robust decentralized controller: ū(t) = −R−1BTPx(t)− R−1BT s(t)

where ds(t)
dt = −HT s(t) + Qg(t)

The worst-case disturbance (P2): v̄(t) = γ−2DTPx(t) + γ−2DT s(t)

s(t) has a unique solution in Cbn : s(t) = −
∫∞
t

e−H
T (t−s)Qg(s)ds

Remark
The two robust tracking problems are identical

Related to the robust (H∞) control problem w.r.t. γ
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Mean Field Analysis for P1 and P2
x̄θ(t) = E{xθ(t)} and we use h ∈ Cbn for P2
Mean field system for P1 (with the robust decentralized controller) [Rec]

T (g)(t) :=

∫
θ∈Θ,x∈X

x̄θ(t)dF (θ, x)

x̄θ(t) = eG(θ)tx +

∫ t

0

eG(θ)(t−τ)B(θ)R−1BT (θ)

×

(∫ ∞
τ

e−H(θ)T (τ−s)Qg(s)ds

)
dτ

Mean field system for P2 (with the robust decentralized controller and the
worst-case disturbance) [Rec]

L(h)(t) :=

∫
θ∈Θ,x∈X

x̄θ(t)dF (θ, x)

x̄θ(t) = eH(θ)tx +

∫ t

0

eH(θ)(t−τ)
(
B(θ)R−1BT (θ)− γ−2D(θ)D(θ)T

)
×

(∫ ∞
τ

e−H
T (θ)(τ−s)Qh(s)ds

)
dτ
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Mean Field Analysis for P1 and P2
T (g)(t) and L(h)(t) capture the mass behavior when N is large

Simplest case

lim
N→∞

fN(t) = lim
N→∞

1

N

N∑
i=1

xi (t) = E{xi (t)} = T (g)(t), SLLN

We need to seek g∗ and h∗ such that g∗ = T (g∗) and h∗ = L(h∗)

Sufficient condition (due to the contraction mapping theorem) [Rec]

P1 : ‖R−1‖‖Q‖
∫
θ∈Θ

‖B(θ)‖2
(∫ ∞

0

‖eG(θ)τ‖dτ
)(∫ ∞

0

‖eH(θ)τ‖dτ
)
dF (θ) < 1

P2 :

∫
θ∈Θ

(∫ ∞
0

‖eH(θ)t‖2dt
)2(
‖B(θ)‖2‖R−1‖+ γ−2‖D(θ)‖2

)
dF (θ) < 1

limk→∞ T k(g0) = g∗ for any g0 ∈ Cbn
g∗(t) and h∗(t) are best estimates of fN(t) when N is large

Generally g∗ 6≡ h∗. But when γ →∞, g∗ ≡ h∗
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We need to seek g∗ and h∗ such that g∗ = T (g∗) and h∗ = L(h∗)

Sufficient condition (due to the contraction mapping theorem) [Rec]

P1 : ‖R−1‖‖Q‖
∫
θ∈Θ

‖B(θ)‖2
(∫ ∞

0

‖eG(θ)τ‖dτ
)(∫ ∞

0

‖eH(θ)τ‖dτ
)
dF (θ) < 1

P2 :

∫
θ∈Θ

(∫ ∞
0

‖eH(θ)t‖2dt
)2(
‖B(θ)‖2‖R−1‖+ γ−2‖D(θ)‖2

)
dF (θ) < 1

limk→∞ T k(g0) = g∗ for any g0 ∈ Cbn
g∗(t) and h∗(t) are best estimates of fN(t) when N is large

Generally g∗ 6≡ h∗. But when γ →∞, g∗ ≡ h∗
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Main Results for P1 and P2

Existence and Characterization of an ε-Nash equilibrium

There exists an ε-Nash equilibrium with g∗ (P1), i.e., there exist
{u∗i , 1 ≤ i ≤ N} and εN ≥ 0 such that

