From Optimal transportation to Variational Mean Field Games

Yann Brenier
CNRS, DMA-ENS, 45 rue d'Ulm, FR-75005 Paris

Graduate Summer School: Mean Field Games and Applications IPAM-UCLA June 18-29, 2018

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Its law, defined by : $<\mu_{t}, f>=\mathbf{E}\left(f\left(X_{t}\right)\right), \quad \forall t \geq 0, \quad \forall f \in C(D)$,

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Its law, defined by : $<\mu_{t}, f>=\mathbf{E}\left(f\left(X_{t}\right)\right), \forall t \geq 0, \quad \forall f \in C(D)$, satisfies the evolution PDE

$$
\partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}
$$

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Its law, defined by : $<\mu_{t}, f>=\mathbf{E}\left(f\left(X_{t}\right)\right), \quad \forall t \geq 0, \forall f \in C(D)$, satisfies the evolution PDE

$$
\partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}
$$

Formal proof.

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Its law, defined by : $<\mu_{t}, f>=\mathbf{E}\left(f\left(X_{t}\right)\right), \forall t \geq 0, \forall f \in C(D)$, satisfies the evolution PDE

$$
\partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}
$$

Formal proof.
Discretize $X_{n+1}=X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}$, with time step $h>0$, and get:

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Its law, defined by : $<\mu_{t}, f>=\mathbf{E}\left(f\left(X_{t}\right)\right), \forall t \geq 0, \forall f \in C(D)$, satisfies the evolution PDE

$$
\partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}
$$

Formal proof.
Discretize $X_{n+1}=X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}$, with time step $h>0$, and get:

$$
<\mu_{n+1}, f>=\mathbf{E}\left(f\left(X_{n+1}\right)\right)=\mathbf{E}\left(f\left(X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}\right)\right)
$$

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Its law, defined by : $<\mu_{t}, f>=\mathbf{E}\left(f\left(X_{t}\right)\right), \forall t \geq 0, \forall f \in C(D)$, satisfies the evolution PDE

$$
\partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}
$$

Formal proof.
Discretize $X_{n+1}=X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}$, with time step $h>0$, and get:

$$
\begin{gathered}
<\mu_{n+1}, f>=\mathbf{E}\left(f\left(X_{n+1}\right)\right)=\mathbf{E}\left(f\left(X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}\right)\right) \\
\sim \mathbf{E}\left(f\left(X_{n}\right)+\nabla f\left(X_{n}\right) \cdot\left(h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}\right)+h \nu D^{2} f\left(X_{n}\right) \cdot \gamma_{n+1} \otimes \gamma_{n+1}\right)
\end{gathered}
$$

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Its law, defined by : $<\mu_{t}, f>=\mathbf{E}\left(f\left(X_{t}\right)\right), \forall t \geq 0, \forall f \in C(D)$, satisfies the evolution PDE

$$
\partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}
$$

Formal proof.
Discretize $X_{n+1}=X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}$, with time step $h>0$, and get:

$$
\begin{aligned}
& \quad<\mu_{n+1}, f>=\mathbf{E}\left(f\left(X_{n+1}\right)\right)=\mathbf{E}\left(f\left(X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}\right)\right) \\
& \sim \mathbf{E}\left(f\left(X_{n}\right)+\nabla f\left(X_{n}\right) \cdot\left(h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}\right)+h \nu D^{2} f\left(X_{n}\right) \cdot \gamma_{n+1} \otimes \gamma_{n+1}\right) \\
& =\mathbf{E}\left(f\left(X_{n}\right)+h \nabla f\left(X_{n}\right) \cdot v_{n}\left(X_{n}\right)+h \nu \Delta f\left(X_{n}\right)\right)
\end{aligned}
$$

