Link between MFG and initial value problems

Yann Brenier
CNRS, DMA-ENS, 45 rue d'Ulm, FR-75005 Paris, France, in association with CNRS-INRIA "MOKAPLAN" team

Graduate Summer School: Mean Field Games and Applications IPAM-UCLA June 2018

Last week, we discussed the variational MFG

$\partial_{t} \mu+\nabla \cdot(\mu \nabla \phi)=\nu \Delta \mu, \quad \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}+\nu \Delta \phi=f^{\prime}(\mu)$,
$t \in[0, T], x \in D=\mathbb{T}^{d}, \mu(t, x) \geq 0, \phi(t, x)$, respectively prescribed at $t=0$ and $t=T$.

Last week, we discussed the variational MFG

$\partial_{t} \mu+\nabla \cdot(\mu \nabla \phi)=\nu \Delta \mu, \quad \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}+\nu \Delta \phi=f^{\prime}(\mu)$,
$t \in[0, T], x \in D=\mathbb{T}^{d}, \mu(t, x) \geq 0, \phi(t, x)$, respectively prescribed at $t=0$ and $t=T$.

CONVEXITY of f was CRUCIAL for both theory and numerics.

Last week, we discussed the variational MFG

$\partial_{t} \mu+\nabla \cdot(\mu \nabla \phi)=\nu \Delta \mu, \quad \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}+\nu \Delta \phi=f^{\prime}(\mu)$,
$t \in[0, T], x \in D=\mathbb{T}^{d}, \mu(t, x) \geq 0, \phi(t, x)$, respectively prescribed at $t=0$ and $t=T$.

CONVEXITY of f was CRUCIAL for both theory and numerics.

With $\nu=0$ and written in terms of $v=\nabla \phi$, these equations read

$$
\partial_{t} \mu+\nabla \cdot(\mu v)=0, \quad \partial_{t} v+(v \cdot \nabla) v=\nabla\left(f^{\prime}(\mu)\right),
$$

and looks like the equations written by Euler in 1755-57 for compressible fluids.

The Euler equations written in conservation form

$$
\begin{gathered}
\partial_{t} \mu+\nabla \cdot q=0, \quad q=\mu v, \\
\partial_{t} q+\nabla \cdot\left(\frac{q \otimes q}{\mu}\right)=-\nabla(p(\mu)), \quad p^{\prime}(w)=-w f^{\prime \prime}(w)
\end{gathered}
$$

The Euler equations written in conservation form

$$
\begin{gathered}
\partial_{t} \mu+\nabla \cdot q=0, \quad q=\mu v \\
\partial_{t} q+\nabla \cdot\left(\frac{q \otimes q}{\mu}\right)=-\nabla(p(\mu)), \quad p^{\prime}(w)=-w f^{\prime \prime}(w)
\end{gathered}
$$

were introduced by Euler in 1755 for Fluid Mechanics.

The Euler equations written in conservation form

$$
\begin{gathered}
\partial_{t} \mu+\nabla \cdot q=0, \quad q=\mu v \\
\partial_{t} q+\nabla \cdot\left(\frac{q \otimes q}{\mu}\right)=-\nabla(p(\mu)), \quad p^{\prime}(w)=-w f^{\prime \prime}(w)
\end{gathered}
$$

were introduced by Euler in 1755 for Fluid Mechanics.
(This way, Euler introduced at once the first set of PDEs and the first field theory ever!)

The Euler equations written in conservation form

$$
\begin{gathered}
\partial_{t} \mu+\nabla \cdot q=0, \quad q=\mu v \\
\partial_{t} q+\nabla \cdot\left(\frac{q \otimes q}{\mu}\right)=-\nabla(p(\mu)), \quad p^{\prime}(w)=-w f^{\prime \prime}(w)
\end{gathered}
$$

were introduced by Euler in 1755 for Fluid Mechanics.
(This way, Euler introduced at once the first set of PDEs and the first field theory ever!)
If f is CONCAVE, we get a WELL-POSED INITIAL VALUE PROBLEM, with boundary conditions only at $t=0$ and none at $t=T$, in sharp contrast with MFG.

