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Introduction

I Mean-field games (MFGs) are models for systems with a large
number of rational agents who seek to minimize a cost
functional and have access to statistical information on the
distribution of the population.

I These models were introduced in the engineering community
by Caines, Huang and Malhamé and in the mathematical
community by Lasry and Lions.
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The workhorse of MFG theory is the system:{
−ut + |Du|2

2 + V (x) = ε∆u + F (x ,m),

mt − div(mDu) = ε∆m,

with initial and terminal conditions{
u(x ,T ) = uT (x)

m(x , 0) = m0(x).

Here, m0 and uT are given, m0 ≥ 0 with
∫
Rd m0dx = 1. To avoid

technical difficulties, we work with periodic boundary conditions;
the domain of u and m is Td × [0,T ].
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The corresponding stationary MFG is{
|Du|2

2 + V (x) = ε∆u + F (x ,m) + H,

− div(mDu) = ε∆m,

and the solution is a triplet (u,m,H). We require m ≥ 0 and∫
mdx = 1.

In the periodic case, u,m : Td → R and H ∈ R.



Introduction

Derivation of MFG models - deterministic problems

Optimal control and Hamilton-Jacobi equations

I We fix T > 0 and consider an agent whose state is x(t) ∈ Rd

for 0 ≤ t ≤ T .

I Agents can change their state by choosing a control in
W = L∞([t,T ],Rd).

I the state of an agent evolves according to

ẋ(t) = v(t). (1)
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Derivation of MFG models - deterministic problems

I We fix a Lagrangian L̃ : Rd × Rd × [0,T ]→ R, with
v 7→ L(x , v , t) uniformly convex. For example,

L̃(x , v , t) =
|v |2

2
− V (x) + F̃ (x , t),

with F̃ : Rd × [0,T ]→ R a continuous function bounded
from below.

I We select a bounded continuous function, uT : Rd → R,
called the terminal cost.
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Derivation of MFG models - deterministic problems

I Agents have preferences that are encoded in the action
functional,

J(v; x , t) =

∫ T

t
L̃(x(s), v(s), s)ds + uT (x(T )),

where x solves (1) with the initial condition x(t) = x .

I Each agent seeks to minimize J among all possible controls in
W. The value function is infimum of J over all controls,

u(x , t) = inf
v∈W

J(v; x , t).
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Derivation of MFG models - deterministic problems

The Legendre transform, H̃, of L̃ is the Hamiltonian

H̃(x , p, t) = sup
v∈Rd

[
−p · v − L̃(x , v , t)

]
.

By the uniform convexity of L̃ in the second coordinate, the
maximum is achieved at a unique point, v∗ given by

v∗ = −DpH̃(x , p, t).

For L̃ as before,

H̃(x , p, t) =
|p|2

2
+ V (x)− F̃ (x , t).
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Derivation of MFG models - deterministic problems

A classical result in control theory states that if
u ∈ C 1(Rd × [t0,T ]), then u solves the Hamilton-Jacobi equation,

− ut(x , t) + H̃(x ,Dxu(x , t), t) = 0.

Further, as we prove next, the optimal control, v∗(t), is
determined in feedback form by

v∗(t) = −DpH̃(x∗(t),Dxu(x∗(t), t), t).
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Derivation of MFG models - deterministic problems

Theorem (Verification Theorem)

Let ũ ∈ C 1(Rd × [t0,T ]) solve the Hamilton–Jacobi equation with
the terminal condition uT (x). Let

v∗(t) = −DpH̃(x∗(t),Dx ũ(x∗(t), t), t)

and x∗(t) be the corresponding trajectory. Then, v∗(t) is an
optimal control and ũ(x , t) = u(x , t), where u is the value
function.
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Derivation of MFG models - deterministic problems

Proof

For any v(s) and any trajectory x we have

ũ(x(T ),T ) =

∫ T

t
(Dx ũ(x(s), s) · v(s) + ũs(x(s), s)) ds + ũ(x(t), t).

