From Optimal transportation to Variational Mean Field Games

Yann Brenier CNRS, DMA-ENS, 45 rue d'Ulm, FR-75005 Paris

Graduate Summer School: Mean Field Games and Applications IPAM-UCLA June 18 - 29, 2018

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t$$
.

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t.$$

Its law, defined by : $\langle \mu_t, f \rangle = \mathbf{E}(f(X_t)), \forall t \geq 0, \forall f \in C(D),$

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t$$
.

Its law, defined by : $<\mu_t, f>=$ **E** $(f(X_t)), \forall t \ge 0, \forall f \in C(D), \text{ satisfies the evolution PDE}$

$$\partial_t \mu_t + \nabla \cdot \mathbf{q}_t = \nu \Delta \mu_t, \quad \mathbf{q}_t = \mathbf{v}_t \mu_t.$$

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t$$
.

Its law, defined by : $<\mu_t, f>= \mathbf{E}(f(X_t)), \forall t \ge 0, \forall f \in C(D),$ satisfies the evolution PDE

$$\partial_t \mu_t + \nabla \cdot \mathbf{q}_t = \nu \Delta \mu_t, \quad \mathbf{q}_t = \mathbf{v}_t \mu_t.$$

Formal proof.

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t$$
.

Its law, defined by : $<\mu_t, f>= \mathbf{E}(f(X_t)), \forall t \ge 0, \forall f \in C(D),$ satisfies the evolution PDE

$$\partial_t \mu_t + \nabla \cdot \mathbf{q}_t = \nu \Delta \mu_t, \quad \mathbf{q}_t = \mathbf{v}_t \mu_t.$$

Formal proof.

Discretize $X_{n+1} = X_n + hv_n(X_n) + \sqrt{2\nu h} \gamma_{n+1}$, with time step h > 0, and get:

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t$$
.

Its law, defined by : $<\mu_t, f>= \mathbf{E}(f(X_t)), \forall t \ge 0, \forall f \in C(D),$ satisfies the evolution PDE

$$\partial_t \mu_t + \nabla \cdot \mathbf{q}_t = \nu \Delta \mu_t, \quad \mathbf{q}_t = \mathbf{v}_t \mu_t.$$

Formal proof.

Discretize $X_{n+1} = X_n + hv_n(X_n) + \sqrt{2\nu h} \gamma_{n+1}$, with time step h > 0, and get:

$$<\mu_{n+1}, f> = \mathbf{E}(f(X_{n+1})) = \mathbf{E}(f(X_n + hv_n(X_n) + \sqrt{2\nu h}\gamma_{n+1}))$$

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t$$
.

Its law, defined by : $<\mu_t, f>= \mathbf{E}(f(X_t)), \forall t \ge 0, \forall f \in C(D),$ satisfies the evolution PDE

$$\partial_t \mu_t + \nabla \cdot \mathbf{q}_t = \nu \Delta \mu_t, \quad \mathbf{q}_t = \mathbf{v}_t \mu_t.$$

Formal proof.

Discretize
$$X_{n+1} = X_n + hv_n(X_n) + \sqrt{2\nu h} \gamma_{n+1}$$
, with time step $h > 0$, and get:

$$<\mu_{n+1}, f> = \mathbf{E}(f(X_{n+1})) = \mathbf{E}(f(X_n + h\nu_n(X_n) + \sqrt{2\nu h}\gamma_{n+1}))$$

$$\sim \textbf{E}\left(f(X_n) + \nabla f(X_n) \cdot (hv_n(X_n) + \sqrt{2\nu h}\gamma_{n+1}) + h\nu D^2 f(X_n) \cdot \gamma_{n+1} \otimes \gamma_{n+1}\right)$$

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t$$
.

Its law, defined by : $<\mu_t, f>= \mathbf{E}(f(X_t)), \forall t \ge 0, \forall f \in C(D),$ satisfies the evolution PDE

$$\partial_t \mu_t + \nabla \cdot \mathbf{q}_t = \nu \Delta \mu_t, \quad \mathbf{q}_t = \mathbf{v}_t \mu_t.$$

Formal proof.