OUR GOAL

We want to solve the initial value problem for a large class of equations including Euler's ones by a variational approach based on convexity.

OUR GOAL

We want to solve the initial value problem for a large class of equations including Euler's ones by a variational approach based on convexity.

This turns out to be doable through a GENERALIZED MFG, involving vector-potentials (and measures taking values in the cone of semi-definite positive matrices).

The class of "entropic conservation laws"

The class of "entropic conservation laws"

$\partial_{t} U+\nabla \cdot(F(U))=0, \quad U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m}, \quad x \in D$
(where F is given so that $\sum_{\beta=1}^{m} \partial_{\beta} \mathcal{E}(W) \partial_{\alpha} F^{i \beta}(W)=\partial_{\alpha} Q^{i}(W), \forall W \in \mathcal{W}$,
for some $(\mathcal{E}, Q): \mathcal{W} \rightarrow \mathbb{R}^{1+d}$, with \mathcal{W} open convex and "entropy" \mathcal{E} strictly convex, which implies: $\partial_{t}(\mathcal{E}(U))+\nabla \cdot(Q(U))=0$, for all smooth solutions U)
contains the Euler equations, for which: $\mathcal{E}(\mu, q)=\frac{|q|^{2}}{2 \mu}-f(\mu), \mu>0$, with f concave.

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$. Formation of two shock waves. (Vertical axis: $t \in[0,1 / 4]$, horizontal axis: $x \in \mathbb{T}$.)

A MFG approach to the Cauchy problem

A MFG approach to the Cauchy problem

Given U_{0} on $D=\mathbb{R}^{d} / \mathbb{Z}^{d}$ and $T>0$, we minimize the entropy among all weak solutions U of the Cauchy pb:

A MFG approach to the Cauchy problem

Given U_{0} on $D=\mathbb{R}^{d} / \mathbb{Z}^{d}$ and $T>0$, we minimize the entropy among all weak solutions U of the Cauchy pb:
$\inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U), \quad U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m}$ subject to

A MFG approach to the Cauchy problem

Given U_{0} on $D=\mathbb{R}^{d} / \mathbb{Z}^{d}$ and $T>0$, we minimize the entropy among all weak solutions U of the Cauchy pb:

$$
\begin{gathered}
\inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U), \quad U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m} \text { subject to } \\
\int_{0}^{T} \int_{D} \partial_{t} A \cdot U+\nabla A \cdot F(U)+\int_{D} A(0, \cdot) \cdot U_{0}=0
\end{gathered}
$$

for all smooth $A=A(t, x) \in \mathbb{R}^{m}$ with $A(T, \cdot)=0$.

A MFG approach to the Cauchy problem

Given U_{0} on $D=\mathbb{R}^{d} / \mathbb{Z}^{d}$ and $T>0$, we minimize the entropy among all weak solutions U of the Cauchy pb:

$$
\begin{gathered}
\inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U), \quad U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m} \text { subject to } \\
\int_{0}^{T} \int_{D} \partial_{t} A \cdot U+\nabla A \cdot F(U)+\int_{D} A(0, \cdot) \cdot U_{0}=0
\end{gathered}
$$

for all smooth $A=A(t, x) \in \mathbb{R}^{m}$ with $A(T, \cdot)=0$.

The problem is not trivial since there may be many weak solutions starting from U_{0} which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).

The resulting saddle-point problem

The resulting saddle-point problem

$$
\begin{aligned}
\inf _{U} \sup _{A} \int_{0}^{T} & \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U) \\
& -\int_{D} A(0, \cdot) \cdot U_{0}
\end{aligned}
$$

where $A=A(t, x) \in \mathbb{R}^{m}$ is smooth with $A(T, \cdot)=0$. Here U_{0} is the initial condition and T the final time.

