
Link between MFG and initial value problems

Yann Brenier
CNRS, DMA-ENS, 45 rue d’Ulm, FR-75005 Paris, France,
in association with CNRS-INRIA "MOKAPLAN" team

Graduate Summer School: Mean Field Games and Applications
IPAM-UCLA June 2018

Yann Brenier (CNRS, DMA-ENS) MFG and IVP IPAM-UCLA June 18-29 2018 1 / 22



Last week, we discussed the variational MFG

∂tµ +∇ · (µ∇φ) = ν∆µ, ∂tφ +
1
2
|∇φ|2 + ν∆φ = f ′(µ),

t ∈ [0,T ], x ∈ D = Td , µ(t , x) ≥ 0, φ(t , x), respectively prescribed at t = 0 and t = T .

CONVEXITY of f was CRUCIAL for both theory and numerics.

With ν = 0 and written in terms of v = ∇φ, these equations read

∂tµ +∇ · (µv) = 0, ∂tv + (v · ∇)v = ∇(f ′(µ)),

and looks like the equations written by Euler in 1755-57 for compressible fluids.
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The Euler equations written in conservation form

∂tµ +∇ · q = 0, q = µv ,

∂tq +∇ · (q ⊗ q
µ

) = −∇(p(µ)), p′(w) = −wf ”(w)

were introduced by Euler in 1755 for Fluid Mechanics.
(This way, Euler introduced at once the first set of PDEs and the first field theory ever!)

If f is CONCAVE, we get a WELL-POSED INITIAL
VALUE PROBLEM, with boundary conditions only at
t = 0 and none at t = T , in sharp contrast with MFG.
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OUR GOAL

We want to solve the initial value problem for a large
class of equations including Euler’s ones by a
variational approach based on convexity.

This turns out to be doable through a GENERALIZED
MFG, involving vector-potentials (and measures taking
values in the cone of semi-definite positive matrices).
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The class of "entropic conservation laws"

∂tU +∇ · (F (U)) = 0, U = U(t , x) ∈ W ⊂ Rm, x ∈ D

(where F is given so that
m∑
β=1

∂βE(W )∂αF iβ(W ) = ∂αQ i(W ), ∀W ∈ W,

for some (E ,Q) :W → R1+d , withW open convex and "entropy" E strictly convex,

which implies: ∂t(E(U)) +∇ · (Q(U)) = 0, for all smooth solutions U)

contains the Euler equations,
for which: E(µ,q) = |q|2

2µ − f (µ), µ > 0, with f concave.
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’fort.10’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Formation of two shock waves. (Vertical axis: t ∈ [0,1/4], horizontal axis: x ∈ T.)
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A MFG approach to the Cauchy problem

Given U0 on D = Rd/Zd and T > 0, we minimize the
entropy among all weak solutions U of the Cauchy pb:

inf
U

∫ T

0

∫
D
E(U), U = U(t , x) ∈ W ⊂ Rm subject to

∫ T

0

∫
D
∂tA · U +∇A · F (U) +

∫
D

A(0, ·) · U0 = 0

for all smooth A = A(t , x) ∈ Rm with A(T , ·) = 0.

The problem is not trivial since there may be many weak solutions starting from U0

which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).
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The resulting saddle-point problem

inf
U

sup
A

∫ T

0

∫
D
E(U)− ∂tA · U −∇A · F (U)

−
∫

D
A(0, ·) · U0

where A = A(t , x) ∈ Rm is smooth with A(T , ·) = 0.
Here U0 is the initial condition and T the final time.

N.B. The supremum in A exactly encodes that U is a weak solution with initial condition

U0, all test functions A acting like Lagrange multipliers.
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Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

sup
A(T ,·)=0

inf
U

∫ T

0

∫
D
E(U)− ∂tA · U −∇A · F (U)−

∫
D

A(0, ·) · U0

= sup
A(T ,·)=0

∫ T

0

∫
D
−G(∂tA,∇A)−

∫
D

A(0, ·) · U0

G(E ,B) = sup
V∈W⊂Rm

E · V + B · F (V )− E(V ), (E ,B) ∈ Rm × Rm×d .

Notice that G is automatically convex.
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Comparison with the MFG considered last week

sup
φ

∫ T

0

∫
D
−G(∂tφ + ν∆φ,∇φ)− < µ0, φ0 >

was our variational MFG with µ0 and φT prescribed.