Discretize
$$X_{n+1} = X_n + hv_n(X_n) + \sqrt{2\nu h} \gamma_{n+1}$$
, with time step $h > 0$, and get:

$$<\mu_{n+1}, f> = \mathbf{E}(f(X_{n+1})) = \mathbf{E}(f(X_n + h\nu_n(X_n) + \sqrt{2\nu h}\gamma_{n+1}))$$

$$\sim \textbf{E}\left(f(X_n) + \nabla f(X_n) \cdot (hv_n(X_n) + \sqrt{2\nu h}\gamma_{n+1}) + h\nu D^2 f(X_n) \cdot \gamma_{n+1} \otimes \gamma_{n+1}\right)$$

$$= \mathbf{E} \left(f(X_n) + h \nabla f(X_n) \cdot v_n(X_n) + h \nu \Delta f(X_n) \right)$$

The brownian motion with drift v on the periodic cube $D = \mathbf{R}^d/\mathbf{Z}^d$ is governed by

$$dX_t = v_t(X_t)dt + \sqrt{2\nu} dB_t$$
.

Its law, defined by : $<\mu_t, t>= \mathbf{E}(f(X_t)), \forall t \ge 0, \forall f \in C(D)$, satisfies the evolution PDE

$$\partial_t \mu_t + \nabla \cdot \mathbf{q}_t = \nu \Delta \mu_t, \quad \mathbf{q}_t = \mathbf{V}_t \mu_t.$$

Formal proof.

Discretize $X_{n+1} = X_n + hv_n(X_n) + \sqrt{2\nu h} \gamma_{n+1}$, with time step h > 0, and get:

$$<\mu_{n+1}, f> = \mathbf{E}(f(X_{n+1})) = \mathbf{E}(f(X_n + hv_n(X_n) + \sqrt{2\nu h}\gamma_{n+1}))$$

$$\sim \textbf{E}\left(f(X_n) + \nabla f(X_n) \cdot (hv_n(X_n) + \sqrt{2\nu h}\gamma_{n+1}) + h\nu D^2 f(X_n) \cdot \gamma_{n+1} \otimes \gamma_{n+1}\right)$$

$$= \mathbf{E} \left(f(X_n) + h \nabla f(X_n) \cdot v_n(X_n) + h \nu \Delta f(X_n) \right) = <\mu_n, f + h \nabla f \cdot v_n + h \nu \Delta f>...$$

IPAM-LICLA

$$I(\mu_0, \mu_T) = \inf \{ \int_0^T \mathcal{F}(\mu_t, q_t) dt, \quad \partial_t \mu_t + \nabla \cdot q_t = \nu \Delta \mu_t, \quad q_t = v_t \mu_t \},$$

where μ_0, μ_T are given

$$I(\mu_0, \mu_T) = \inf \{ \int_0^T \mathcal{F}(\mu_t, q_t) dt, \quad \partial_t \mu_t + \nabla \cdot q_t = \nu \Delta \mu_t, \quad q_t = v_t \mu_t \},$$

where μ_0, μ_T are given and ${\mathcal F}$ is defined by duality as a convex lsc functional

$$\mathcal{F}(\mu, q) = \sup\{ < \mu, A > + < q, B > - \int_{D} G(A(x), B(x)) dx, \quad (A, B) \in C(D, \mathbf{R}^{1+d}) \}.$$

$$I(\mu_0, \mu_T) = \inf \{ \int_0^T \mathcal{F}(\mu_t, q_t) dt, \quad \partial_t \mu_t + \nabla \cdot q_t = \nu \Delta \mu_t, \quad q_t = v_t \mu_t \},$$

where μ_0, μ_T are given and \mathcal{F} is defined by duality as a convex lsc functional

$$\mathcal{F}(\mu,q) = \sup\{<\mu,A> + < q,B> -\int_D G(A(x),B(x))dx, \quad (A,B)\in C(D,\mathbf{R}^{1+d}) \ \}.$$

The canonical example (Benamou-B. 2000) is given by $\nu=0$, G(A,B)=0 whenever $A+B^2/2\leq 0$ and $G(A,B)+\infty$ otherwise.

