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Mean field games and applications

Mean field games - general assumptions

• Agents are indistinguishable.

• Agents are perfectly rational individuals.

• Every agent knows the distribution of all others for all times.

Mean field game theory provides a powerful mathematical framework to analyze the
dynamics of large interacting agent systems, but the underlying assumptions are often
only partially consistent with reality.
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Pedestrian dynamics

• Empirical studied of human crowds started
about 50 years ago.

• Nowadays there is a large literature on different
micro- and macroscopic approaches available.

• Challenges: microscopic interactions not
clearly defined, multiscale effects, finite size
effects,.....



Individual trajectories - obtained from cameras1

(a) Kinect sensors mounted on the
ceiling.

(b) Density map obtained from sensors. (c) Extracted trajectories.

1Seer et al., Validating social force based models with comprehensive real world motion data, Transportation
Research Procedia, 2014



Or from sensors placed on the head ...2

2Courtesy of Armin Seyfried (Forschungszentrum Jülich), BaSiGo experiments (5 days, 31 experiments, 200
runs, 28 industrial cameras, 2200 participants in total)



Fundamental diagram3

(d) Fundamental diagram. (e) Germany vs. India (f) Cars vs. pedestrians vs. bikes.

3Courtesy of Armin Seyfried (Forschungszentrum Jülich), BaSiGo experiments (5 days, 31 experiments, 200
runs, 28 industrial cameras, 2200 participants in total)



Force based models

Newton’s laws of motion: Let xi = xi (t) and vi = vi (t) denote the position and
velocity of the i − th individual with mass mi . Then

dxi = vidt

midvi = Fi (x1, . . . , xN , v1, . . . , vN)dt + σidB
t
i .

describes the dynamics driven by the forces Fi and some additive noise dBi .

Stochastic optimal control Let’s assume that all pedestrians are perfectly rational and
that the i-th individual wants to minimize a cost functional

E(

∫ T

0
Li (x1, . . . , xi , . . . xN , v1, . . . vi , . . . vN) + g(xi , (T ),T )dt)

under the constraint that

dxi = vidt + σidB
t
i .

where L and Φ denote the running and terminal cost.



Example: Social force model 4

Assumptions:

• Each pedestrian wants to move at a desired velocity v0
i in a desired direction e0

i ..

• Pedestrians avoid collisions with others and obstacles (walls, ...).

• Individuals follow each other ....

Equation of motion is given by

mi
dvi

dt
= mi

v0
i e

0
i − vi

τi
+

∑
j 6=i

fij︸ ︷︷ ︸
interactions with others

+
∑
W

fi,W︸ ︷︷ ︸
Don’t run into walls !

,

where τi is the relaxation time.
Interaction forces:

fij = Ai exp(
Rij − dij

Bi
) · nij︸ ︷︷ ︸

repulsion

+ k(Rij − dij ) · nij︸ ︷︷ ︸
body force

− cijnij︸ ︷︷ ︸
attraction

+ . . .

where Rij = Ri + Rj , dij = ‖xi − xj‖ and nij is the normalized vector pointing from
pedestrian j to i .

4D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Phys. Rev. E. 51, 1995



Microscopic optimal control approaches5

Consider an individual with position x = x(t) (state) and velocity v = v(t) (control).
Then

dx(t) = vdt + σdB(t), subject to x(t) = x̂

Constraints on the velocity: v(t) ∈ V(x , t) = {v such that ‖v‖ ≤ v0(x , t)}.

Individuals are perfectly rational and want to minimize

E
(∫ T

t
L(s, x(s), v(s))ds + g(T , x(T ))

)
where L is the running cost and g is the terminal cost.

Terminal cost: Penalty if an individual does not make it to a target A at the final
time, that is

g(T , x(T )) =

{
0 if x(T ) ∈ A

ḡ otherwise.

5S.P. Hoogendorn, P.H.L. Bovy, Pedestrian route-choice and activity scheduling theory and models,
Transportation Research B 38, 2004



Microscopic optimal control approaches6

Running costs

1 Expected travel time L1 = c, where c is the time pressure

2 Don’t get too close to obstacles and walls L2 = ae−d(O,x)/b, where d is the
distance between the pedestrian and the obstacle.

