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UCLA  IPAM July 2015 

• Learning in (infinitely) repeated games with n players. 
 

• Prediction and stability in one-shot large (many 

players) games. 
 

• Prediction and stability in large repeated games (big 

games). 
 

• Prediction and stability cycles in big changing games. 
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Large Cooperative: Aumann and Shapley (1974); Mailath and Postlewaite (1998) 
Stochastic games: Shapley (1953) ; Mertens and Neyman, (1981)  
One shot, Continuum: Schmeidler (1973); Rashid (1983); Mas-Colell (1984); Khan 
and Sun (1999, 2013); Al-Najjar (2004);  
One shot, Unknown number of players: Myerson (1998), 
One shot, asymptotically large, stability: Kalai (2004);  Cartwright and Wooders 
(2009); Gradwohl, Reingold, Yadin, Yehudayoff (2009); Gradwohl and Reingold 
(2010); Carmona and Podzeck (2012); Azrieli and Shmaya (2013) 
Large dynamic: E. Green (1978); Sabourian (1990); Fudenberg, Levine and 
Pesendorfer (1996); Al-Najjar and Smorodinsky (2000) 
Large  markets: Dubey, Mas-Colell, Shubik (1980), Rustichini, Satterthwaite and 
Williams (1994) 
Large mechanisms: Azevedo and Budish (2012), Bodoh-Creed (2012) 
Mean Field: Lions (2012), Johari (2010) …. 
Big Bayesian: Kalai and Shmaya (2014) 

Small Sample of Related Literature 

Learning in repeated games: Kalai and Lehrer (1993), Sorin (1999) (also 
Fudenberg and Levine (1992) in a different context) Neyman (2013). 
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Definition: 

An n-person strategic game is a function: 



Nash equilibrium 

Extends the idea of equilibrium from supply and demand 

to general behavior between interacting players 

Has taken over as a major analytical tool in economics 

Operations management, political science and computer 

science are going through similar transformations 

Coincides with behavior predicted by survival of the fittest. 

Definition: A Nash equilibrium s* is a configuration of individual 

strategies, each optimal (best response) relative to the others, i.e.,  no 

player has an incentive to unilaterally deviate from the configuration. 
 

                 ui(s*1,…,s*i-1,si, s*i+1,…,s*n) ≤ ui(s*) 
5 
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Simple familiar examples: 

Everybody driving on the right side of the road. 

Complementarities in production: 

a. Simultaneous production of software and of hardware 

also 

b. No production of software with no production of hardware. 

But  

production of software without production of hardware is not an 

equilibrium. 

Common language, common system of measurements… 

Markets, real and on the web. 



selfish 

He 

She 

generous 

generous selfish 

Example: be generous or selfish 
when a $1 donation yields your opponent $3.  

Aka Prisoners’ dilemma 

  2, 2   -1, 3 

  3,-1    0, 0 

The only Nash equilibrium is non-cooperative: 

Both players choose the selfish action. 
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Example: shy woman / bold man, 

  1, 0   0, 1 

  0, 1   1, 0 
He 

She 

out 

in 

in out 

he wants to be with her she wants to be alone.  

Aka match pennies 

This game has no “pure strategy” Nash equilibrium, 

but it has a “mixed strategy” equilibrium: each player 

chooses one of the two options with equal probability. 

.5 

.5 

.5 .5 
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Each has to choose PC or M.   

He likes PC she likes M, but they also like to make the same choice. 

His payoff:   1       if they choose the same computer (0 otherwise)  
                    + .2   if he chooses PC  (0 otherwise). 
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Computer choice game with known types 

Her payoff:  1       if they choose the same computer (0 otherwise)                   
                    + .2   if she chooses M  (0 otherwise). 

This game has  
two pure strategy equilibria: (1) both PC and (2) both M; 

and one mixes strategy equilibrium: 
   he randomizes .6 to .4 between PC and M , and 

   she randomizes .4 to .6 between PC  and M. 



  2, 2   -1, 3 

  3,-1    0, 0 
He 

She 

selfish 

generous 

generous selfish 

Example: be generous or selfish, repeated play 

Aka Prisoners’ dilemma 

• The same two players 

play the  “stage game”  

in periods 1,2,…, with 

“perfect monitoring.” 

• At the end of every period, each is told the choice of his 

opponent and receives a payoff according to the table. 

• Present value is computed with a discount parameter d. 

Example: both play tit for tat ; average payoff = 2,2 (if d>1/3) . 
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(f 1,f 2) is an equilibrium if each f i maximizes the expectated 

present value of the total future payoffs. 

• A strategy is a function form histories of play to period 

choices ex. f 1(g\g,g\s,g\g) = (gen w.p. .9, selfish w.p. .1) 



Example of a Bayesian game  

• Each of two players have to choose PC or M.   

• Each is of one random type: likes PC or  likes M, with prob .50 - .50 

• Each player knows his own type, but only the probabilities of the 

opponent’s type. 

• Identical individual payoff functions:    

  1       if you choose the same computer as your opponent (0 otherwise)  

  + .2   if you chooses the computer you like (0 otherwise). 
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Computer choice game with unknown types 

For example: choose your favorite computer, i.e., 
Choose PC, if you like PC;  and choose M if you like M. 

Notice that the equilibrium is efficient if they happen to 

be of the same type (with prob. .5); and inefficient 

otherwise. 

In Bayesian Nash equilibrium strategies are type dependent. 