$$I(\mu_0, \mu_T) = \inf \{ \int_0^T \mathcal{F}(\mu_t, q_t) dt, \quad \partial_t \mu_t + \nabla \cdot q_t = \nu \Delta \mu_t, \quad q_t = v_t \mu_t \},$$

where μ_0, μ_T are given and \mathcal{F} is defined by duality as a convex lsc functional

$$\mathcal{F}(\mu, q) = \sup\{ <\mu, A> + < q, B> - \int_D G(A(x), B(x)) dx, \quad (A, B) \in C(D, \mathbf{R}^{1+d}) \}.$$

The canonical example (Benamou-B. 2000) is given by $\nu=0$, G(A,B)=0 whenever $A+B^2/2\leq 0$ and $G(A,B)+\infty$ otherwise. It can be shown that $\mathcal{F}(\mu,q)=+\infty$, unless

$$\mu \geq 0$$
, $q << \mu$, $q = v\mu$, $v \in L^2(D, d\mu; \mathbf{R}^d)$, $\mathcal{F}(\mu, q) = \int_D \frac{v^2}{2} d\mu$.

$$I(\mu_0, \mu_T) = \inf \{ \int_0^T \mathcal{F}(\mu_t, q_t) dt, \quad \partial_t \mu_t + \nabla \cdot q_t = \nu \Delta \mu_t, \quad q_t = v_t \mu_t \},$$

where μ_0, μ_T are given and \mathcal{F} is defined by duality as a convex lsc functional

$$\mathcal{F}(\mu, q) = \sup\{ < \mu, A > + < q, B > - \int_{D} G(A(x), B(x)) dx, \quad (A, B) \in C(D, \mathbf{R}^{1+d}) \}.$$

The canonical example (Benamou-B. 2000) is given by $\nu=0$, G(A,B)=0 whenever $A+B^2/2\leq 0$ and $G(A,B)+\infty$ otherwise. It can be shown that $\mathcal{F}(\mu,q)=+\infty$, unless

$$\mu \geq 0$$
, $q << \mu$, $q = \nu \mu$, $\nu \in L^2(D, d\mu; \mathbf{R}^d)$, $\mathcal{F}(\mu, q) = \int_D \frac{v^2}{2} d\mu$.

Then, the optimal value $I(\mu_0, \mu_T)$ corresponds to the OT problem with quadratic cost.

$$I(\mu_{0}, \mu_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} G(A_{t}(x), B_{t}(x)) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle$$

$$I(\mu_{0}, \mu_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} G(A_{t}(x), B_{t}(x)) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle$$

= sup inf (thanks to the Fenchel-Rockafellar duality theorem)

$$I(\mu_{0}, \mu_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} G(A_{t}(x), B_{t}(x)) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle$$

= sup inf (thanks to the Fenchel-Rockafellar duality theorem)

$$= \sup_{\phi} \int_0^T \int_D -G(\partial_t \phi + \nu \Delta \phi, \nabla \phi)(t, x) dx dt + <\mu_T, \phi_T > - <\mu_0, \phi_0 >.$$

$$I(\mu_{0}, \mu_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} G(A_{t}(x), B_{t}(x)) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle$$

= sup inf (thanks to the Fenchel-Rockafellar duality theorem)

$$= \sup_{\phi} \int_0^T \int_D -G(\partial_t \phi + \nu \Delta \phi, \nabla \phi)(t, x) dx dt + <\mu_T, \phi_T > - <\mu_0, \phi_0 >.$$

We may now change the time boundary conditions, prescribing ϕ_T instead of μ_T , with optimal value $J(\mu_0, \phi_T)$.

$$I(\mu_{0}, \mu_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} G(A_{t}(x), B_{t}(x)) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle$$

= sup inf (thanks to the Fenchel-Rockafellar duality theorem)

$$= \sup_{\phi} \int_0^T \int_D -G(\partial_t \phi + \nu \Delta \phi, \nabla \phi)(t, x) dx dt + <\mu_T, \phi_T> - <\mu_0, \phi_0>.$$

We may now change the time boundary conditions, prescribing ϕ_T instead of μ_T , with optimal value $J(\mu_0, \phi_T)$. This way, we have just shifted from OT to a variational MFG!

$$J(\mu_{0}, \phi_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} G(A_{t}(x), B_{t}(x)) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle.$$

$$J(\mu_{0}, \phi_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} G(A_{t}(x), B_{t}(x)) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle.$$

