

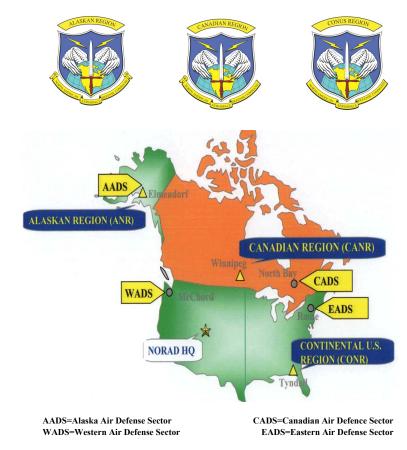
Strategic resource allocation

Patrick Loiseau, EURECOM (Sophia-Antipolis)

Graduate Summer School: Games and Contracts for Cyber-Physical Security

IPAM, UCLA, July 2015

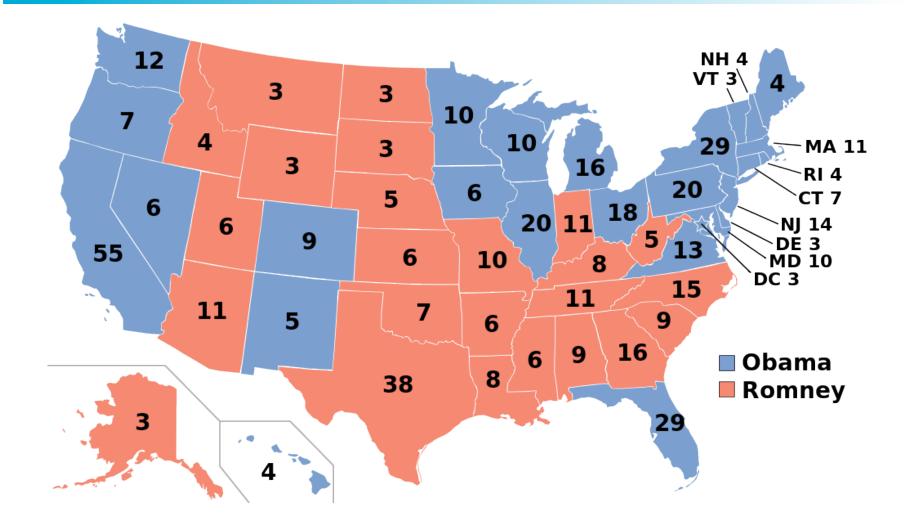
North American Aerospace Defense Command (NORAD)



NORAD Area of Operations

2

US 2012 presidential election



Advertisement by competing brands

The Colonel Blotto game

- Model
- Solution
- Variants and related games

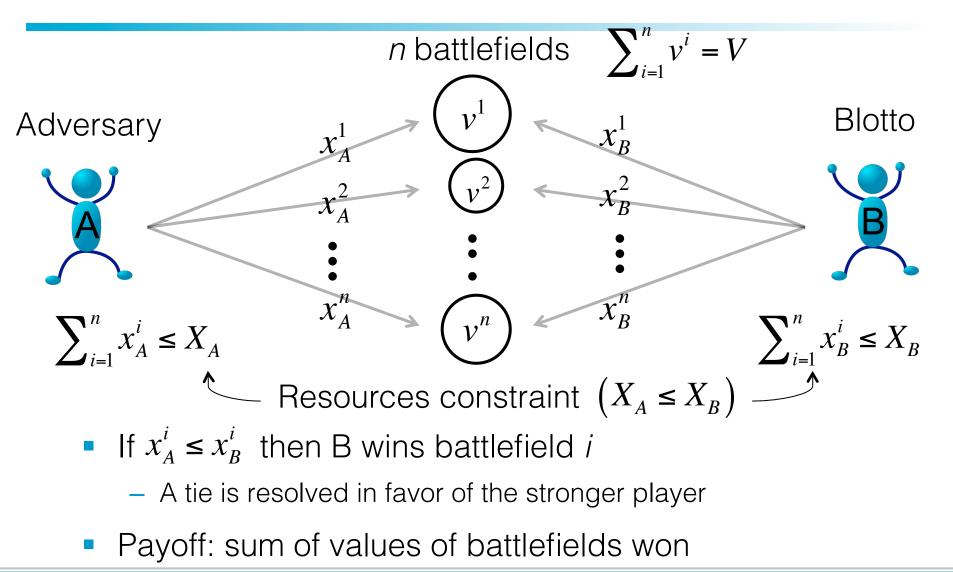
The Colonel Blotto game

- Model

- Solution

Variants and related games

The Colonel Blotto game (Borel 1921)



Features of the Colonel Blotto game

- A general resource allocation game
- A simultaneous-move game
- A constant-sum game (sum of payoffs = V)
- <u>Not</u> a finite game
- Payoffs are not continuous

→ Nash equilibrium?