Now, we rather have

sup
A(T ,·)=0

∫ T

0

∫
D
−G(∂tA,∇A)−

∫
D

A(0, ·) · U0

where ν = 0 and the vector-potential A substitutes for the scalar potential φ.

Thus our dual maximization problem to solve the initial
value problem can be interpreted as a generalized
variational 1st order-MFG with vector-valued potential.
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Main results

Theorem 1: If U is a smooth solution to the Cauchy
problem and T is not too large (*), then U can be
recovered from the concave maximization problem
which admits A(t , x) = (t − T )E ′(U(t , x)) as solution.

Theorem 2: For the Burgers equation, all entropy
solutions can be recovered, for arbitrarily large T .

(*) more precisely if, ∀ t , x ,V ∈ W, E”(V )− (T − t)F”(V ) · ∇(E ′(U(t , x))) > 0.
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Generalized MFG for the Euler equations

Let us compute the generalized MFG in the particular
case of the Euler equations of isothermal fluids

∂tµ +∇ · q = 0, ∂tq +∇ · (q ⊗ q
µ

) = −∇(p(µ))

where

f (w) = w − log w , p′(w) = −wf ”(w) −→ p(w) = w .
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Generalized MFG for isothermal Euler equations

Then, the generalized MFG amounts to minimizing∫
[0,T ]×D

exp(u) exp(
1
2

Q ·M−1 ·Q) +

∫
D
σ0ρ0 + w0 · q0,

among all fields u = u(t , x) ∈ R, Q = Q(t , x) ∈ Rd ,

M = M(t , x) = M t(t , x) ∈ Rd×d , M ≥ 0, of form:

u = ∂tσ + ∂ iwi , Qi = ∂twi + ∂iσ, Mij = δij − ∂iwj − ∂jwi ,

where σ and w must vanish at t = T .
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The Euler equations of incompressible fluids

The same method also applies to the Euler equations
of incompressible fluids ("saturated congestion")

∂tq +∇ · (q ⊗ q) = −∇p, ∇ · q = 0,

where q is prescribed at t = 0 and p is now a
Lagrange multiplier ("price") for constraint ∇ · q = 0.

We get again a generalized MFG for measures valued
in the cone of semi-definite symmetric matrices:
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in the cone of semi-definite symmetric matrices:
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Generalized MFG for incompressible fluids

This generalized (variational) MFG reads

sup
(M,Q)

−
∫
[0,T ]×D

q0 ·Q +
1
2

Q ·M−1 ·Q,

where now Q is a vector field (not necessarily
divergence-free) and M = M t ≥ 0 is a field of
semi-definite symmetric matrices subject to

Mij(T , ·) = δij , ∂tMij = ∂jQi + ∂iQj + 2∂i∂j(−4)−1∂kQk .
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The elementary example of the Burgers equation

Then, the maximization problem in A simply reads

sup
A

∫
[0,T ]×T

− (∂tA)2

2(1− ∂xA)
−
∫
T

A(0, ·)u0.

with A = A(t , x) ∈ R subject to A(T , ·) = 0, ∂xA ≤ 1.

Introducing µ = 1− ∂xA ≥ 0, q = ∂tA, we get the MFG

sup
(µ,q)
{
∫
[0,T ]×T

−q2

2µ
− qu0 | ∂tµ + ∂xq = 0, µ(T , ·) = 1}.
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’fort.10’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Formation of two shock waves. (Vertical axis: t ∈ [0,1/4], horizontal axis: x ∈ T.)

Yann Brenier (CNRS, DMA-ENS) MFG and IVP IPAM-UCLA June 18-29 2018 17 / 22



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

’fort.19’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.1 by convex optimization.

Observe the formation of a first vacuum zone as the first shock has formed.
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’fort.24’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.16 by convex optimisation.

Observe the formation of a second vacuum zone as the second shock has formed.
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’fort.29’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.225 by convex optimisation.

Observe the extension of the two vacuum zones.
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’burgers-2c’

Numerics: 2 lines of code differ from a standard (Benamou-B.) OT solver!
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Analogy with mountain climbing: going from Everest to Lhotse without following
the crest! (Partial credit to Thomas Gallouët for this analogy.)

For more details, voir Y.B. ArXiv Oct. 2017.
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