Assume we are given *g*, convex super-linear and non decreasing, with *G* of form:

$$G(A,B) = g(A + B^2/2), \ \ g(a) = \sup_{w \in \mathbf{R}} \ \ wa - f(w), \ \ f(w) = \sup_{a \in \mathbf{R}} \ \ wa - g(a)$$

$$J(\mu_{0}, \phi_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} G(A_{t}(x), B_{t}(x)) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle.$$

Assume we are given *g*, convex super-linear and non decreasing, with *G* of form:

$$G(A,B) = g(A + B^2/2), \ \ g(a) = \sup_{w \in \mathbf{R}} \ \ wa - f(w), \ \ f(w) = \sup_{a \in \mathbf{R}} \ \ wa - g(a)$$

(for instance
$$g(a) = \exp(a)$$
, $f(w) = w \log w - w$).

$$\begin{split} J(\mu_0,\phi_T) &= \inf_{(\mu,q)} \sup_{(A,B,\phi)} \int_0^T (<\mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t > + < q_t, B_t - \nabla \phi_t >) dt \\ &- \int_0^T \int_D G(A_t(x), B_t(x)) dx dt + < \mu_T, \phi_T > - < \mu_0, \phi_0 > . \end{split}$$

Assume we are given g, convex super-linear and non decreasing, with G of form:

$$G(A,B) = g(A + B^2/2), \ \ g(a) = \sup_{w \in R} \ \ wa - f(w), \ \ f(w) = \sup_{a \in R} \ \ wa - g(a)$$

(for instance $g(a) = \exp(a)$, $f(w) = w \log w - w$). Then we obtain:

$$\partial_t \mu + \nabla \cdot (\mu \nabla \phi) = \nu \Delta \mu, \quad \partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + \nu \Delta \phi = f'(\mu).$$

$$J(\mu_0, \phi_T) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_0^T (\langle \mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t \rangle + \langle q_t, B_t - \nabla \phi_t \rangle) dt$$
$$- \int_0^T \int_D g(A_t(x) + B_t(x)^2/2) dx dt + \langle \mu_T, \phi_T \rangle - \langle \mu_0, \phi_0 \rangle.$$

$$J(\mu_{0}, \phi_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} g(A_{t}(x) + B_{t}(x)^{2}/2) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle.$$

$$\mu = g'(A + B^2/2), \quad q = g'(A + B^2/2)B,$$

$$J(\mu_{0}, \phi_{T}) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_{0}^{T} (\langle \mu_{t}, A_{t} - \partial_{t} \phi_{t} - \nu \Delta \phi_{t} \rangle + \langle q_{t}, B_{t} - \nabla \phi_{t} \rangle) dt$$
$$- \int_{0}^{T} \int_{D} g(A_{t}(x) + B_{t}(x)^{2}/2) dx dt + \langle \mu_{T}, \phi_{T} \rangle - \langle \mu_{0}, \phi_{0} \rangle.$$

$$\mu = g'(A + B^2/2), \ \ q = g'(A + B^2/2)B, \ A = \partial_t \phi + \nu \Delta \phi, \ \ B = \nabla \phi$$

$$J(\mu_0, \phi_T) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_0^T (\langle \mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t \rangle + \langle q_t, B_t - \nabla \phi_t \rangle) dt$$
$$- \int_0^T \int_D g(A_t(x) + B_t(x)^2/2) dx dt + \langle \mu_T, \phi_T \rangle - \langle \mu_0, \phi_0 \rangle.$$

$$\mu = g'(A + B^2/2), \quad q = g'(A + B^2/2)B, \quad A = \partial_t \phi + \nu \Delta \phi, \quad B = \nabla \phi \longrightarrow \quad q = \mu \nabla \phi.$$

$$J(\mu_0, \phi_T) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_0^T (\langle \mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t \rangle + \langle q_t, B_t - \nabla \phi_t \rangle) dt$$
$$- \int_0^T \int_D g(A_t(x) + B_t(x)^2/2) dx dt + \langle \mu_T, \phi_T \rangle - \langle \mu_0, \phi_0 \rangle.$$

$$\mu=g'(\textbf{A}+\textbf{B}^2/\textbf{2}), \ \ q=g'(\textbf{A}+\textbf{B}^2/\textbf{2})\textbf{B}, \ \textbf{A}=\partial_t\phi+\nu\Delta\phi, \ \ \textbf{B}=\nabla\phi \longrightarrow \ \ \textbf{q}=\mu\nabla\phi.$$