3 Kinetic energy L3 = 1
2
‖v‖2

4 Expected number of pedestrian interactions - discomfort due to crowding Let
ζ = ζ(x(t), t) denote the expected number of interactions with others. They
assume that

L4 = ζ(ρ(x(t))

where ρ is the pedestrian density.

5 Benefit of walking in certain area: L5 = γ(x(t), t)

Optimal velocity

v∗ = argminE
(∫ T

t
L(s, x(s), v(s), ρ)ds + g(T , x(T ))

)

6S.P. Hoogendorn, P.H.L. Bovy, Pedestrian route-choice and activity scheduling theory and models,
Transportation Research B 38, 2004



Let’s go back to stochastic OC

Expected value of costs, the so-called value function

V (x̂ , t) = E(

∫ T

t
L(s, x∗(s), v∗(s))ds + g(x∗(T ),T ))

subject to the constraint that dx∗(t) = v∗dt + σdB(t), x∗(t) = x̂ .

Using Bellman’s principle we calculate the Hamilton-Jacobi-Bellman equation for V

−∂V
∂t

(x , t) = H(x ,∇V ,∆V )

where H := minv∈V (L(x , v) +
∑

i vi
∂V
∂xi

+ σ2

2

∑
ij

∂2V
∂i x∂j x

) and terminal condition

V (x ,T ) = ḡ .

Optimal velocity and direction:

v∗ = min(‖∇V ‖, v0) and e∗ =
∇V
‖∇V ‖

.



Cellular automata model

Figure: From C. Burstedde,K. Klauck, A. Schadschneider, J. Zittarzt, Simulation of pedestrian
dynamics using a two-dimensional cellular automaton, Physica A, 2001



Kinetic models

Aim: Describe the evolution of pedestrians with respect to their position x in space
and their velocity v.
Let f = f (x , v , t) denote the distribution of individuals with respect to their position
and velocity. Then f solves a Boltzmann type equation of the form

∂t f (x , v , t) + v · ∇x f (x , v , t) = Q(f , f )

where Q is the so-called collision operator.

The collision operator can include

• velocity changes due to possible collisions (individuals may step aside).

• adjustment of the velocity to move towards a target.

• noise, since people usually don’t walk in straight lines.



PDE models for pedestrian dynamics

In the macroscopic limit N →∞ one usually obtains a nonlinear transport-diffusion
equation of the form

∂tρ = div(D(ρ)∇(E ′(ρ)− V + W ∗ ρ)︸ ︷︷ ︸
:=v

).

• V = V (x) is an external potential energy (e.g. confinement,....),

• D = D(ρ) denotes the nonlinear diffusion/mobility

• E = E(ρ) an entropy/internal energy.

• W = W (x) is an interaction energy.

• General PDE models for pedestrian flows are conservation laws.

• Highly nonlinear - for example nonlocal model by Colombo et al

∂tρ+ div(ρv(ρ)(ν(x) + I(ρ)) = 0, where I = −ε
∇(ρ ∗ η)√

1 + ‖∇(ρ ∗ η)‖2



The Hughes model for pedestrian flow 7

1 Speed of pedestrians depends on the density of the surrounding pedestrian flow

v = f (ρ)u, |u| = 1.

2 Pedestrians have a common sense of the task (called potential φ)

u = −
∇φ
|∇φ|

.

3 Pedestrians try to minimize their travel time, but want to avoid high densities

|∇φ| =
1

f (ρ)
.

Hughes’ model for pedestrian flow:

∂tρ− div(ρf 2(ρ)∇φ) = 0

|∇φ| =
1

f (ρ)

People slow down as they approach the maximum density ρmax: f (ρ) = (ρmax − ρ).

7Hughes, R. A continuum theory for the flow of pedestrians, Transportation Research Part B, 36, 507-535, 2002



The Hughes model for pedestrian flow

Analytic issues:

• fully coupled system; nonlinear hyperbolic conservation law.

