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dXt = Vt(Xt)dt + V2 dBt .

Its law, defined by : < p, f >= E(f(X:)), Vt >0, Vfe C(D), satisfies the evolution PDE

Otit +V - Qt = vApt, Qe = Vijur.

Formal proof.
Discretize Xp+1 = Xn + hva(Xn) + V2vh vp11, with time step h > 0, and get:

< it £ >= E(f(Xni1)) = E(f(Xo + WVn(Xn) + V20hr7ps1))
~E (f(Xn) + VAX) - (WVa(Xn) + V20hynin) + hoDPF(Xn) - Ynss %ﬂ)

= E(f(Xn) + hVF(Xn) - Va(Xn) + v AF(Xn)) =< pin, f + WV - Vo + hvAf > .
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I(pr0, 1) = i”f{/ F(pt, qr)dt, Ot +V - Qe =vApr, Gr = Vipe },
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where o, 7 are given and F is defined by duality as a convex Isc functional
.F(/’L7 q) = SUp{< lLL?A >+ < q7 B > —/ G(A(X)’ B()())dx7 (A7 B) c C(D7 R1+d) }
D

The canonical example (Benamou-B. 2000) is given by v = 0, G(A, B) = 0 whenever
A+ B?/2 < 0and G(A, B) + oo otherwise. It can be shown that F(u, g) = +oco, unless

2

p>0, g<<p, q=vu, veL D dy R, f(mq):/‘%dw

D

Then, the optimal value /(uo, ;1) corresponds to the OT problem with quadratic cost.
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We may now change the time boundary conditions, prescribing ¢r instead of ur, with

optimal value J(uo, ¢7). This way, we have just shifted from OT to a variational MFG!
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T

J(po, ¢7) = inf  sup (< pt, At — Orpr — VAPt > + < qt, Bt — Vo >)dlt
(1:9) (A,,B,¢) Jo

-
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Assume we are given g, convex super-linear and non decreasing, with G of form:

G(A,B) = g(A+ B?/2), g(a)=sup wa—f(w), f(w)=sup wa—g(a)

(for instance g(a) = exp(a), f(w) = wlogw — w). Then we obtain:

1 /
O+ V - (1V0) = vAp, 0+ 5|V +vAg = (1),
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Proof: we first differentiate in (A, B), next in (x, g), and obtain:

pn=g(A+B%/2), q=g' (A+B?/2)B, A= 8¢ +vAp, B=Vd— q=puVe.
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Then, use: g(a) = sup,,.g wa— f(w), f(w)=sup,.g wa—g(a), and deduce

pn=9g(A+B%/2) — A+B/2=Ff(u) — a,¢+1§\v¢|2+m¢:f’(u).
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.
inf  sup (< pt, At — 01t — vAG: > + < qr, Bt — Ve >)dt
(:9) (A,,B,¢) Jo
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Iteratively, we optimize, first in (A, B) (this is a purely local optimization problem, for

each grid point (t, x), entirely parallelizable). Next, we optimize in ¢ and get a constant
coefficient linear elliptic PDE we can solve very efficiently. Finally, we update (u, q) as
in a descent method, which is also very fast. Of course, one may need many terations
to get good accuracy. Nevertheless, step 2 instantaneously propagates information all

over the computational domain.
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