In addition,

(Dx ũ(x(s), s) · v(s) ≥ −H̃(x ,Dx ũ(x(s), s)− L̃(x(s), v(s),

and the previous inequality is an identity for v = v∗. Hence,

ũ(x , t) ≤
∫ T

t
L̃(x(s), v(s), s)ds + uT (x(T )),

and the previous inequality is an identity if v = v∗.
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Derivation of MFG models - deterministic problems

Transport equation

Let b : Rd × [0,T ]→ Rd be a Lipschitz vector field. The ODE{
ẋ(t) = b(x(t), t) t > 0,

x(0) = x

induces a flow, Φt , in Rd that maps the initial condition, x ∈ Rd ,
at t = 0 to the solution at time t > 0.
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Derivation of MFG models - deterministic problems

Fix a probability measure, m0 ∈ P(Rd). For 0 ≤ t ≤ T , let m(·, t)
be the push-forward,Φt]m0,, by Φt of m0 given by∫

Rd

φ(x)m(x , t)dx =

∫
Rd

φ
(
Φt(x)

)
m0dx . (2)

For 0 ≤ t ≤ T , m(·, t) is a probability measure.
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Derivation of MFG models - deterministic problems

Proposition

Assume that b(x , t) is Lipschitz continuous in x . Let Φt be the
corresponding flow and m = Φt]m0. Then, m ∈ C (R+

0 ,P(Rd))
and{

mt(x , t) + div(b(x , t)m(x , t)) = 0, (x , t) ∈ Rd × [0,T ],

m(x , 0) = m0(x), x ∈ Rd ,

in the distributional sense.
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Derivation of MFG models - deterministic problems

Proof

We recall that m is a solution in the sense of distributions if

−
∫ T

0

∫
Rd

m(x , t) (φt(x , t) + b(x , t)φx(x , t)) dxdt =

∫
Rd

m0(x)φ(x , 0)dx ,

for every φ ∈ C∞c (Rd × [0,T )). Differentiating both sides of (2)
gives∫

Rd

φ(x)mt(x , t)dx =

∫
Rd

(
b(Φt(x), t)Dxφ

(
Φt(x)

))
m0(x)dx .

Thus, ∫
Rd

φ(x)mt(x , t)dx =

∫
Rd

(b(x , t)Dxφ(x))m(x , t)dx ,

using the definition of Φt . To conclude the proof, we integrate by
parts the right-hand side.



Introduction

Derivation of MFG models - deterministic problems

Mean-field models I

I The mean-field game framework was developed to study
systems with an infinite number of rational agents in
competition.

I Each agent seeks to optimize an individual control problem
that depends on statistical information about the whole
population.

I The only information available to the agents is the probability
distribution of the agents’ states.



Introduction

Derivation of MFG models - deterministic problems

I For each time t, m(x , t) is a probability density in Rd that
gives the distribution of the agents

I We set

L̃(x , v , t) = L(x , v ,m(·, t)).

and denote the Legendre transform of L by H.

I Each agent seeks to minimize a control problem whose value
function solves

−ut + H(x ,Dxu,m) = 0.

According to the Verification Theorem, if the previous equation
has a solution, u, the vector field, b = −DpH(x ,Dxu(x , t),m),
gives an optimal strategy. Because all agents are rational, they use
this strategy.
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Derivation of MFG models - deterministic problems

Hence, u and m are determined by{
−ut + H(x ,Dxu,m) = 0

mt − div(DpHm) = 0.

We supplement this system with initial-terminal determine by the
terminal value function for the agents uT : Rd → R and their
initial distribution is m0 : Rd → R+

0 .



Explicit solutions, special transformations, and further examples

A first example

We begin our study of explicit solutions by considering a first-order
quadratic MFG with a logarithmic nonlinearity. This game is given
by {

|ux |2
2 + V (x) + b(x)ux = lnm + H,

−(m(Du + b(x)))x = 0,
(3)

with, u,m : T→ R, m ≥ 0,∫
T
mdx = 1,

and, for definiteness, ∫
T
u dx = 0.