Brownian motion with drift: Eulerian version

The brownian motion with drift v on the periodic cube $D=\mathbf{R}^{d} / \mathbf{Z}^{d}$ is governed by

$$
d X_{t}=v_{t}\left(X_{t}\right) d t+\sqrt{2 \nu} d B_{t}
$$

Its law, defined by : $<\mu_{t}, f>=\mathbf{E}\left(f\left(X_{t}\right)\right), \forall t \geq 0, \forall f \in C(D)$, satisfies the evolution PDE

$$
\partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}
$$

Formal proof.
Discretize $X_{n+1}=X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}$, with time step $h>0$, and get:

$$
\begin{gathered}
<\mu_{n+1}, f>=\mathbf{E}\left(f\left(X_{n+1}\right)\right)=\mathbf{E}\left(f\left(X_{n}+h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}\right)\right) \\
\sim \mathbf{E}\left(f\left(X_{n}\right)+\nabla f\left(X_{n}\right) \cdot\left(h v_{n}\left(X_{n}\right)+\sqrt{2 \nu h} \gamma_{n+1}\right)+h \nu D^{2} f\left(X_{n}\right) \cdot \gamma_{n+1} \otimes \gamma_{n+1}\right) \\
=\mathbf{E}\left(f\left(X_{n}\right)+h \nabla f\left(X_{n}\right) \cdot v_{n}\left(X_{n}\right)+h \nu \Delta f\left(X_{n}\right)\right)=<\mu_{n}, f+h \nabla f \cdot v_{n}+h \nu \Delta f>_{\ldots}^{\underline{\underline{\underline{\underline{I}}}}} .
\end{gathered}
$$

Generalized OT, with mean-field and noise

$$
I\left(\mu_{0}, \mu_{T}\right)=\inf \left\{\int_{0}^{T} \mathcal{F}\left(\mu_{t}, q_{t}\right) d t, \quad \partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}\right\}
$$

where μ_{0}, μ_{T} are given

Generalized OT, with mean-field and noise

$$
I\left(\mu_{0}, \mu_{T}\right)=\inf \left\{\int_{0}^{T} \mathcal{F}\left(\mu_{t}, q_{t}\right) d t, \quad \partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}\right\}
$$

where μ_{0}, μ_{T} are given and \mathcal{F} is defined by duality as a convex Isc functional

$$
\mathcal{F}(\mu, q)=\sup \left\{<\mu, A>+<q, B>-\int_{D} G(A(x), B(x)) d x, \quad(A, B) \in C\left(D, \mathbf{R}^{1+d}\right)\right\}
$$

Generalized OT, with mean-field and noise

$$
I\left(\mu_{0}, \mu_{T}\right)=\inf \left\{\int_{0}^{T} \mathcal{F}\left(\mu_{t}, q_{t}\right) d t, \quad \partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}\right\}
$$

where μ_{0}, μ_{T} are given and \mathcal{F} is defined by duality as a convex Isc functional

$$
\mathcal{F}(\mu, q)=\sup \left\{<\mu, A>+<q, B>-\int_{D} G(A(x), B(x)) d x, \quad(A, B) \in C\left(D, \mathbf{R}^{1+d}\right)\right\} .
$$

The canonical example (Benamou-B. 2000) is given by $\nu=0, G(A, B)=0$ whenever $A+B^{2} / 2 \leq 0$ and $G(A, B)+\infty$ otherwise.

Generalized OT, with mean-field and noise

$$
I\left(\mu_{0}, \mu_{T}\right)=\inf \left\{\int_{0}^{T} \mathcal{F}\left(\mu_{t}, q_{t}\right) d t, \quad \partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}\right\}
$$

where μ_{0}, μ_{T} are given and \mathcal{F} is defined by duality as a convex Isc functional

$$
\mathcal{F}(\mu, q)=\sup \left\{<\mu, A>+<q, B>-\int_{D} G(A(x), B(x)) d x, \quad(A, B) \in C\left(D, \mathbf{R}^{1+d}\right)\right\}
$$

The canonical example (Benamou-B. 2000) is given by $\nu=0, G(A, B)=0$ whenever $A+B^{2} / 2 \leq 0$ and $G(A, B)+\infty$ otherwise. It can be shown that $\mathcal{F}(\mu, q)=+\infty$, unless

$$
\mu \geq 0, \quad q \ll \mu, \quad q=v \mu, \quad v \in L^{2}\left(D, d \mu ; \mathbf{R}^{d}\right), \quad \mathcal{F}(\mu, q)=\int_{D} \frac{v^{2}}{2} d \mu
$$