• density dependent stationary Hamilton Jacobi equation ⇒ φ ∈ C0,1 only.

Let us consider the regularized system:

∂tρ
ε − div((ρεf 2(ρε)∇φε) = ε∆ρε

−δ1∆φε + |∇φε| =
1

f (ρε) + δ2
.

1D : solution ρε converges to an entropy solution for ε→ 0, but δ1 > 0, δ2 > 0 !



Mean field games 8

Microscopic model
N-player stochastic differential game

inf
Vi∈A

E
[∫ T

0
f (t,Xi ,Vi , ρ)dt + g(ρ,Xi , t = T )

]
dXi = Vidt + σdBi , Xi (t = 0) = x .

Transient macroscopic model
Calculate Nash equilibrium, limiting equations as N →∞ gives time dependent mean
field game: Find (φ, ρ) such that

∂tφ+ ν∆φ− H(x ,∇φ) = 0

∂tρ− ν∆ρ− div(
∂H

∂p
(x ,∇φ)ρ) = 0,

with the initial and end conditions φ(x ,T ) = g [ρ(x ,T )], ρ(x , 0) = ρ0(x), where H is
the Legendre transform of the running cost f .

8P.-L. Lions, J.-M. Lasry, Mean field games, Japan. J. Math., 2, 229-260, 2007



Connection to parabolic optimal control

If the running cost f has the form

f (x , t, v , ρ) = L(x , t, v)ρ(x , t),

then the MFG can be written as an optimal control problem. For example let us
consider the kinetic energy f (x , t, v) = 1

2
ρ|v |2, then

inf
v

[
1

2

∫ T

0

∫
Ω
ρ(x , t)|v(x , t)|2 dxdt + g(ρ(T ),T )

]
under the constraint that

∂tρ = ν∆ρ− div(ρv), ρ(x , 0) = ρ0(x).

The formal optimality condition is v = ∇φ and therefore the adjoint equation reads as

∂tφ+ ν∆φ−
1

2
|φ|2 = 0

with the terminal condition φ(x ,T ) = g ′(ρ(T )).



An optimal control approach for fast exit scenarios

• Let us consider an evacuation or fast exit scenario, i.e. a room with one or several
exits from which a groups wants to leave as fast

• Each individual tries to find the optimal trajectory to the exit, taking into account
the distance to the exit, the density of people and other costs.

Figure: Fast-exit experiment conducted at the TU Delft



Fast exit of particles

• Let x(t) denote the trajectory of a particle, the exit time is defined as:

Texit(x) = sup{t > 0 | x(t) ∈ Ω}.

• Fastest path is chosen such that

1

2

∫ Texit

0
|v(t)|2 dt +

α

2
Texit(x(t))→ min

(x(t),v(t))
.

subject to ẋ(t) = v(t), x(0) = x̂ .

• Let µ = δx(t) denote a Dirac measure and the final time T be sufficiently large:

Texit =

∫ T

0

∫
Ω
dδx(t)dt.

• Equivalence of continuum formulation and particle formulation, i.e.∫ T

0

∫
Ω
|v(y , t)|2dµdt =

∫ T

0

∫
Ω
|v(y , t)|2dδx(t)dt =

∫ Texit

0
|v(x(t), t)|2dt.

⇒ map Eulerian to Lagrangian coordinates.



Fast exit of particles

• Hence the minimization for the particle problem can be written as a continuum
problem

IT (µ, v) =
1

2

∫ T

0

∫
Ω
|v(y , t)|2dµdt +

α

2

∫ T

0

∫
Ω
dµdt,

subject to ∂tµ+ div(µv) = 0, µ |t=0= δx̂ .

If dµ = ρdy and the final time T sufficiently large, the minimization can be written as

IT (ρ, v) =
1

2

∫ T

0

∫
Ω
ρ(y , t) |v(y , t)|2 dydt +

α

2

∫ T

0

∫
Ω
ρ(y , t) dydt,

subject to ∂tρ+ div(ρv) = σ2

2
∆ρ, ρ(x , 0) = ρ0(x).