Moreover, we suppose that∫
T
b(y)dy = 0.
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A first example

If Du + b = 0, the second equation in (3) holds immediately. This
suggests that we set

u(x) = −
∫ x

0
b(y) dy +

∫
T

∫ z

0
b(y) dy dz .

Using the previous formula in the first equation, we get

m(x) =
eV (x)− b2(x)

2∫
T e

V (y)− b2(y)
2 dy

.



Explicit solutions, special transformations, and further examples

A first example

Let ψ : T→ R and b(x) = ψx(x). Then,

u(x) = −ψ(x), m(x) =
eV (x)−ψ

2
x (x)

2∫
T e

V (y)−ψ
2
x (y)
2 dy

,

and

H = ln

[∫
T
eV (y)−ψ

2
x (y)

2 dy

]
is a solution of the corresponding MFG.



Explicit solutions, special transformations, and further examples

A first example

The preceding ideas can be extended in various ways:

I In the one-dimensional case, the approach can be made
systematic through the current method, examined later.

I For d > 1, a similar idea can be used for the MFG{
|Du|2

2 + V (x) + Dψ · Du = lnm + H,

− div(m(Du + Dψ)) = 0,
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The Hopf-Cole transform

For P ∈ Rd , consider the system{
−∆u + 1

2 |P + Du|2 + V (x) = lnm

−∆m − div((P + Du)m) = 0.

Define m by the Hopf-Cole transform

m = e
v−u

2 ,

where u and v solve{
−∆u + 1

2 |P + Du|2 + V (x) = v−u
2

∆v + 1
2 |P + Dv |2 + V (x) = v−u

2 .
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The Hopf-Cole transform

By a direct computation, m solves

−∆m − div((P + Du)m) = 0.

To check this, it is enough to observe that

−∆m = m

[
1

2
∆u − 1

2
∆v − |Du − Dv |2

4

]
= m∆u − m

4

[
|P + Du|2 − |P + Dv |2 + |Du − Dv |2

]
= (P + Du) · Dm + m∆u = div((P + Du)m).
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The Hopf-Cole transform

For P = 0, we obtain{
−∆u + 1

2 |Du|
2 + V (x) = v−u

2

∆v + 1
2 |Dv |

2 + V (x) = v−u
2 .

Hence, v = −u and, thus, we get the scalar PDE

u −∆u +
1

2
|Du|2 + V (x) = 0.
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Gaussian-quadratic solutions

Time-independent

We consider the MFG{
−∆u + 1

2 |Du|
2 + β|x |2 = lnm + H

−∆m − div(mDu) = 0.

For m = µe−u the second equation holds trivially. Next, for

u = α|x |2,

the first equation gives

2α2 + α + β = 0.

If β < 0, the preceding equation has a solution, α > 0. Finally, µ is
given by the condition,

∫
Rmdx = 1. To find H, we use the

expressions for u and m in the first equation.
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Gaussian-quadratic solutions

Time-dependent I

For the time-dependent case,{
−ut + u2

x
2 + βx2 = lnm

mt − (mux)x = 0,

we select

m(x , t) =
√

c(t)e−c(t)x2
u(x , t) = a(t) + b(t)x2.

Then, −ȧ− ḃx2 + 2b2x2 + βx2 = 1
2 ln c − cx2

e−cx
2
(

ċ
2c1/2 − ċx2c1/2

)
−
(

2bxc1/2e−cx
2
)
x

= 0.
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Gaussian-quadratic solutions

Time-dependent II

Hence, matching powers, we get
−ȧ = 1

2 ln c

−ḃ + 2b2 + β = −c
ċ − 4bc = 0.
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Singular solutions for first-order MFGs

Now, we consider the mean-field game{
−ut + H(x ,Du) = F (η ∗m)

mt − div(mDpH) = 0,

where η is a standard mollifier. We take singular initial data for m

m(x , 0) = m̄(x) =
1

N

N∑
i=1

δxi

and terminal data for u

u(x ,T ) = ū(x)
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Singular solutions for first-order MFGs

The transport equation

mt − div(mDpH) = 0

can be solved by tracking the flow of each of the points xi through
the ODE

ẋi (t) = DpH(xi (t),Du(xi (t), t));

that is,

m(x , t) =
1

N

N∑
i=1

δxi (t)(x).
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Singular solutions for first-order MFGs

Next, we define

pi (t) = Du(xi (t), t).

