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Last week, we discussed the variational MFG

1 ,
O+ V - (uV9) = vDp, 0+ 5|V +vAd = f(u),

te[0,T],x € D="TY u(t,x) >0, ¢(t, x), respectively prescribed at t =0 and t = T.

CONVEXITY of f was CRUCIAL for both theory and numerics.
With v = 0 and written in terms of v = V¢, these equations read

O+ V- (uv) =0, v+ (v -V)v=V(f(u)),
and looks like the equations written by Euler in 1755-57 for compressible fluids.
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The Euler equations written in conservation form

at/L—qu:O, q=nv,
® / 1
0q+ V- (qﬂ —V(p(), Pl(w)=—wf(w)

were introduced by Euler in 1755 for Fluid Mechanics.

(This way, Euler introduced at once the first set of PDEs and the first field theory ever!)

If fis CONCAVE, we get a WELL-POSED INITIAL
VALUE PROBLEM, with boundary conditions only at
t =0and none at t = T, in sharp contrast with MFG.
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We want to solve the initial value problem for a large
class of equations including Euler’s ones by a
variational approach based on convexity.



OUR GOAL

We want to solve the initial value problem for a large
class of equations including Euler’s ones by a
variational approach based on convexity.

This turns out to be doable through a GENERALIZED
MFG, involving vector-potentials (and measures taking
values in the cone of semi-definite positive matrices).
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The class of "entropic conservation laws"



The class of "entropic conservation laws"

QU+ V- (FU)=0, U=UtX)EWCR™ xeD

m
(where F is given so that Y 9sE(W)0uF? (W) = 0. Q' (W), YW € W,
B=1

for some (€, Q) : W — R'*9, with W open convex and "entropy" £ strictly convex,

which implies: 9:(£(U)) + V - (Q(U)) = 0, for all smooth solutions U)

contains the Euler equations,
for which: £(, q) = ‘g/'j f(1), p > 0, with f concave.
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fort.10" ¥ +

Inviscid Burgers equation : ju + dx(u?/2) = 0, u = u(t, x), x € R/Z, t > 0.
Formation of two shock waves. (Vertical axis: t € [0, 1/4], horizontal axis: x € T.)
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A MFG approach to the Cauchy problem

Given Uy on D =RY/Z% and T > 0, we minimize the
entropy among all weak solutions U of the Cauchy pb:

.
igf/ /S(U), U= U(t, x) € W C R™ subject to
o Jp

/Or/DatA.U+VA.F(U)+/DA(O,,),U0:0

for all smooth A = A(t, x) € R™ with A(T,-) = 0.

The problem is not trivial since there may be many weak solutions starting from Uy

which are not entropy-preserving (by "convex integration" a la De Lellis-Székelyhidi).
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The resulting saddle-point problem

T
inf sup / /S(U)—atA-U—VA-F(U)
U a 0

/AO)U0

where A = A(t, x) € R™ is smooth with A(T,-) =
Here U, is the initial condition and T the flnal tlme

N.B. The supremum in A exactly encodes that U is a weak solution with initial condition

Up, all test functions A acting like Lagrange multipliers.
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Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

;
sup inf / /g(U)—a,A.U—VA.F(U)—/A(o, )+ Us
ATH=0 U Jo Jp D

= sup // —G(0:A, VA) — /A(O)Uo

G(E,B)= sup E-V+B-F(V)—£&(V), (E,B) e R" x R™“.
VewcCRrRm

Notice that G is automatically convex.
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Comparison with the MFG considered last week

)
sup /O [ =010 + 120, 96)~ < .00 >

was our variational MFG with 1o and ¢ prescribed. Now, we rather have

.
sup / /—G(@,A,VA)—/A(O,-)-UO
AT)=0 Jo JD D

where v = 0 and the vector-potential A substitutes for the scalar potential ¢.
Thus our dual maximization problem to solve the initial
value problem can be interpreted as a generalized
variational 1st order-MFG with vector-valued potential.
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Main results

Theorem 1: If U is a smooth solution to the Cauchy
problem and T is not too large (*), then U can be
recovered from the concave maximization problem
which admits A(t, x) = (t — T)E'(U(t, x)) as solution.
Theorem 2: For the Burgers equation, all entropy
solutions can be recovered, for arbitrarily large T.