The resulting saddle-point problem

$$
\begin{aligned}
\inf _{U} \sup _{A} \int_{0}^{T} & \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U) \\
& -\int_{D} A(0, \cdot) \cdot U_{0}
\end{aligned}
$$

where $A=A(t, x) \in \mathbb{R}^{m}$ is smooth with $A(T, \cdot)=0$. Here U_{0} is the initial condition and T the final time.
N.B. The supremum in A exactly encodes that U is a weak solution with initial condition U_{0}, all test functions A acting like Lagrange multipliers.

Reversing infimum and supremum...

Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

$$
\sup _{A(T, \cdot)=0} \inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U)-\int_{D} A(0, \cdot) \cdot U_{0}
$$

Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

$$
\begin{aligned}
& \sup _{A(T, \cdot)=0} \inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U)-\int_{D} A(0, \cdot) \cdot U_{0} \\
= & \sup _{A(T, \cdot)=0} \int_{0}^{T} \int_{D}-G\left(\partial_{t} A, \nabla A\right)-\int_{D} A(0, \cdot) \cdot U_{0} \\
& G(E, B)=\sup _{V \in \mathcal{W} \subset \mathbb{R}^{m}} E \cdot V+B \cdot F(V)-\mathcal{E}(V),(E, B) \in \mathbb{R}^{m} \times \mathbb{R}^{m \times d} .
\end{aligned}
$$

Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

$$
\begin{aligned}
& \sup _{A(T, \cdot)=0} \inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U)-\int_{D} A(0, \cdot) \cdot U_{0} \\
= & \sup _{A(T, \cdot)=0} \int_{0}^{T} \int_{D}-G\left(\partial_{t} A, \nabla A\right)-\int_{D} A(0, \cdot) \cdot U_{0} \\
& G(E, B)=\sup _{V \in \mathcal{W} \subset \mathbb{R}^{m}} E \cdot V+B \cdot F(V)-\mathcal{E}(V),(E, B) \in \mathbb{R}^{m} \times \mathbb{R}^{m \times d} .
\end{aligned}
$$

Notice that G is automatically convex.

Comparison with the MFG considered last week

$$
\sup _{\phi} \int_{0}^{T} \int_{D}-G\left(\partial_{t} \phi+\nu \Delta \phi, \nabla \phi\right)-<\mu_{0}, \phi_{0}>
$$

was our variational MFG with μ_{0} and ϕ_{T} prescribed.

Comparison with the MFG considered last week

$$
\sup _{\phi} \int_{0}^{T} \int_{D}-G\left(\partial_{t} \phi+\nu \Delta \phi, \nabla \phi\right)-<\mu_{0}, \phi_{0}>
$$

was our variational MFG with μ_{0} and ϕ_{T} prescribed. Now, we rather have

$$
\sup _{A(T, \cdot)=0} \int_{0}^{T} \int_{D}-G\left(\partial_{t} A, \nabla A\right)-\int_{D} A(0, \cdot) \cdot U_{0}
$$

where $\nu=0$ and the vector-potential A substitutes for the scalar potential ϕ.

Comparison with the MFG considered last week

$$
\sup _{\phi} \int_{0}^{T} \int_{D}-G\left(\partial_{t} \phi+\nu \Delta \phi, \nabla \phi\right)-<\mu_{0}, \phi_{0}>
$$

was our variational MFG with μ_{0} and ϕ_{T} prescribed. Now, we rather have

$$
\sup _{A(T, \cdot)=0} \int_{0}^{T} \int_{D}-G\left(\partial_{t} A, \nabla A\right)-\int_{D} A(0, \cdot) \cdot U_{0}
$$

where $\nu=0$ and the vector-potential A substitutes for the scalar potential ϕ.
Thus our dual maximization problem to solve the initial value problem can be interpreted as a generalized variational 1st order-MFG with vector-valued potential.

Main results

Main results

Theorem 1: If U is a smooth solution to the Cauchy problem and T is not too large

Main results

Theorem 1: If U is a smooth solution to the Cauchy problem and T is not too large (*), then U can be recovered from the concave maximization problem which admits $A(t, x)=(t-T) \mathcal{E}^{\prime}(U(t, x))$ as solution.