By the method of characteristics, we have

ṗi = −Dxi

H(xi ,pi )− F

 1

N

N∑
j=1

η(xi (t)− xj(t))

 .
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Singular solutions for first-order MFGs

Therefore, we reduce the solution of the original MFG to the
system of ODEs{

ẋi = DpH(xi ,pi )

ṗi = −Dxi

(
H(xi ,pi )− F

(
1
N

∑N
j=1 η(xi (t)− xj(t))

))
with the following initial-terminal conditions{

ẋi (0) = xi

ṗi (T ) = Dx ū(xi (T )).
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The current method

Here, we consider the mean-field game{
(ux+p)2

2 + V (x) = g(m) + H,

−(m(ux + p))x = 0,
(4)

According to the second equation, the current,

j = m(ux + p),

is constant.
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The current method

If j 6= 0, m(x) 6= 0, and ux + p = j/m. Thus
Fj(m) = H − V (x),

m > 0,
∫
T
mdx = 1,∫

T

1
mdx = p

j ,

where Fj(m) = j2

2m2 − g(m).
For each x , the first equation in is algebraic.

I If g is increasing and g(+∞) = +∞, for each x ∈ T and
H ∈ R, there exists a unique solution.

I If g is not increasing, there may exist multiple solutions.
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The current method

Proposition

Let g be increasing. Then, for every j 6= 0, (4) has a unique
smooth solution, (uj ,mj ,H j), with current j . This solution is given
by

mj(x) = F−1
j (H j − V (x)), uj(x) =

x∫
0

j

mj(y)
dy − pjx ,

where pj =
∫
T

j
mj (y)dy and H j is such that

∫
T
mj(x)dx = 1.
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The current method

For j = 0, we have
(ux+p)2

2 − g(m) = H − V (x),

m ≥ 0,
∫
T
mdx = 1,

m(ux + p) = 0.

Here, we consider the case where g(m) = m; the analysis is similar
for g increasing.
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The current method

Accordingly, we have
(ux+p)2

2 −m = H − V (x);

m ≥ 0,
∫
T
mdx = 1;

m(ux + p) = 0.

Thus

I m(x) = (V (x)− H)+

I (ux+p)2

2 = (V (x)− H)−

The map H 7→
∫
T

(V (x)− H)+dx is decreasing thus there exists a

unique number, HV , such that
∫
T
m(x)dx = 1.
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The current method

i. If min
T

V < HV < max
T

V , m is non-smooth and there are

regions where it vanishes. Moreover, there are C 1 solutions:

u±(x) = ±
∫ x

0

√
2(V (y)− HV )− dy − px ,

with p = ±
∫
T

√
2(V (y)− HV )− dy . Additionally, there exist

Lipschitz solutions given by:

(ux0)x(x) =

√
2(V (x)− HV )− χ[0,x0)−

√
2(V (x)− HV )− χ(x0,1)−px0

where

px0 =

∫
y<x0

√
2(V (y)− HV )− dy−

∫
y>x0

√
2(V (y)− HV )− dy ,

and x0 ∈ T is such that V (x0) < HV .
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The current method

ii. If HV < min
T

V , m is smooth and positive. Moreover,

m(x) = V (x)− HV , u(x) = 0, p = 0, HV =

∫
T
V − 1.
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The current method

Thus if j = 0, we have a unique, smooth solution if and only if
ux + p ≡ 0 or, equivalently, m(x) = V (x)− HV . Equivalently,∫

T

V (x)dx ≤ 1 + min
T

V .