Generalized OT, with mean-field and noise

$$
I\left(\mu_{0}, \mu_{T}\right)=\inf \left\{\int_{0}^{T} \mathcal{F}\left(\mu_{t}, q_{t}\right) d t, \quad \partial_{t} \mu_{t}+\nabla \cdot q_{t}=\nu \Delta \mu_{t}, \quad q_{t}=v_{t} \mu_{t}\right\}
$$

where μ_{0}, μ_{T} are given and \mathcal{F} is defined by duality as a convex Isc functional

$$
\mathcal{F}(\mu, q)=\sup \left\{<\mu, A>+<q, B>-\int_{D} G(A(x), B(x)) d x, \quad(A, B) \in C\left(D, \mathbf{R}^{1+d}\right)\right\}
$$

The canonical example (Benamou-B. 2000) is given by $\nu=0, G(A, B)=0$ whenever $A+B^{2} / 2 \leq 0$ and $G(A, B)+\infty$ otherwise. It can be shown that $\mathcal{F}(\mu, q)=+\infty$, unless

$$
\mu \geq 0, \quad q \ll \mu, \quad q=v \mu, \quad v \in L^{2}\left(D, d \mu ; \mathbf{R}^{d}\right), \quad \mathcal{F}(\mu, q)=\int_{D} \frac{v^{2}}{2} d \mu
$$

Then, the optimal value $I\left(\mu_{0}, \mu_{T}\right)$ corresponds to the OT problem with quadratic cost.

Saddle-point and dual formulations

$$
\begin{aligned}
I\left(\mu_{0}, \mu_{T}\right)= & \inf _{(\mu, q)} \sup _{\left(A_{,}, B, \phi\right)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{aligned}
$$

Saddle-point and dual formulations

$$
\begin{aligned}
& \quad I\left(\mu_{0}, \mu_{T}\right)=\inf _{(\mu, q)} \sup _{(A, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+\left\langle q_{t}, B_{t}-\nabla \phi_{t}>\right) d t\right. \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}> \\
& =\text { sup inf } \quad \text { (thanks to the Fenchel-Rockafellar duality theorem) }
\end{aligned}
$$

Saddle-point and dual formulations

$$
\begin{aligned}
I\left(\mu_{0}, \mu_{T}\right)= & \inf _{(\mu, q)} \sup _{\left(A_{,}, B, \phi\right)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{aligned}
$$

$=$ supinf (thanks to the Fenchel-Rockafellar duality theorem)

$$
=\sup _{\phi} \int_{0}^{T} \int_{D}-G\left(\partial_{t} \phi+\nu \Delta \phi, \nabla \phi\right)(t, x) d x d t+\left\langle\mu_{T}, \phi_{T}\right\rangle-\left\langle\mu_{0}, \phi_{0}\right\rangle .
$$

Saddle-point and dual formulations

$$
\begin{aligned}
I\left(\mu_{0}, \mu_{T}\right)= & \inf _{(\mu, q)} \sup _{\left(A_{,}, B, \phi\right)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{aligned}
$$

$=$ supinf (thanks to the Fenchel-Rockafellar duality theorem)

$$
=\sup _{\phi} \int_{0}^{T} \int_{D}-G\left(\partial_{t} \phi+\nu \Delta \phi, \nabla \phi\right)(t, x) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
$$

We may now change the time boundary conditions, prescribing ϕ_{T} instead of μ_{T}, with optimal value $J\left(\mu_{0}, \phi_{T}\right)$.

Saddle-point and dual formulations

$$
\begin{aligned}
I\left(\mu_{0}, \mu_{T}\right) & =\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{aligned}
$$

$=$ sup inf (thanks to the Fenchel-Rockafellar duality theorem)

$$
=\sup _{\phi} \int_{0}^{T} \int_{D}-G\left(\partial_{t} \phi+\nu \Delta \phi, \nabla \phi\right)(t, x) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
$$

We may now change the time boundary conditions, prescribing ϕ_{T} instead of μ_{T}, with optimal value $J\left(\mu_{0}, \phi_{T}\right)$. This way, we have just shifted from OT to a variational MFG!