JN1,i (u
∗
i , u
∗
−i ) ≤ inf

ui∈Uc
i

JN1,i (ui , u
∗
−i ) + εN ,

where εN → 0 as N →∞. For the uniform agent case, εN = O(1/
√
N)

The ε-Nash strategy u∗i is decentralized, i.e., u∗i is a function of xi and g∗

Law of Large Numbers: g∗ satisfies [Rec]

lim
N→∞

∫ T

0

∥∥∥ 1

N

N∑
i=1

x∗i (t)− g∗(t)
∥∥∥2

dt = 0, ∀T ≥ 0, a.s.

lim
N→∞

lim sup
T→∞

1

T

∫ T

0

∥∥∥ 1

N

N∑
i=1

x∗i (t)− g∗(t)
∥∥∥2

dt = 0, a.s.

g∗: deterministic function and can be computed offline
The same results also hold for P2 with the worst-case disturbance
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Main Results for P1 and P2

Proof (sketch): Law of large numbers (first part)

∫ T

0

‖f ∗N (t)− g∗(t)‖2dt ≤ 2

∫ T

0

∥∥∥ 1

N

N∑
i=1

(x∗i (t)− E{x∗i (t)})
∥∥∥2

dt

+ 2T sup
t≥0

∥∥∥E{x∗i (t)} − g∗(t)
∥∥∥2

The second part is zero (due to the fixed-point theorem)

e∗i (t) = x∗i (t)− E{x∗i (t)} is a mutually orthogonal random vector with
E{e∗i (t)} = 0 and E{‖e∗i (t)‖2} <∞ for all i and t ≥ 0

Strong law of large numbers ⇒ limN→∞ ‖(1/N)
∑N

i=1 e
∗
i (t)‖ = 0 for all

t ∈ [0,T ]

‖(1/N)
∑N

i=1 e
∗
i (t)‖2, N ≥ 1, is uniformly integrable on [0,T ] for all T ≥ 0,

we have the desired result
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Partial Equivalence and Limiting Behaviors of P1 and P2

Partial
LQ-RMFG (P2)LQ-RSMFG (P1)LQ-MFG

 

, for fixed

( )

 







P1 and P2 share the same robust decentralized controller

Partial equivalence: the mean field systems (and their fixed points) are
different

Limiting behaviors
I Large deviation (small noise) limit (µ, δ → 0 with γ =

√
δ/2µ > 0): The same

results hold under this limit (SDE ⇒ ODE)
I Risk-neutral limit (γ →∞): The results are identical to that of the

(risk-neutral) LQ mean field game (g∗ ≡ h∗)
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Simulations (N = 500)
Ai = θi is an i.i.d. uniform random variable with the interval [2, 5],
B = D = Q = R = 1, µ = 2 ⇒ γ∗θ = γ∗ = 1,
g∗(t) = 5.086e−8.49t , h∗(t) = 5.1e−3.37t

ε2(N) := lim supT→∞
1
T E
∫ T

0
‖f ∗N (t)− g∗(t)‖2dt

γ determines robustness of the equilibrium (due to the individual robust
control problems)
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Simulation

A large number of second-order damping systems: each system follows the
approximated mean field behavior
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Summary for this part

LQ risk-sensitive mean field games

The decentralized ε-Nash equilibrium for LQ risk-sensitive mean field games

ε-Nash equilibrium: suboptimal Nash equilibrium, and ε→ 0 as N →∞

The equilibrium features H∞ performance and robustness due to the local
risk-sensitive control problem with respect to γ

Computational complexity
I Riccati equation Pi : semidefinite programming (efficient!!!)