Main results

Theorem 1: If U is a smooth solution to the Cauchy problem and T is not too large (*), then U can be recovered from the concave maximization problem which admits $A(t, x)=(t-T) \mathcal{E}^{\prime}(U(t, x))$ as solution.

Theorem 2: For the Burgers equation, all entropy solutions can be recovered, for arbitrarily large T.
$\left(^{*}\right)$ more precisely if, $\forall t, x, V \in \mathcal{W}, \mathcal{E}^{\prime \prime}(V)-(T-t) F^{\prime \prime}(V) \cdot \nabla\left(\mathcal{E}^{\prime}(U(t, x))\right)>0$.

Generalized MFG for the Euler equations

Generalized MFG for the Euler equations

Let us compute the generalized MFG in the particular case of the Euler equations of isothermal fluids

$$
\partial_{t} \mu+\nabla \cdot q=0, \quad \partial_{t} q+\nabla \cdot\left(\frac{q \otimes q}{\mu}\right)=-\nabla(p(\mu))
$$

Generalized MFG for the Euler equations

Let us compute the generalized MFG in the particular case of the Euler equations of isothermal fluids

$$
\partial_{t} \mu+\nabla \cdot q=0, \quad \partial_{t} q+\nabla \cdot\left(\frac{q \otimes q}{\mu}\right)=-\nabla(p(\mu))
$$

where
$f(w)=w-\log w, \quad p^{\prime}(w)=-w f^{\prime \prime}(w) \longrightarrow p(w)=w$.

Generalized MFG for isothermal Euler equations

Generalized MFG for isothermal Euler equations

Then, the generalized MFG amounts to minimizing

$$
\int_{[0, T] \times D} \exp (u) \exp \left(\frac{1}{2} Q \cdot M^{-1} \cdot Q\right)+\int_{D} \sigma_{0} \rho_{0}+w_{0} \cdot q_{0},
$$

Generalized MFG for isothermal Euler equations

Then, the generalized MFG amounts to minimizing
$\int_{[0, T] \times D} \exp (u) \exp \left(\frac{1}{2} Q \cdot M^{-1} \cdot Q\right)+\int_{D} \sigma_{0} \rho_{0}+w_{0} \cdot q_{0}$, among all fields $u=u(t, x) \in \mathbb{R}, Q=Q(t, x) \in \mathbb{R}^{d}$, $M=M(t, x)=M^{t}(t, x) \in \mathbb{R}^{d \times d}, \quad M \geq 0$,

Generalized MFG for isothermal Euler equations

Then, the generalized MFG amounts to minimizing
$\int_{[0, T] \times D} \exp (u) \exp \left(\frac{1}{2} Q \cdot M^{-1} \cdot Q\right)+\int_{D} \sigma_{0} \rho_{0}+w_{0} \cdot q_{0}$,
among all fields $u=u(t, x) \in \mathbb{R}, Q=Q(t, x) \in \mathbb{R}^{d}$, $M=M(t, x)=M^{t}(t, x) \in \mathbb{R}^{d \times d}, \quad M \geq 0, \quad$ of form:
$u=\partial_{t} \sigma+\partial^{i} w_{i}, \quad Q_{i}=\partial_{t} w_{i}+\partial_{i} \sigma, M_{i j}=\delta_{i j}-\partial_{i} w_{j}-\partial_{j} w_{i}$,
where σ and w must vanish at $t=T$.

The Euler equations of incompressible fluids

The Euler equations of incompressible fluids

The same method also applies to the Euler equations of incompressible fluids ("saturated congestion")

$$
\partial_{t} q+\nabla \cdot(q \otimes q)=-\nabla p, \quad \nabla \cdot q=0,
$$

where q is prescribed at $t=0$ and p is now a Lagrange multiplier ("price") for constraint $\nabla \cdot q=0$.

The Euler equations of incompressible fluids

The same method also applies to the Euler equations of incompressible fluids ("saturated congestion")

$$
\partial_{t} q+\nabla \cdot(q \otimes q)=-\nabla p, \quad \nabla \cdot q=0
$$

where q is prescribed at $t=0$ and p is now a Lagrange multiplier ("price") for constraint $\nabla \cdot q=0$.