This is the case for V with small oscillation; that is, oscV ≤ 1.
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The current method

m(x ,A) for VA(x) = A sin(2π(x + 1
4 )), .
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The current method

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

2.5

m(x,2)

0.5 1.0 1.5 2.0
x

0.1

0.2

0.3

0.4

0.5

u(x,2)

m(x , 2) (left) and two distinct solutions u(x , 2) (right).
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Semiconcave viscosity solutions in anti-monotone mean-field games

Now, we consider MFGs with decreasing g . To simplify, we assume
that g(m) = −m.

I In contrast with the monotone case, m may not be unique.

I m can be discontinuous
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Semiconcave viscosity solutions in anti-monotone mean-field games

Here, we look at semiconcave solutions:

a. u solves the equation at the points where it is C 1 and m is
continuous;

b. lim
x→x−0

ux(x) ≥ lim
x→x+

0

ux(x) at points of discontinuity of ux .
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Semiconcave viscosity solutions in anti-monotone mean-field games

j 6= 0, g decreasing

With g(m) = −m, we have
j2

2m2 + m = H − V (x);

m > 0,
∫
T
mdx = 1;∫

T

1
mdx = p

j .

(5)

The minimum of t 7→ j2/2t2 + t is attained at tmin = j2/3. Thus,
j2/2t2 + t ≥ 3j2/3/2 for t > 0 and hence

H ≥ H
cr
j = max

T
V +

3j2/3

2
.
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Semiconcave viscosity solutions in anti-monotone mean-field games

The function t 7→ j2/2t2 + t is decreasing on the interval (0, tmin)
and increasing on the interval (tmin,+∞). For H ≥ H

cr
j , let m−

H

and m+
H

solve

j2

2(m±
H

(x))2
+ m±

H
(x) = H − V (x),

with 0 ≤ m−
H

(x) ≤ tmin ≤ m+
H

(x).

Furthermore, if (u,m,H) solves (4), then m(x) agrees with either
m+

H
(x) or m−

H
(x), almost everywhere.



Explicit solutions, special transformations, and further examples

Semiconcave viscosity solutions in anti-monotone mean-field games

Let m−j := m−
H

cr
j

and m+
j := m+

H
cr
j

. Two fundamental quantities for

our analysis are 
α+(j) =

1∫
0

m+
j (x)dx ,

α−(j) =
1∫

0

m−j (x)dx .

If V is not constant, we have

α−(j) < α+(j)

for j > 0.
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Semiconcave viscosity solutions in anti-monotone mean-field games

Proposition

Suppose that x = 0 is the single maximum of V . Then, for every
j > 0, there exists a unique number, pj , such that (4) has a
semiconcave solution with a current level, j . Moreover, the
solution of (5), (uj ,mj ,H j), is unique.
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Semiconcave viscosity solutions in anti-monotone mean-field games

The solution has the following form:

i. If α+(j) ≤ 1,

mj(x) = m+
H j

(x), uj(x) =

x∫
0

jdy

mj(y)
− pjx ,

where pj =
∫
T

jdy
mj (y) and H j is such that

∫
T
mj(x)dx = 1.

ii. If α−(j) ≥ 1,

mj(x) = m−
H j

(x), uj(x) =

x∫
0

jdy

mj(y)
− pjx ,

where pj =
∫
T

jdy
mj (y) and H j is such that

∫
T
mj(x)dx = 1.
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Semiconcave viscosity solutions in anti-monotone mean-field games

iii. If α−(j) < 1 < α+(j), we have that H j = H
cr
j , and

mj(x) = m−j (x)χ[0,dj ) +m+
j (x)χ[dj ,1), uj(x) =

x∫
0

jdy

mj(y)
−pjx ,

where pj =
∫
T

jdy
mj (y) and dj is such that

∫
T

mj(x)dx =

dj∫
0

m−j (x)dx +

1∫
dj

m+
j (x)dx = 1.
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Semiconcave viscosity solutions in anti-monotone mean-field games