Formal optimality equations: the MFG system

$$
\begin{aligned}
J\left(\mu_{0}, \phi_{T}\right) & =\inf _{(\mu, q)} \sup _{(A, B, B)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{aligned}
$$

Formal optimality equations: the MFG system

$$
\begin{aligned}
J\left(\mu_{0}, \phi_{T}\right) & =\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{aligned}
$$

Assume we are given g, convex super-linear and non decreasing, with G of form:

$$
G(A, B)=g\left(A+B^{2} / 2\right), \quad g(a)=\sup _{w \in \mathbf{R}} w a-f(w), \quad f(w)=\sup _{a \in \mathbf{R}} w a-g(a)
$$

Formal optimality equations: the MFG system

$$
\begin{aligned}
J\left(\mu_{0}, \phi_{T}\right) & =\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{aligned}
$$

Assume we are given g, convex super-linear and non decreasing, with G of form:

$$
G(A, B)=g\left(A+B^{2} / 2\right), \quad g(a)=\sup _{w \in \mathbf{R}} w a-f(w), \quad f(w)=\sup _{a \in \mathbf{R}} w a-g(a)
$$

(for instance $g(a)=\exp (a), f(w)=w \log w-w)$.

Formal optimality equations: the MFG system

$$
\begin{aligned}
J\left(\mu_{0}, \phi_{T}\right) & =\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
& -\int_{0}^{T} \int_{D} G\left(A_{t}(x), B_{t}(x)\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{aligned}
$$

Assume we are given g, convex super-linear and non decreasing, with G of form:

$$
G(A, B)=g\left(A+B^{2} / 2\right), \quad g(a)=\sup _{w \in \mathbf{R}} w a-f(w), \quad f(w)=\sup _{a \in \mathbf{R}} w a-g(a)
$$

(for instance $g(a)=\exp (a), f(w)=w \log w-w)$. Then we obtain:
$\partial_{t} \mu+\nabla \cdot(\mu \nabla \phi)=\nu \Delta \mu, \quad \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}+\nu \Delta \phi=f^{\prime}(\mu)$.

Formal proof:

$$
\begin{gathered}
J\left(\mu_{0}, \phi_{T}\right)=\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
\quad-\int_{0}^{T} \int_{D} g\left(A_{t}(x)+B_{t}(x)^{2} / 2\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Formal proof:

$$
\begin{gathered}
J\left(\mu_{0}, \phi_{T}\right)=\inf _{(\mu, q)} \sup _{\left(A_{,}, B, \phi\right)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+\left\langle q_{t}, B_{t}-\nabla \phi_{t}\right\rangle\right) d t \\
-\int_{0}^{T} \int_{D} g\left(A_{t}(x)+B_{t}(x)^{2} / 2\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Proof: we first differentiate in (A, B), next in (μ, q), and obtain:

$$
\mu=g^{\prime}\left(A+B^{2} / 2\right), \quad q=g^{\prime}\left(A+B^{2} / 2\right) B,
$$

Formal proof:

$$
\begin{gathered}
J\left(\mu_{0}, \phi_{T}\right)=\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
\quad-\int_{0}^{T} \int_{D} g\left(A_{t}(x)+B_{t}(x)^{2} / 2\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Proof: we first differentiate in (A, B), next in (μ, q), and obtain:

$$
\mu=g^{\prime}\left(A+B^{2} / 2\right), \quad q=g^{\prime}\left(A+B^{2} / 2\right) B, A=\partial_{t} \phi+\nu \Delta \phi, \quad B=\nabla \phi
$$

Formal proof:

$$
\begin{gathered}
J\left(\mu_{0}, \phi_{T}\right)=\inf _{(\mu, q)} \sup _{\left(A_{,, B, \phi)}\right.} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
-\int_{0}^{T} \int_{D} g\left(A_{t}(x)+B_{t}(x)^{2} / 2\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Proof: we first differentiate in (A, B), next in (μ, q), and obtain:

$$
\mu=g^{\prime}\left(A+B^{2} / 2\right), \quad q=g^{\prime}\left(A+B^{2} / 2\right) B, A=\partial_{t} \phi+\nu \Delta \phi, \quad B=\nabla \phi \longrightarrow \quad q=\mu \nabla \phi
$$