We get again a generalized MFG for measures valued in the cone of semi-definite symmetric matrices:

Generalized MFG for incompressible fluids

Generalized MFG for incompressible fluids

This generalized (variational) MFG reads

$$
\sup _{(M, Q)}-\int_{[0, T] \times D} q_{0} \cdot Q+\frac{1}{2} Q \cdot M^{-1} \cdot Q,
$$

Generalized MFG for incompressible fluids

This generalized (variational) MFG reads

$$
\sup _{(M, Q)}-\int_{[0, T] \times D} q_{0} \cdot Q+\frac{1}{2} Q \cdot M^{-1} \cdot Q,
$$

where now Q is a vector field (not necessarily divergence-free) and $M=M^{t} \geq 0$ is a field of semi-definite symmetric matrices subject to

Generalized MFG for incompressible fluids

This generalized (variational) MFG reads

$$
\sup _{(M, Q)}-\int_{[0, T] \times D} q_{0} \cdot Q+\frac{1}{2} Q \cdot M^{-1} \cdot Q
$$

where now Q is a vector field (not necessarily divergence-free) and $M=M^{t} \geq 0$ is a field of semi-definite symmetric matrices subject to
$M_{i j}(T, \cdot)=\delta_{i j}, \quad \partial_{t} M_{i j}=\partial_{j} Q_{i}+\partial_{i} Q_{j}+2 \partial_{i} \partial_{j}(-\triangle)^{-1} \partial_{k} Q^{k}$.

The elementary example of the Burgers equation

The elementary example of the Burgers equation

Then, the maximization problem in A simply reads

$$
\sup _{A} \int_{[0, T] \times \mathbb{T}}-\frac{\left(\partial_{t} A\right)^{2}}{2\left(1-\partial_{x} A\right)}-\int_{\mathbb{T}} A(0, \cdot) u_{0} .
$$

with $A=A(t, x) \in \mathbb{R}$ subject to $A(T, \cdot)=0, \quad \partial_{x} A \leq 1$.

The elementary example of the Burgers equation

Then, the maximization problem in A simply reads

$$
\sup _{A} \int_{[0, T] \times \mathbb{T}}-\frac{\left(\partial_{t} A\right)^{2}}{2\left(1-\partial_{x} A\right)}-\int_{\mathbb{T}} A(0, \cdot) u_{0} .
$$

with $A=A(t, x) \in \mathbb{R}$ subject to $A(T, \cdot)=0, \quad \partial_{x} A \leq 1$.
Introducing $\mu=1-\partial_{x} A \geq 0, q=\partial_{t} A$, we get the MFG
$\sup _{(\mu, q)}\left\{\left.\int_{[0, T] \times \mathbb{T}}-\frac{q^{2}}{2 \mu}-q u_{0} \right\rvert\, \partial_{t} \mu+\partial_{x} q=0, \quad \mu(T, \cdot)=1\right\}$.

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$.
Formation of two shock waves. (Vertical axis: $t \in[0,1 / 4]$, horizontal axis: $x \in \mathbb{T}$.)

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$. Recovery of the solution at time $\mathrm{T}=0.1$ by convex optimization. Observe the formation of a first vacuum zone as the first shock has formed.

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$.
Recovery of the solution at time $\mathrm{T}=0.16$ by convex optimisation.
Observe the formation of a second vacuum zone as the second shock has formed.

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$. Recovery of the solution at time $\mathrm{T}=0.225$ by convex optimisation.

Observe the extension of the two vacuum zones.

Numerics: 2 lines of code differ from a standard (Benamou-B.) OT solver!

Analogy with mountain climbing: going from Everest to Lhotse without following the crest! (Partial credit to Thomas Gallouët for this analogy.)

Analogy with mountain climbing: going from Everest to Lhotse without following the crest! (Partial credit to Thomas Gallouët for this analogy.)

Analogy with mountain climbing: going from Everest to Lhotse without following the crest! (Partial credit to Thomas Gallouët for this analogy.)

For more details, voir Y.B. ArXiv Oct. 2017.