■ If $X_B \ge nX_A$ there is a pure strategy equilibrium - B puts X_B / n on each battlefield and wins all

Applications

The Colonel Blotto game is useful in environment where

- Strategic attacks are present
- Fixed resources have to be allocated
- Players move simultaneously

Applications

- Information technology (IT) security: resource (human, processor) allocation across tasks.
- Emergency relief allocation of state / federal resources: equipment, water, food, medical supplies, air fleet
- Anti-terror defenses with fixed resources: the Colonel Blotto game allows to consider simultaneous games
- Air space patrolling / monitoring
- Politics, allocation of lobbying resources, advertisement, etc.

The Colonel Blotto game

- Model

Solution

Variants and related games

Example: no pure-strategy NE

- 3 identical battlefields $v^1 = v^2 = v^3 = 1 \implies V = 3$
- 2 identical players $X_A = X_B = 1$

- Ties are resolved at random (50-50)

 \rightarrow There exists a symmetric equilibrium with equal payoffs

$$\Pi_A = \Pi_B = 3/2$$

- There exists no pure strategy equilibrium
 - Suppose that $x_A^{1,2,3} = 1/3$
 - Player B's best response is $x_B^{1,2} = 1/2$ and $x_B^3 = 0$
 - Payoffs: $\Pi_B = 2$ and $\Pi_A = 1$
 - Player A could do better

Example (2): mixed-strategy NE

- 3 identical battlefields $v^1 = v^2 = v^3 = 1 \implies V = 3$
- 2 identical players $X_A = X_B = 1$

- Ties are resolved at random (50-50)

- Suppose A and B use mixed strategies such that the marginals are $x_{A}^{i} \sim Uniform\left(\left[0, \frac{2\nu^{i}}{V}X_{B}\right]\right) = Uniform\left(\left[0, \frac{2}{3}\right]\right)$ $x_{B}^{i} \sim Uniform\left(\left[0, \frac{2\nu^{i}}{V}X_{B}\right]\right) = Uniform\left(\left[0, \frac{2}{3}\right]\right)$
 - Each field has resource 1/3 in expectation
 - Payoffs: $\Pi_A = \Pi_B = 3/2$
 - \rightarrow This is an equilibrium!

Example (3): discussion

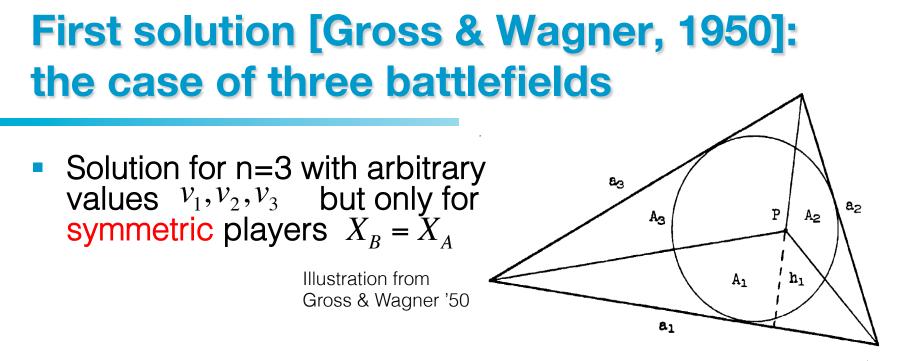
- 3 identical battlefields $v^1 = v^2 = v^3 = 1 \implies V = 3$
- 2 identical players $X_A = X_B = 1$

- Ties are resolved at random (50-50)

- On this simple example:
 - Pure strategy of 1/3 for player A: $\Pi_B = 2$ and $\Pi_A = 1$
 - Mixed strategy unif. on [0, 2/3]: $\Pi_A = \Pi_B = 3/2$
 - Mixing improves player A's payoff from $\Pi_A = 1$ to $\Pi_A = 3/2$
- If attacker is strategic, mixing is essential
- Can we find a strategy for player A/B with the correct marginals that satisfies the budget constraint?