So:
$$\partial_t \mu + \nabla \cdot \mathbf{q} = \nu \Delta \mu \rightarrow \partial_t \mu + \nabla \cdot (\mu \nabla \phi) = \nu \Delta \mu$$
.

$$J(\mu_0, \phi_T) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_0^T (\langle \mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t \rangle + \langle q_t, B_t - \nabla \phi_t \rangle) dt$$
$$- \int_0^T \int_D g(A_t(x) + B_t(x)^2/2) dx dt + \langle \mu_T, \phi_T \rangle - \langle \mu_0, \phi_0 \rangle.$$

$$\mu = g'(A + B^2/2), \quad q = g'(A + B^2/2)B, \quad A = \partial_t \phi + \nu \Delta \phi, \quad B = \nabla \phi \longrightarrow \quad q = \mu \nabla \phi.$$

So:
$$\partial_t \mu + \nabla \cdot \mathbf{q} = \nu \Delta \mu \rightarrow \partial_t \mu + \nabla \cdot (\mu \nabla \phi) = \nu \Delta \mu$$
.

Then, use:
$$g(a) = \sup_{w \in \mathbf{R}} wa - f(w)$$
, $f(w) = \sup_{a \in \mathbf{R}} wa - g(a)$,

$$J(\mu_0, \phi_T) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_0^T (\langle \mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t \rangle + \langle q_t, B_t - \nabla \phi_t \rangle) dt$$
$$- \int_0^T \int_D g(A_t(x) + B_t(x)^2/2) dx dt + \langle \mu_T, \phi_T \rangle - \langle \mu_0, \phi_0 \rangle.$$

$$\mu=g'(\textbf{A}+\textbf{B}^2/\textbf{2}), \ \ q=g'(\textbf{A}+\textbf{B}^2/\textbf{2})\textbf{B}, \ \textbf{A}=\partial_t\phi+\nu\Delta\phi, \ \ \textbf{B}=\nabla\phi \longrightarrow \ \ q=\mu\nabla\phi.$$

So:
$$\partial_t \mu + \nabla \cdot \mathbf{q} = \nu \Delta \mu \rightarrow \partial_t \mu + \nabla \cdot (\mu \nabla \phi) = \nu \Delta \mu$$
.

Then, use:
$$g(a) = \sup_{w \in \mathbf{R}} wa - f(w)$$
, $f(w) = \sup_{a \in \mathbf{R}} wa - g(a)$, and deduce

$$\mu = g'(A + B^2/2) \longrightarrow A + B^2/2 = f'(\mu) \longrightarrow$$

$$J(\mu_0, \phi_T) = \inf_{(\mu, q)} \sup_{(A, B, \phi)} \int_0^T (\langle \mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t \rangle + \langle q_t, B_t - \nabla \phi_t \rangle) dt$$
$$- \int_0^T \int_0^T g(A_t(x) + B_t(x)^2/2) dx dt + \langle \mu_T, \phi_T \rangle - \langle \mu_0, \phi_0 \rangle.$$

Proof: we first differentiate in (A, B), next in (μ, q) , and obtain:

$$\mu = g'(A + B^2/2), \quad q = g'(A + B^2/2)B, \quad A = \partial_t \phi + \nu \Delta \phi, \quad B = \nabla \phi \longrightarrow \quad q = \mu \nabla \phi.$$

So:
$$\partial_t \mu + \nabla \cdot \mathbf{q} = \nu \Delta \mu \rightarrow \partial_t \mu + \nabla \cdot (\mu \nabla \phi) = \nu \Delta \mu$$
.

Then, use:
$$g(a) = \sup_{w \in \mathbf{R}} wa - f(w)$$
, $f(w) = \sup_{a \in \mathbf{R}} wa - g(a)$, and deduce

$$\mu = g'(A + B^2/2) \longrightarrow A + B^2/2 = f'(\mu) \longrightarrow \partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + \nu \Delta \phi = f'(\mu).$$

6/7

(Method introduced for OT by Benamou-B. in 2000.)