Formal proof:

$$
\begin{gathered}
J\left(\mu_{0}, \phi_{T}\right)=\inf _{(\mu, q)} \sup _{\left(A_{,, B, \phi)}\right.} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
-\int_{0}^{T} \int_{D} g\left(A_{t}(x)+B_{t}(x)^{2} / 2\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Proof: we first differentiate in (A, B), next in (μ, q), and obtain:

$$
\mu=g^{\prime}\left(A+B^{2} / 2\right), \quad q=g^{\prime}\left(A+B^{2} / 2\right) B, \quad A=\partial_{t} \phi+\nu \Delta \phi, \quad B=\nabla \phi \longrightarrow \quad q=\mu \nabla \phi .
$$

$$
\text { So : } \partial_{t} \mu+\nabla \cdot q=\nu \Delta \mu \quad \rightarrow \quad \partial_{t} \mu+\nabla \cdot(\mu \nabla \phi)=\nu \Delta \mu \text {. }
$$

Formal proof:

$$
\begin{gathered}
J\left(\mu_{0}, \phi_{T}\right)=\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
-\int_{0}^{T} \int_{D} g\left(A_{t}(x)+B_{t}(x)^{2} / 2\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Proof: we first differentiate in (A, B), next in (μ, q), and obtain:

$$
\mu=g^{\prime}\left(A+B^{2} / 2\right), \quad q=g^{\prime}\left(A+B^{2} / 2\right) B, A=\partial_{t} \phi+\nu \Delta \phi, \quad B=\nabla \phi \longrightarrow \quad q=\mu \nabla \phi .
$$

$$
\text { So : } \partial_{t} \mu+\nabla \cdot q=\nu \Delta \mu \quad \rightarrow \quad \partial_{t} \mu+\nabla \cdot(\mu \nabla \phi)=\nu \Delta \mu
$$

Then, use: $g(a)=\sup _{w \in \mathbf{R}}$ wa $-f(w), \quad f(w)=\sup _{a \in \mathbf{R}} \quad$ wa $-g(a)$,

Formal proof:

$$
\begin{gathered}
J\left(\mu_{0}, \phi_{T}\right)=\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
-\int_{0}^{T} \int_{D} g\left(A_{t}(x)+B_{t}(x)^{2} / 2\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Proof: we first differentiate in (A, B), next in (μ, q), and obtain:

$$
\begin{gathered}
\mu=g^{\prime}\left(A+B^{2} / 2\right), \quad q=g^{\prime}\left(A+B^{2} / 2\right) B, \quad A=\partial_{t} \phi+\nu \Delta \phi, \quad B=\nabla \phi \longrightarrow \quad q=\mu \nabla \phi . \\
\text { So : } \partial_{t} \mu+\nabla \cdot q=\nu \Delta \mu \rightarrow \quad \partial_{t} \mu+\nabla \cdot(\mu \nabla \phi)=\nu \Delta \mu .
\end{gathered}
$$

Then, use: $g(a)=\sup _{w \in \mathbf{R}}$ wa $-f(w), \quad f(w)=\sup _{a \in \mathbf{R}} w a-g(a)$, and deduce

$$
\mu=g^{\prime}\left(A+B^{2} / 2\right) \longrightarrow A+B^{2} / 2=f^{\prime}(\mu) \longrightarrow
$$

Formal proof:

$$
\begin{gathered}
J\left(\mu_{0}, \phi_{T}\right)=\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
-\int_{0}^{T} \int_{D} g\left(A_{t}(x)+B_{t}(x)^{2} / 2\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Proof: we first differentiate in (A, B), next in (μ, q), and obtain:

$$
\begin{gathered}
\mu=g^{\prime}\left(A+B^{2} / 2\right), \quad q=g^{\prime}\left(A+B^{2} / 2\right) B, \quad A=\partial_{t} \phi+\nu \Delta \phi, \quad B=\nabla \phi \longrightarrow \quad q=\mu \nabla \phi . \\
\text { So : } \partial_{t} \mu+\nabla \cdot q=\nu \Delta \mu \rightarrow \partial_{t} \mu+\nabla \cdot(\mu \nabla \phi)=\nu \Delta \mu .
\end{gathered}
$$

Then, use: $g(a)=\sup _{w \in \mathbf{R}}$ wa $-f(w), \quad f(w)=\sup _{a \in \mathbf{R}} w a-g(a)$, and deduce

$$
\mu=g^{\prime}\left(A+B^{2} / 2\right) \quad \longrightarrow A+B^{2} / 2=f^{\prime}(\mu) \quad \longrightarrow \quad \partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}+\nu \Delta \phi=f^{\prime}(\mu)
$$