(*) more precisely if, V t,x, Ve W, " (V) — (T = t)F" (V) - V(£'(U(t, x))) > 0.
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Let us compute the generalized MFG in the particular
case of the Euler equations of isothermal fluids
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Generalized MFG for the Euler equations

Let us compute the generalized MFG in the particular
case of the Euler equations of isothermal fluids

@
Op+V-q=0, &g+ V- (%) — —V(p(p))
where
f(w)=w—logw, p'(w)=—-wf"(w)— p(w)=w.
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Generalized MFG for isothermal Euler equations

Then, the generalized MFG amounts to minimizing

1
/ exp(u)exp(=Q-M~1. Q) + / a0po + Wo - Qo,
[0,T]xD 2 D

among all fields u = u(t,x) € R, Q = Q(t, x) € RY,
M = M(t, x) = Mi(t,x) e R*9, M >0, ofform:

u= 0t + aiW/, Q; = ow; + Jio, M,’j = (5,‘1' — (9,‘Wj — @-W,-,

where o and w must vanishatt=T.
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The same method also applies to the Euler equations
of incompressible fluids ("saturated congestion")

hq+V-(qeq)=-Vp, V-q=0,

where q is prescribed at t = 0 and p is now a
Lagrange multiplier ("price") for constraint V- g = 0.



The Euler equations of incompressible fluids

The same method also applies to the Euler equations
of incompressible fluids ("saturated congestion")

hq+V-(qeq)=-Vp, V-q=0,

where q is prescribed at t = 0 and p is now a
Lagrange multiplier ("price") for constraint V- g = 0.

We get again a generalized MFG for measures valued
in the cone of semi-definite symmetric matrices:
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Generalized MFG for incompressible fluids

This generalized (variational) MFG reads

’
sup —/ Q- Q+-Q-M'.Q,
(M.Q) [0,T]xD 2

where now Q is a vector field (not necessarily
divergence-free) and M = M! > 0 is a field of
semi-definite symmetric matrices subject to

Mi(T,) = 8j, OMy = 0;Q; + 0 Q) + 20;0(—A) 9k Q.
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Then, the maximization problem in A simply reads
su A0, )u
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with A = A(t, x) € R subjectto A(T,-) =0, 0xA< 1.



The elementary example of the Burgers equation

Then, the maximization problem in A simply reads

su A0, )y,
Ap [0,T]xT 2(1—3)( / (0.)to.

with A = A(t, x) € R subjectto A(T,-) =0, 0xA< 1.

Introducing . = 1 — 9,A > 0, g = 0;A, we get the MFG
2

sup{ —g——quo | Ot +0xq =0, u(T,)=1}
(1,q) J[0,T]xT %
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Inviscid Burgers equation : ju + dx(u?/2) = 0, u = u(t, x), x € R/Z, t > 0.
Formation of two shock waves. (Vertical axis: t € [0, 1/4], horizontal axis: x € T.)
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fort19"  +

02

U

Inviscid Burgers equation : dyu + Ox(u?/2) = 0, u = u(t, x), x € R/Z, t > 0.
Recovery of the solution at time T=0.1 by convex optimization.
Observe the formation of a first vacuum zone as the first shock has formed.
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Inviscid Burgers equation : dyu + Ox(u?/2) = 0, u = u(t, x), x € R/Z, t > 0.
Recovery of the solution at time T=0.16 by convex optimisation.
Observe the formation of a second vacuum zone as the second shock has formed.
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Inviscid Burgers equation : dyu + Ox(u?/2) = 0, u = u(t, x), x € R/Z, t > 0.
Recovery of the solution at time T=0.225 by convex optimisation.
Observe the extension of the two vacuum zones.

Yann Brenier (CNRS, DMA-ENS) MFG and IVP IPAM-UCLA June 18-29 2018 20/22



’b‘urgers-za" +

1% "
O‘SWMMWWMWWMWM
+\M

°° %WW\M»MWWM»H\/

B ™
o.‘t,..«m\ww + PRNN

T —————————
0.2

I —

0\++++++wmmWWW“MWWM+++++++++++ 4

-0.2 B

-0.4 L L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

Numerics: 2 lines of code differ from a standard (Benamou-B.) OT solver!
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Analogy with mountain chmbmg going from Everest to Lhotse without following

the crest! (Partial credit to Thomas Gallouét for this analogy.)
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Analogy with mountain climbing: going from Everest to Lhotse without following

the crest! (Partial credit to Thomas Gallouét for this analogy.)

For more details, voir Y.B. ArXiv Oct. 2017.
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