Optimality conditions

• Lagrangian with dual variable φ:

LT (ρ, v , φ) = IT (ρ, v) +

∫ T

0

∫
Ω

(∂tρ+ div(vρ)−
σ2

2
∆ρ)φ dy dt.

• Optimality solutions

0 = ∂vLT (ρ, v , φ) = ρv − ρ∇φ

0 = ∂ρLT (ρ, v , φ) =
1

2
|v |2 +

α

2
− ∂tφ− v · ∇φ−

σ2

2
∆φ,

plus the terminal condition φ(x ,T ) = 0.

• Inserting v = ∇φ we obtain the following system (with MFG structure):

∂tρ+ div(ρ∇φ)−
σ2

2
∆ρ = 0

∂tφ+
1

2
|∇φ|2 +

σ2

2
∆φ =

α

2
.



Mean field games and crowding

We consider the following generalization of the optimal control problem:

IT (ρ, v) =
1

2

∫ T

0

∫
Ω
F (ρ)|v(y , t)|2dy dt +

1

2

∫ T

0

∫
Ω
E(ρ) dy dt,

subject to

∂tρ+ div(G(ρ)v) =
σ2

2
∆ρ, with initial condition ρ(y , t = 0) = ρ0(y).

Motivation:

• G = G(ρ) is nonlinear mobility, e.g. G(ρ) = ρ(ρmax − ρ). Hence people slow
down as the density increases.

• F = F (ρ) correspond to transport costs created by large densities. For example:

F (ρ)→∞ as ρ→ ρmax.

• E = E(ρ) can model active avoidance of jams, in particular by penalizing large
density regions.



First MFG version of Hughes

Let H(ρ) = G2

F
= ρf (ρ)2, E(ρ) = ρ and σ = 0.

Optimality conditions:

∂tρ+ div(ρ f (ρ)2∇φ) = 0

∂tφ+
f (ρ)

2
(f (ρ) + 2ρf ′(ρ))|∇φ|2 =

α

2

Hand-waving argument: If T is large, we expect equilibration of φ backward in time.

’MFG Hughes system’ vs. ’classical Hughes model’:

∂tρ+ div(ρ f (ρ)2∇φ) = 0

(f (ρ) + 2ρf ′(ρ))|∇φ|2 =
α

f (ρ)

∂tρ+ div(ρ f (ρ)2∇φ) = 0

|∇φ| =
1

f (ρ)
.

If f (ρ) = ρmax − ρ and α = 1:

f (ρ) + 2ρf ′(ρ) = ρmax − 3ρ⇒ additional singular point if ρ =
ρmax

3
.



Analysis of the optimal control model

Let ρmax > 0 denote the maximum density and Υ = [0, ρmax]. Let F = G = H−1

which satisfy the following assumptions:

(A1) F = F (ρ) ∈ C1(R), F bounded, E = E(ρ) ∈ C1(R) and F (ρ) ≥ 0, E(ρ) ≥ 0 for
ρ ∈ Υ.

Existence of minimizers is guaranteed if

(A2) E = E(ρ) is convex.

To ensure that the minimizers satisfy ρ ∈ Υ = [0, ρmax], we need the following
assumption on F :

(A3) F (0) > 0 if ρ ∈ Υ and F = 0 otherwise.

Uniqueness holds for:

(A4) F = F (ρ) is concave.

We consider the optimization problem on the set V × Q, i.e. IT (ρ, v) : V × Q → R,
where V and Q are defined as follows

V = L2(0,T ;H1(Ω)) ∩ H1(0,T ;H−1(Ω)) and Q = L2(Ω× (0,T )).



Alternative formulation

We introduce another formulation based on

w =
√

F (ρ)v .

Then

J(ρ,w) =
1

2

∫ T

0

∫
Ω

(
|w |2 + E(ρ)

)
dydt,

and the optimization problem formally becomes

min
(ρ,w)∈V×Q

J(ρ,w) such that ∂tρ =
σ2

2
∆ρ− div(

√
F (ρ)w).