A robust and simple numerical scheme

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$
\begin{gathered}
\left.\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}\right\rangle+\left\langle q_{t}, B_{t}-\nabla \phi_{t}\right\rangle\right) d t \\
-\int_{0}^{T} \int_{D}\left(G(A, B)+\left|A-\partial_{t} \phi-\nu \Delta \phi\right|^{2}+|B-\nabla \phi|^{2}\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>.
\end{gathered}
$$

A robust and simple numerical scheme

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$
\begin{gathered}
\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
-\int_{0}^{T} \int_{D}\left(G(A, B)+\left|A-\partial_{t} \phi-\nu \Delta \phi\right|^{2}+|B-\nabla \phi|^{2}\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>.
\end{gathered}
$$

Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for each grid point (t, x), entirely parallelizable).

A robust and simple numerical scheme

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$
\begin{gathered}
\left.\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}\right\rangle+\left\langle q_{t}, B_{t}-\nabla \phi_{t}\right\rangle\right) d t \\
-\int_{0}^{T} \int_{D}\left(G(A, B)+\left|A-\partial_{t} \phi-\nu \Delta \phi\right|^{2}+|B-\nabla \phi|^{2}\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>.
\end{gathered}
$$

Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for each grid point (t, x), entirely parallelizable). Next, we optimize in ϕ and get a constant coefficient linear elliptic PDE we can solve very efficiently.

A robust and simple numerical scheme

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$
\begin{gathered}
\inf _{(\mu, q)} \sup _{(A,, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}>+<q_{t}, B_{t}-\nabla \phi_{t}>\right) d t \\
-\int_{0}^{T} \int_{D}\left(G(A, B)+\left|A-\partial_{t} \phi-\nu \Delta \phi\right|^{2}+|B-\nabla \phi|^{2}\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for each grid point (t, x), entirely parallelizable). Next, we optimize in ϕ and get a constant coefficient linear elliptic PDE we can solve very efficiently. Finally, we update (μ, q) as in a descent method, which is also very fast.

A robust and simple numerical scheme

(Method introduced for OT by Benamou-B. in 2000.)
We use the augmented Lagrangian trick (which does not change the problem):

$$
\begin{gathered}
\left.\inf _{(\mu, q)} \sup _{(A, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}\right\rangle+\left\langle q_{t}, B_{t}-\nabla \phi_{t}\right\rangle\right) d t \\
-\int_{0}^{T} \int_{D}\left(G(A, B)+\left|A-\partial_{t} \phi-\nu \Delta \phi\right|^{2}+|B-\nabla \phi|^{2}\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>
\end{gathered}
$$

Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for each grid point (t, x), entirely parallelizable). Next, we optimize in ϕ and get a constant coefficient linear elliptic PDE we can solve very efficiently. Finally, we update (μ, q) as in a descent method, which is also very fast. Of course, one may need many terations to get good accuracy.

A robust and simple numerical scheme

(Method introduced for OT by Benamou-B. in 2000.)

We use the augmented Lagrangian trick (which does not change the problem):

$$
\begin{gathered}
\left.\inf _{(\mu, q)} \sup _{(A, B, \phi)} \int_{0}^{T}\left(<\mu_{t}, A_{t}-\partial_{t} \phi_{t}-\nu \Delta \phi_{t}\right\rangle+\left\langle q_{t}, B_{t}-\nabla \phi_{t}\right\rangle\right) d t \\
-\int_{0}^{T} \int_{D}\left(G(A, B)+\left|A-\partial_{t} \phi-\nu \Delta \phi\right|^{2}+|B-\nabla \phi|^{2}\right) d x d t+<\mu_{T}, \phi_{T}>-<\mu_{0}, \phi_{0}>.
\end{gathered}
$$

Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for each grid point (t, x), entirely parallelizable). Next, we optimize in ϕ and get a constant coefficient linear elliptic PDE we can solve very efficiently. Finally, we update (μ, q) as in a descent method, which is also very fast. Of course, one may need many terations to get good accuracy. Nevertheless, step 2 instantaneously propagates information all over the computational domain.