First solution [Gross & Wagner, 1950]: the case of two battlefields

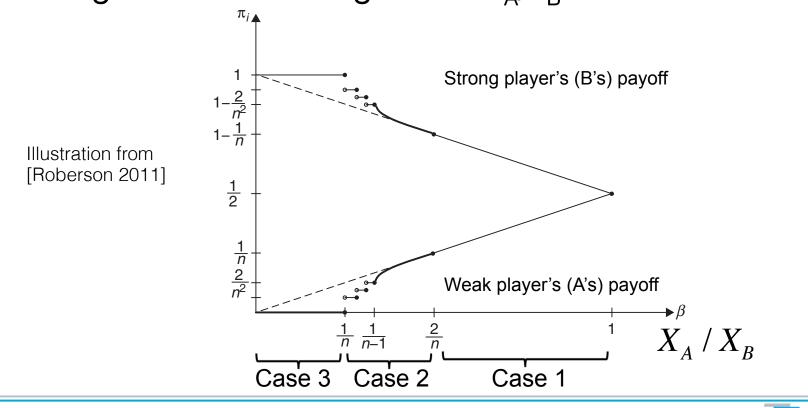
- Complete solution for n=2 with arbitrary X_B, X_A and v_1, v_2
- If $X_B \ge 2X_A$, then pure strategy equilibrium
- If $X_B < 2X_A$, then mixed-strategy equilibrium
 - Finite number of mass points
 - The closer X_B, X_A are, the more mass points (i.e., closer to continuum)
 - Example: if $v^{_1} = v^2 = 1$, and $X_B = 2X_A \varepsilon$
 - B mixes between X_A and $X_B X_A$
 - A mixes between X_A^n and 0



- Marginals: $x_A^i \sim Uniform[0, \frac{2v^i}{V}X_A]$, same for x_B^i
 - Easy: show that a distribution with these marginals is an equilibrium
 - Difficult: find a joint distribution with these marginals that respect the budget constraint
- Extensions of Gross & Wagner (1950)
 - [Laslier & Picard, 2002], [Thomas, 2013]

Second solution [Roberson 2006]: *n* homogeneous battlefields

- Solution arbitrary X_B, X_A and arbitrary number *n* of identical battlefields: $v^1 = v^2 = \cdots = v^n$
- Distinguishes several regimes of X_A/X_B



EURECOM

Different regimes

• Case 1:
$$\frac{2}{n} < \frac{X_A}{X_B} \le 1$$
 [players with similar resources]
 $\Pi_A = \frac{X_A}{2X_B}V; \quad \Pi_B = \left(1 - \frac{X_A}{2X_B}\right)V$
- Mixed equilibrium

Case 2: [resources in intermediate range]

$$\Pi_A > 0; \quad \Pi_B < V$$

- Case 2a: $\frac{1}{n-1} \le \frac{X_A}{X_B} \le \frac{2}{n}$ mixed equilibrium with continuum - Case 2b: $\frac{1}{n} < \frac{X_A}{X_B} < \frac{1}{n-1}$ mixed equilibrium with mass points

• Case 3: $X_B \ge nX_A^{B}$ [extreme resource disparity]

$$\Pi_A = 0; \quad \Pi_B = V$$

- Pure equilibrium (multiple)

Case 1 [players with similar resources]

• $n \ge 3$ homogeneous battlefields: $v^1 = \cdots = v^n$, $\sum_{i=1}^n v^i = nv = V$

• Theorem: If $\frac{2}{n} < \frac{X_A}{X_B} \le 1$, then in equilibrium: - Unique equilibrium marginals: $x_A^i \sim Uniform\left(\left[0, \frac{2}{n}X_B\right]\right)$ with proba $\frac{X_A}{X_B}$; 0 with proba $\left(1 - \frac{X_A}{X_B}\right)$ $x_B^i \sim Uniform\left(\left[0, \frac{2}{n}X_B\right]\right)$ Π