To make the relation rigorous, we need to extend the domain of the velocity v to

Q̃ρ := {v measurable |
√

F (ρ)v ∈ Q}.

Moreover, for given ρ we define an extension mapping w ∈ Q to v ∈ Q̃ρ via

Rρ(w)(x) :=

{
w(x)√
F (ρ(x))

if F (ρ(x)) 6= 0

0 else.



Weak solutions

Definition (Weak formulation of the alternative formulation)

Let ρ0 ∈ L2(Ω). A pair (ρ,w) ∈ V × Q is a weak solution with initial condition ρ0, if
ρ(0) = ρ0 and

〈∂tρ, ψ〉H−1,H1 +

∫
Ω

(
σ2

2
∇ρ−

√
F (ρ)w) · ∇ψ dy = −

∫
ΓE

βρψ ds,

for all ψ ∈ H1(Ω), and if

JT (ρ,w) = min {JT (ρ,w), : (ρ̄, w̄) ∈ V × Q, (ρ̄, w̄) satisfy the FPE} .

Lemma (A-priori estimates)

Let ρ0 ∈ L2(Ω). Let (A1) and (A2) be satisfied and let σ > 0, β ≥ 0. Let w ∈ Q and
let ρ ∈ V be a weak solution of

〈∂tρ, ψ〉H−1,H1 +

∫
Ω

(
σ2

2
∇ρ−

√
F (ρ)w) · ∇ψ dy = −

∫
ΓE

βρψ ds,

for all ψ ∈ H1(Ω). Then there exist constants C1,C2 > 0 depending on F , σ, Ω and
T only, such that

‖ρ‖V ≤ C1‖w‖Q + C2.



Existence of weak solutions

Lemma

Assume ρ and w are as before and let (A3) be satisfied. Then, ρ(·, t) ∈ Υ = [0, ρmax]
for all t ∈ (0,T ] if ρ0(x) ∈ Υ.

Theorem (Existence in the general case)

Let ρ0 ∈ L2(Ω). Let (A1) and (A2) be satisfied, σ > 0 and w =
√

F (ρ)v. Then the
variational problem has at least a weak solution (ρ,w) ∈ V × Q with initial condition
ρ0. If in addition (A3) is satisfied, then ρ ∈ Υ.



Uniqueness of solutions for the optimality system

Proposition

Let assumption (A1) and (A2) be satisfied and let ρ be such that H(ρ) ≥ γ for some
γ > 0. Then the adjoint system

∂tφ+
σ2

2
∆φ =

1

2
E ′(ρ)−

1

2
|j |2

F ′

F 2

φ(x ,T ) = 0

with the appropriate adjoint boundary conditions has a unique solution
φ ∈ Lq(0,T ;W 1,q(Ω)) with q < N+2

N+1
.

Theorem (Uniqueness for the optimality system)

For a fixed initial condition ρ0 ∈ L2(Ω), there exists a unique weak solution

(ρ, φ) ∈ L2(0,T ;H1(Ω))× L2(0,T ;H1(Ω))

to the optimality system.



Understanding the Hughes model

• Let us consider N particles with position xk = xk (t) and the empirical density

ρN(t) = 1
N

∑N
k=1 δ(y − xk (t)).

• To define the cost functional in a proper way we introduce the smoothed
approximation ρNg by

ρNg (t) = (ρN ∗ g)(y , t) =
1

N

N∑
k=1

g(y − xk (t)),

where g is a sufficiently smooth positive kernel.

Let us ’freeze’ the empirical density ρN and look for the optimal trajectory of each
particle, i.e.

C(X ; ρNg (t)) = min
(ξ(t),v(t))

1

2

∫ T+t

t

|v(s)|2

G(ρNg (ξ(s; t))
ds +

1

2
Texit(x(t), v(t)),

subject to dξ
ds

= v(s) and ξ(0) = x(t).