By the previous proposition, if V has a single maximum point then,
for every current, j > 0, there exists a unique pj and a unique
triplet, (uj ,mj ,H j), that solves (5) for p = pj . In contrast, as we
show next, if V has multiple maxima and j > 0 is such that Case
iii in Proposition 4 holds, there exist infinitely many solutions.
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Semiconcave viscosity solutions in anti-monotone mean-field games

Proposition

Suppose that V attains a maximum at x = 0 and at
x = x0 ∈ (0, 1). Let j be such that α−(j) < 1 < α+(j). Then,
there exist infinitely many numbers, p, and pairs, (u,m), such that
(u,m,H

cr
j ) is a semiconcave solution of (4).
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Semiconcave viscosity solutions in anti-monotone mean-field games

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0
m(x)

m j
+

Solution m for j = 0.001 and V (x) = 1
2 sin(2π(x + 1/4)).
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Semiconcave viscosity solutions in anti-monotone mean-field games

0.2 0.4 0.6 0.8 1.0
x

0.996
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1.000

1.002

1.004

m(x)

m j
-

Solution m for j = 10 and V (x) = 1
2 sin(2π(x + 1/4)).
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Semiconcave viscosity solutions in anti-monotone mean-field games

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

m(x)

m j
+

m j
-

Solution mj for j = 0.5 and V (x) = 1
2 sin(2π(x + 1/4)).
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Semiconcave viscosity solutions in anti-monotone mean-field games

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0
m(x)

m j
+

m j
-

m j
+

m j
-

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

m(x)

m j
+

m j
-

m j
+

m j
-

Two distinct solutions for j = 0.5 and V (x) = 1
2 sin(4π(x + 1/8)).
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Semiconcave viscosity solutions in anti-monotone mean-field games

j = 0, g decreasing I

Now, we examine the case j = 0:
(ux+p)2

2 + m = H − V (x);

m ≥ 0,
∫
T
mdx = 1;

m(ux + p) = 0.

(6)

Suppose that (6) has a solution. Because m ≥ 0, we have
H − V (x) ≥ 0 for x ∈ T. Thus, H ≥ max

T
V . On the other hand,

∫
T

(
H − V (x)

)
dx ≥

∫
T

mdx = 1.
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Semiconcave viscosity solutions in anti-monotone mean-field games

j = 0, g decreasing II

Consequently, H ≥ 1 +
∫
T
V . Therefore,

H ≥ max

max
T

V , 1 +

∫
T

V

 =: H0.
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Proposition

The MFG (6) does not have semiconcave solutions for H > H0.
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Now, we construct solutions to (6) with H = H0. It turns out that
if V has a large oscillation, then (6) has infinitely many
semiconcave solutions.



Explicit solutions, special transformations, and further examples

Semiconcave viscosity solutions in anti-monotone mean-field games

i. if 1 +
∫
T
V ≥ max

T
V , then the triplet (u0,m0,H0) with

m0(x) = H0 − V (x), u0(x) = 0,

solves (6) in the classical sense for p = 0;

ii. if max
T

V > 1 +
∫
T
V , define

md1,d2
0 (x) =

{
H0 − V (x), x ∈ [d1, d2],

0, x ∈ T \ [d1, d2],

and

ud1,d2
0 (x) =

x∫
0

(ud1,d2
0 )x(y)dy , x ∈ T,
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where

(ud1,d2
0 )x(x) =


√

2(H0 − V (x))− pd1,d2
0 , x ∈ [0, d1),

−pd1,d2
0 , x ∈ [d1, d2],

−
√

2(H0 − V (x))− pd1,d2
0 , x ∈ (d2, 1],

and pd1,d2
0 =

d1∫
0

√
2(H0 − V (x))dx −

1∫
d2

√
2(H0 − V (x))dx .