- Unique equilibrium payoffs:

$$_{A} = \frac{X_{A}}{2X_{B}}V; \quad \Pi_{B} = \left(1 - \frac{X_{A}}{2X_{B}}\right)V$$

- Proof:
 - construct a joint distribution with these marginals (direct construction, not based on geometric arguments)
 - uniqueness from all-pay auctions results

Example of joint distribution

• Suppose
$$n = 3$$
, $v^1 = v^2 = v^3$, $X_A = X_B = 1$

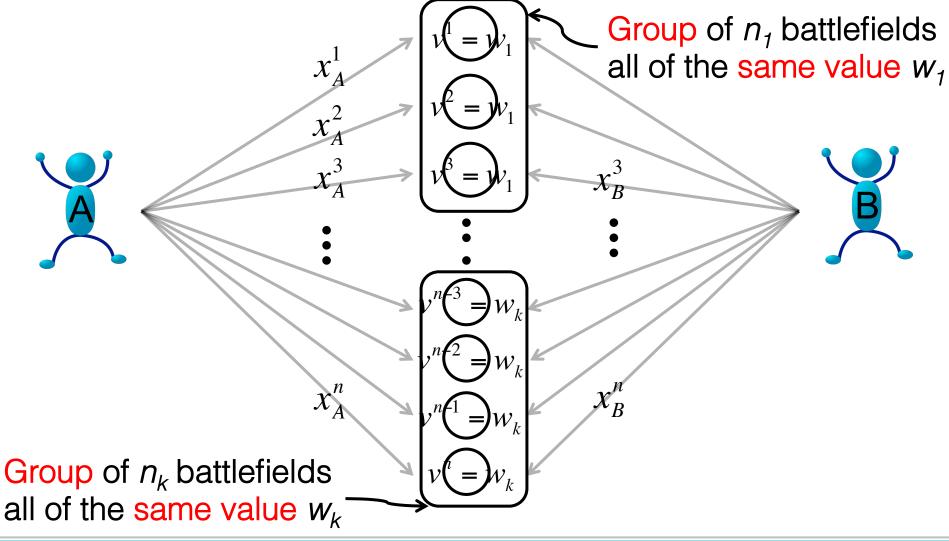
Need a distribution that respects budget constraints with marginals:

 $x_A^i \sim Uniform[0, 2/3], i = 1, 2, 3$

- Joint distribution:
 - Reorder the battlefields randomly
 - Assign $x_A^1 \sim Uniform[0, 1/3], \quad x_A^2 = \frac{1}{3} + x_A^1, \quad x_A^3 = 1 x_A^1 x_A^2$
- Why does it work?
 - Take a given battlefield. In the previous procedure, it gets
 - with proba 1/3, $x_A^1 \sim Uniform[0,1/3]$ • with proba 1/3, $x_A^2 \sim Uniform[1/3,2/3]$
 - with proba 1/3, $x_A^2 \sim Uniform [1/3,2/3]$ • with proba 1/3, $x_A^3 \sim Uniform [0,2/3]$

→ correct marginal overall!

Heterogeneous battlefields / asymmetric players [Schwartz, L., Sastry, 2014]



Theorem [Schwartz, L., Sastry, 2014]

• Assume that, for each group *j*, $\frac{2}{n_j} < \frac{X_A}{X_B} \le 1$, then:

- Unique equilibrium marginals:

$$x_{A}^{i} \sim Uniform\left(\left[0, \frac{2\nu^{i}}{V}X_{B}\right]\right) \text{ with proba } \frac{X_{A}}{X_{B}}; 0 \text{ with proba } \left(1 - \frac{X_{A}}{X_{B}}\right)$$
$$x_{B}^{i} \sim Uniform\left(\left[0, \frac{2\nu^{i}}{V}X_{B}\right]\right)$$