Understanding the Hughes model

Let’s assume that the macroscopic (rescaled) version of ρN(t) converges to the mean
field ρ(t), we replace it by ρ(t) and obtain:

C(X ; ρ(t)) = min
(ξ,w)

J(µ,w) =
1

2

∫ T+t

t

∫
Ω

(
w2(x , s)

G(ρ(ξ(s; t)))
+ 1) dµds,

subject to ∂sµ+ div(µw) = 0 with µ(t = 0) = δX .

• The formal optimality conditions can be calculated via the Lagrange functional.

• For T → 0 the behavior at s = t represents the long-time behavior of the HJE.

Then we recover the Hughes model by choosing G(ρ) = f (ρ)2 i.e.

∂tρ+ div(ρf (ρ)2∇φ) = 0,

|∇φ| =
1

f (ρ)
.



Fast exit for three groups

(a) Solution of the classical Hughes model (b) Solution of the mean field optimal control approach

Thanks to collaborators: M. Burger (WWU Müenster), M. Di Francesco (L’Aquila),
P.A. Markowich (Kaust and Cambridge), J.-F. Pietschmann (WWU Münster)



Fast exit for three groups

(c) Solution of the classical Hughes model (d) Solution of the mean field optimal control approach

Thanks to collaborators: M. Burger (WWU Müenster), M. Di Francesco (L’Aquila),
P.A. Markowich (Kaust and Cambridge), J.-F. Pietschmann (WWU Münster)
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Including local vision

Modeling assumptions:

• If a point y ∈ Ω is visible, i.e. y ∈ Vx , then ρ = ρ(y , t).

• If a point is outside the visibility cone, i.e. y ∈ Hx then ρ(y , t) = ρH with
ρH ∈ R+.
Example: assume that the area is empty, i.e. ρH = 0.

• Angular dependent vision cone ⇒ velocity dependence of the model.
Contradiction to the first-order character of the continuity equation.



Eikonal equation with discontinuous RHS

Potential φ calculated with and without vision cone

• Consider the constant density ρ = 0.95 in the
domain

• Classic model of Hughes: potential φ has a single
turning point at x = 0.5.

• Two local vision cones (0 ≤ x ≤ 0.5 and
0.5 ≤ x ≤ 1): the potential φ has three turning
points ⇒ shock formation.

Low regularity of the potential φ ⇒ considerable problems in the numerical simulation
of the nonlinear conservation law.



Exit strategy

• Exit strategy is determined by estimating the evacuation cost for each exit
separately:

‖∇yφk (x , ·)‖ =

{
1

f (ρ(y,t))g(ρ(y,t))
for all y ∈ Vx

1
f (ρH )g(ρH )

for all y ∈ Hx

φk = 0 for x ∈ ∂Ωk .

• It corresponds to the direction towards the exit with the minimal exit cost
(weighted by the difference in the costs to the 2nd best strategy):

u =
∇φkopt

‖∇φkopt‖
(φkopt+1 − φkopt ),

kopt = argmink φk ,

kopt+1 = argmink 6=kopt φk .

• The actual direction is determined by averaging the directions in the close
neighborhood (weighted by the density ρ):

ϕ =
ρu ∗ K
ρ ∗ K

for a sufficiently smooth convolution kernel K .



Modified Hughes model

For every exit ∂Ωk , k = 1, . . .M calculate

‖∇φk‖ =

{
1

f (ρ(y,t))g(ρ,t))
1

f (ρH )g(ρH )
.

⇒ costs to each exit based on the vision cone

φk |∂ΩEk
= 0

kopt(x) = argmink φk (x) ⇒ choose exit with the lowest costs

kopt+1(x) = argmink 6=kopt φk (x) ⇒ determine exit with the 2nd lowest costs

u =
∇φkopt

‖∇φkopt‖
· (φkopt+1 − φkopt ) ⇒ weigh optimal direction

ϕ =
ρu ?K
ρ ?K

⇒ smooth direction to avoid oscillations

∂tρ−∇x ·
(
ρf (ρ)

ϕ

‖ϕ‖

)
= 0
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