I Fixed points g∗ and h∗: Picard iteration (efficient!!!)
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5 Risk-Sensitive Mean Field Games via the SMP
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Risk-Sensitive Mean Field Games via the SMP

General nonlinear risk-sensitive mean field games

Stochastic differential equation of player i , 1 ≤ i ≤ N

dxi (t) = f (t, xi , νN , ui )dt + σ(t)dBi (t)

νN : Empirical distribution (mean field) of the N players

νN(t) =
1

N

N∑
i=1

δxi (t)(dx)

Risk-sensitive cost function for player i (γ > 0: robustness)

JNi (ui , u−i ) = γ logE
[
exp{ 1

γ

∫ T

0

l(t, xi , νN , ui )dt +
1

γ
m(T , xi , νN)}

]
Players are coupled with each other through the mean field term

Moon and Başar, DGAA (2018, under review)
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Risk-Sensitive Mean Field Games via the SMP

(i) Local risk-sensitive optimization for a fixed probability measure µ

J̄(u, µ) = γ logE
[
exp{ 1

γ

∫ T

0

l(t, x , µ, u)dt +
1

γ
m(T , x , µ)}

]
dx(t) = f (t, x , µ, u)dt + σ(t)dW (t)

I Solve (i) via the stochastic maximum principle
I Need to analyze the forward-backward SDE (FBSDE)

The corresponding FBSDE [Rec]
dx(t) = f (t, x , µ, u∗)dt + σ(t)dW (t)

dp(t) = −
[
f >x (t, x , µ, u∗)p(t) + lx(t, x , µ, u∗) + 1

γ q(t)σ>(t)p(t)
]
dt + q(t)dB(t)

x(0) = x0, p(T ) = mx(T , x , µ)

I u∗ optimal control for J̄
I State process x depends on the probability measure µ and the optimal

control u∗
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Risk-Sensitive Mean Field Games via the SMP

(ii) Fixed point problem: Determine a fixed point of Pxµ , i.e., µ∗ = Pxµ∗ = Tµ∗

I Pxµ = Tµ: Law of the state process x with the optimal solution
determined from step (i)

I Existence of the fixed point: Schauder’s fixed point theorem under the
1-Wasserstein metric

W1(µ1, µ2) := inf
π∈Π(µ1,µ2)

∫
‖x − y‖π(dx , dy)

= sup
f∈1-Lip

{∫
f (x)dµ1(x)−

∫
f (x)dµ2(x)

}

I Schauder’s fixed point theorem: Let X be a nonempty closed and
bounded convex subset of a normed space S. Let T : X → K ⊂ X be
continuous, where K is compact. Then T has a fixed point.
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Main Result: ε-Nash Equilibrium

The ε-Nash Equilibrium

The set of N optimal distributed controls, {u∗1 , . . . , u∗N}, constitutes an
ε-Nash equilibrium of the risk-sensitive mean field game. That is, for any ui ,

JNi (u∗1 , . . . , u
∗
i , . . . , u

∗
N) ≤ JNi (u∗1 , . . . , ui , . . . , u

∗
N) + εN , 1 ≤ i ≤ N

where εN → 0 as N →∞ with the convergence rate of O( 1
N1/(n+4) )
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Main Result: ε-Nash Equilibrium

ε-Nash control u∗i from (i) and (ii): decentralized (function of xi and µ∗)

The equilibrium features robustness under stochastic uncertainty

The proof follows from [Rec]
I convergence of the 2-Wasserstein distance between the empirical

distribution and the fixed point probability measure

E[W 2
2 (ν∗N(t), µ∗(t))] = O

( 1

N2/(n+4)

)
, ∀t ∈ [0,T ]

I the asymptotic analysis for all i :∣∣∣ JNi (u∗i , u
∗
−i )︸ ︷︷ ︸

individual NE cost

− J̄i (u
∗
i , µ
∗)︸ ︷︷ ︸

local optimal cost

∣∣∣→ 0 as N →∞
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6 Conclusions
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Conclusions

Risk-sensitive mean field games

Robust decision analysis in a large population regime

Local optimization and fixed point problems

Three different approaches
I Coupled PDEs (HJB and FPK)
I Linear-quadratic problem
I Risk-sensitive maximum principle
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