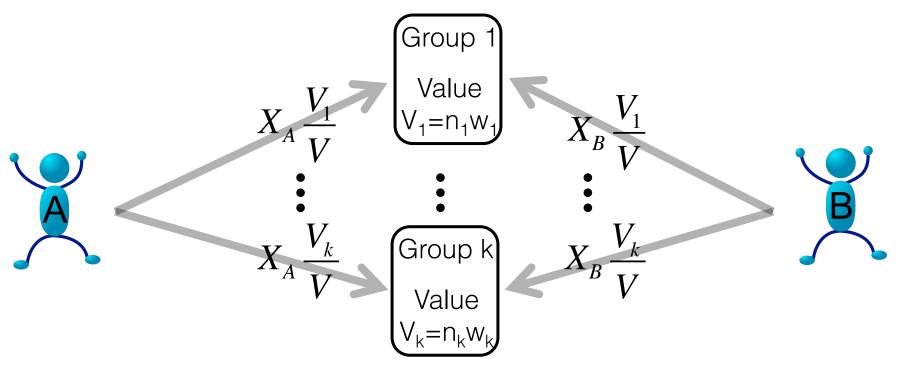
- Unique equilibrium payoffs

A:
$$\frac{X_A}{2X_B}V$$
; B: $\left(1-\frac{X_A}{2X_B}\right)V$

 There exists a valid joint distribution respecting budget constraints (proof by construction)

Joint distribution construction

 Step 1: allocate resources to groups of battlefields proportionally to total group value:



Step 2: within groups, allocate resources as in Roberson '06

Proofs & remarks

- Remark: possible thanks to assumption $\frac{2}{n_i} < \frac{X_A}{X_B} \le 1$
- This joint distribution works!
 - It gives the correct marginals
 - It respects the resource budget constraint
- Uniqueness from all-pay auction results
- Requires $n_i \ge 3$ for all *j* and all groups in linear regime
- The joint distribution is not unique

The Colonel Blotto game

- Model

- Solution

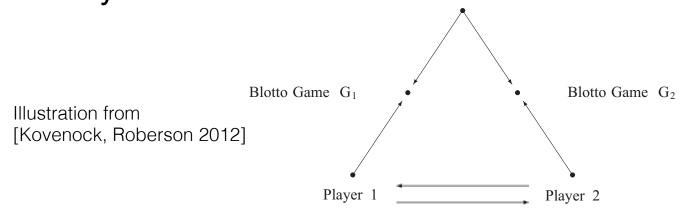
Variants and related games

Variant (1): The General Lotto game

- Budget constraint imposed in expectation only
- Generic solution is much simpler
 - Find the marginals
 - Draw each battlefield's allocation independently
- The same applies for a very large number of battlefields
- Example: [Myerson 1993] in the context of politics

Variant (2): the coalitional colonel Blotto game [Kovenock, Roberson 2012]

 Two players can transfer resources and face a common adversary
 Player A



Alliance Transfers

- There exists cases where a self-enforcing alliance without commitment will occur
 - Stronger player of coalition transfers resources to weaker player
 - Modifies the allocation of A to the two Blotto games
 - Improves the payoff of both players of the coalition

Related game (1): The Gladiator game [Rinott, Scarsini, Yu, 2012]

Rules of the game

- Two teams of m and n gladiators
- Each team coach allocates a finite amount of "strength" to its gladiators
- Gladiators fight sequentially, the survivor fights at next round
- The outcome of a fight is random, the probability of winning is proportional to the strength
 - If player resources are a and b, the probability of winning is a/(a+b)
- The first player with no more gladiator loses all

Result:

- There exists a pure equilibrium
 - Stronger player allocates uniformly to all players
 - Weaker player allocates uniformly to a subset
- > The randomness is already in the payoff!

Related game (2): the FlipIt game [van Dijk, Juels, Oprea, Rivest, 2013]

Game of timing

Rules:

- Each player chooses when to flip
- Time is continuous, finite length T
- Costs of flip for each player are known
- Payoffs: the fraction of time the player "owns" the resource

Results:

- If both players flip periodically: characterization of equilibrium choice of period
- If both players can choose between periodic and renewal flip: periodic dominates renewal
- More general strategy: open problem!

Conclusion

• Summary:

- The Colonel Blotto game (and related games) are beautiful and useful to think about resource allocation in a strategic setting!
- We can solve the game with asymmetric players and heterogeneous battlefields, under minor restrictions
- We provide an algorithm for allocating resources across battlefields
- Applications are numerous
 - Security, politics, advertisement, etc.
- Open questions:
 - Equilibrium for players with moderately asymmetric resources
 - Players with unequal valuations of the battlefields
 - Limit of large number of battlefields

patrick.loiseau@eurecom.fr