Then, for any pair, (d1, d2), such that

d2∫
d1

(H0 − V (x))dx = 1, (7)

the triplet (ud1,d2
0 ,md1,d2

0 ,H0) is a semiconcave solution for (6)

for p = pd1,d2
0 . Furthermore, there exist infinitely many pairs,

(d1, d2), such that (7) holds.



Explicit solutions, special transformations, and further examples

Semiconcave viscosity solutions in anti-monotone mean-field games

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

m0 for V (x) = 5 sin(2π(x + 1
4 )) with d2 = 0.5 and d1 such that (7) holds.
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u0[x]

0.2 0.4 0.6 0.8 1.0
x

-4

-2

2

4

u0x[x]

u0 (left) and (u0)x (right) for V (x) = 5 sin(2π(x + 1
4 )) with d2 = 0.5 and

d1 such that (7) holds.
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First-order congestion problems

Our last example is the following first-order stationary MFGs with
congestion:{

|P+Du|γ
γmα + V (x) = g(m) + H

− div(m1−α|P + Du|γ−2(P + Du)) = 0.
(8)
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Lack of classical solutions

In general, (8) may not have classical solutions.

I We take P = 0, γ = 2, and g(m) = m.

I By adding a constant to V , we can assume without loss of
generality that ∫

Td

Vdx = 0. (9)

Thus, we obtain {
|Du|2
2mα + V (x) = m + H

− div(m1−αDu) = 0.
(10)
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Now, we assume that (u,m,H) is a classical solution to (10) with
m > 0 and

∫
Td mdx = 1. Then, multiplying the second equation

by u and integrating over Td , we have∫
Td

m1−α|Du|2 dx = 0.

Hence, because m does not vanish, u is constant. Accordingly, the
first equation in (10) becomes

m = −H + V (x).

Using
∫
Td mdx = 1 and (9), we obtain

m = 1 + V (x).

However, without further assumptions, 1 + V may take negative
values and, thus, (4) may not have a classical solution with m > 0.
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Critical congestion α = 1

If α = 1 and γ = 2, the second equation in (8) becomes ∆u = 0.
Hence, u is constant. Therefore, the first equation in (8) is the
following algebraic equation for m:

|P|2

2m
− g(m) = H − V (x).

If g is increasing and P 6= 0, for each x and for each fixed H, the
preceding equation has at most one solution, m(x) > 0.
Furthermore, the constant H is determined by the normalization
condition on m.
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Two dimensional case I

Now, we consider the case d = 2. Moreover, given
Q = (q1, q2) ∈ R2, we set Q⊥ = (−q2, q1).
From the second equation in (8), there exists Q ∈ R2 and a scalar
function, ψ, such that

m1−α|P + Du|γ−2(P + Du) = Q⊥ + (Dψ)⊥. (11)

Consequently,

m1−α|P + Du|γ−1 = |Q + Dψ|.

Raising the prior expression to the power γ′, where γ′ = γ
γ−1 , and

rearranging, we obtain

|P + Du|γ

mα
=
|Q + Dψ|γ′

mα−(α−1)γ′
.
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Therefore,

|P + Du|γ

γmα
+V (x)− g(m)−H =

|Q + Dψ|γ′

γmα̃
+V (x)− g(m)−H,

with

α̃ = α− (α− 1)γ′.

Moreover, from (11), we have

P⊥ + (Du)⊥ = m1−α̃|Q + Dψ|γ′−2(Q + Dψ).

Hence Q and ψ, we recover P and u from the previous equation.
Moreover,

div(m1−α̃|Q + Dψ|γ′−2(Q + Dψ)) = 0.
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Thus, our MFG becomes{
|Q+Dψ|γ′

γ′mα̃
+ γ

γ′V (x)− γ
γ′ g(m) = γ

γ′H

div(m1−α̃|Q + Dψ|γ′−2(Q + Dψ)) = 0.

Thus, we obtain an equation of the form of (8) with exponents α̃
and γ′ in the place of α and γ.
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