We use the augmented Lagrangian trick (which does not change the problem):

$$\inf_{(\mu,q)} \sup_{(A,B,\phi)} \int_0^T (\langle \mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t \rangle + \langle q_t, B_t - \nabla \phi_t \rangle) dt$$

$$- \int_0^T \int_D \left(G(A,B) + |A - \partial_t \phi - \nu \Delta \phi|^2 + |B - \nabla \phi|^2 \right) dx dt + \langle \mu_T, \phi_T \rangle - \langle \mu_0, \phi_0 \rangle.$$

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$\inf_{(\mu,q)} \sup_{(A,,B,\phi)} \int_0^T (<\mu_t,A_t - \partial_t \phi_t - \nu \Delta \phi_t > + < q_t,B_t - \nabla \phi_t >) dt$$

$$- \int_0^T \int_{\Omega} \left(G(A,B) + |A - \partial_t \phi - \nu \Delta \phi|^2 + |B - \nabla \phi|^2 \right) dx dt + < \mu_T,\phi_T > - < \mu_0,\phi_0 > .$$

Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for each grid point (t, x), entirely parallelizable).

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$\inf_{(\mu,q)} \sup_{(A,,B,\phi)} \int_0^T (<\mu_t,A_t - \partial_t \phi_t - \nu \Delta \phi_t > + < q_t,B_t - \nabla \phi_t >) dt$$

$$- \int_0^T \int_{\Omega} \left(G(A,B) + |A - \partial_t \phi - \nu \Delta \phi|^2 + |B - \nabla \phi|^2 \right) dx dt + < \mu_T,\phi_T > - < \mu_0,\phi_0 > .$$

Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for each grid point (t, x), entirely parallelizable). Next, we optimize in ϕ and get a constant coefficient linear elliptic PDE we can solve very efficiently.

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$\inf_{(\mu,q)} \sup_{(A,,B,\phi)} \int_0^T (<\mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t > + < q_t, B_t - \nabla \phi_t >) dt$$

$$- \int_0^T \int_{\Omega} \left(G(A,B) + |A - \partial_t \phi - \nu \Delta \phi|^2 + |B - \nabla \phi|^2 \right) dx dt + < \mu_T, \phi_T > - < \mu_0, \phi_0 > .$$

Iteratively, we optimize, first in (A,B) (this is a purely local optimization problem, for each grid point (t,x), entirely parallelizable). Next, we optimize in ϕ and get a constant coefficient linear elliptic PDE we can solve very efficiently. Finally, we update (μ,q) as in a descent method, which is also very fast.

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$\inf_{(\mu,q)} \sup_{(A,,B,\phi)} \int_0^T (<\mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t > + < q_t, B_t - \nabla \phi_t >) dt$$

$$- \int_0^T \int_{\Omega} \left(G(A,B) + |A - \partial_t \phi - \nu \Delta \phi|^2 + |B - \nabla \phi|^2 \right) dx dt + < \mu_T, \phi_T > - < \mu_0, \phi_0 > .$$

Iteratively, we optimize, first in (A,B) (this is a purely local optimization problem, for each grid point (t,x), entirely parallelizable). Next, we optimize in ϕ and get a constant coefficient linear elliptic PDE we can solve very efficiently. Finally, we update (μ,q) as in a descent method, which is also very fast. Of course, one may need many terations to get good accuracy.

(Method introduced for OT by Benamou-B. in 2000.)

We use the augmented Lagrangian trick (which does not change the problem):

$$\inf_{(\mu,q)} \sup_{(A,,B,\phi)} \int_0^T (<\mu_t, A_t - \partial_t \phi_t - \nu \Delta \phi_t > + < q_t, B_t - \nabla \phi_t >) dt$$

$$- \int_0^T \int_{\Omega} \left(G(A,B) + |A - \partial_t \phi - \nu \Delta \phi|^2 + |B - \nabla \phi|^2 \right) dx dt + < \mu_T, \phi_T > - < \mu_0, \phi_0 > .$$

Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for each grid point (t, x), entirely parallelizable). Next, we optimize in ϕ and get a constant coefficient linear elliptic PDE we can solve very efficiently. Finally, we update (μ, q) as in a descent method, which is also very fast. Of course, one may need many terations to get good accuracy. Nevertheless, step 2 instantaneously propagates information all over the computational domain.