• First, players are assigned types as above, to 

remain fixed throughout the repeated play. 

• Then, the computer choice game is played in 

periods 1,2,… with perfect monitoring and with 

discounted sum of payoffs. 
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Computer choice game with unknown types played repeatedly 

Example of a Bayesian repeated game  



• First, players are assigned types as above, to 

remain fixed throughout the repeated play. 

• Then, the computer choice game is played in 

periods 1,2,… with perfect monitoring and with 

discounted sum of payoffs. 
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Computer choice game with unknown types played repeatedly 

Example of a Bayesian repeated game  
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         Example of Kalai and Lehrer (1993) rational learning:  
 

assume that Pl 1 turns out to be a PC  type and Pl 2 a M type: 

They will play (f 1,PC, f 2,M), with  
 

f 1,PC being optimal against the .50 -.50 belief that he is facing 

f 2,PC  or f 2,M  ;  

 

(similarly for Pl 2). 
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But maximizing the PV of future payoffs, implies that Pl 1 

(and Pl 2) plays optimally relative to Bayesian updated 

beliefs: 
Instead of the initial prior belief, prob(t 2=PC )=.5, after any 

history of past plays h, he uses the posterior belief,  
prob(t 2=PC  | h ), and optimize against it.  

The prob(t 2=PC  | h ) must converge, but not necessarily 

to the true probability, which is zero since Pl 2 is a M- 
type.  
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But maximizing the PV of future payoffs, implies that Pl 1 

(and Pl 2) plays optimally relative to Bayesian updated 

beliefs: 
Instead of the initial prior belief, prob(t 2=PC )=.5, after any 

history of past plays h, he uses the posterior belief,  
prob(t 2=PC  | h ), and optimize against it.  

The prob(t 2=PC  | h ) must converge, but not necessarily 

to the true probability, which is zero since Pl 2 is a M- 
type.  

Nevertheless, Pl 1’s forecasts of the future play will become 

accurate, he will forecast Pl 2’s choices under f 2,M , as if he 
knew that she is the M- type. 
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But maximizing the PV of future payoffs, implies that Pl 1 

(and Pl 2) plays optimally relative to Bayesian updated 

beliefs: 
Instead of the initial prior belief, prob(t 2=PC )=.5, after any 

history of past plays h, he uses the posterior belief,  
prob(t 2=PC  | h ), and optimize against it.  

The prob(t 2=PC  | h ) must converge, but not necessarily 

to the true probability, which is zero since Pl 2 is a M- 
type.  

Nevertheless, Pl 1’s forecasts of the future play will become 

accurate, he will forecast Pl 2’s choices under f 2,M , as if he 
knew that she is the M- type. 
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Theorem (Kalai and Lehrer 1993b) at any Bayesian equilibrium players 

converge to play a subjective equilibrium of the repeated game: At such an 

equilibrium they each play optimally relative to his beliefs, which may be 

false, but consistent with the observed data. 

It follows that: 
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Theorem (Kalai and Lehrer 1993a) at any Bayesian equilibrium, the play will 

converge to an approximate Nash equilibrium of the repeated game, as if the 

types of both players are common knowledge. 

The first theorem holds for any number of players. 
 

For the second theorem with more than two players 

assume subjective independence: conditional on his 

realized type, every player believes that his opponents’ 

types are independent of each other. 

It follows that: 

Theorem (Kalai and Lehrer 1993b) at any Bayesian equilibrium players 

converge to play a subjective equilibrium of the repeated game: At such an 

equilibrium they each play optimally relative to his beliefs, which may be 

false, but consistent with the observed data. 



Example: Repeated Production 

 n players producing widgets at time periods 1,2,3,… 

Each producer knows only his own (constant) production capabilities 

and costs.   

At the end of the period he observes his competitors’ choices and 

collects his period’s profit. 

At a Bayesian equilibrium he maximizes the expected present value 

of all his future  profits.   

At  the beginning of  each period, a producer decides 
 

1. the type of widgets  he  will produce, and  

2. his selling price  



A  producer may act strategically.  For example, he may: 

 

Learn:  experiments with period choices to test the competitors 

responses. 

 

Teach:  sell widgets at low prices in selected periods to deceive his 

competitors about his cost and discourage their participation. 

 

Nevertheless, with time: 
 

The producers learn to predict the future choices of their 

competitors, 
 

and play as if everybody’s capabilities and costs are 

common knowledge. 
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The rate of convergence in Theorem 1 may be arbitrarily bad.  But 

when bad, it is because your forecasts are correct for many early periods.   

For example there may only be uncertainty about what your opponent will 

do in period 1 million. 

However, from Sorin (1999) , there is only a finite number K of 

“learning periods” in which your forecast is significantly wrong.   

K depends on the accuracy of the initial beliefs of the players. 



Learning, Predicting and Stability in 

Big Games 

UCLA IPAM, July 2015 

 

lecture 2 
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Predictability and stability are critical for well functioning 

social systems. 

Producers and consumers need reliable prices in order to plan their activities. 

Predictable stable driving patterns are important for  proper delivery of 

goods, planning of roads by traffic engineers, transportation of passengers … 

Predictable stable demand and supply  is important in health delivery 

systems, in the provision of new technology, etc. etc.. 

Predictability means that players can predict (with close to certainty) the 

outcome of a period before the play starts. 

 

Hindsight stability means that the players have the incentives to follow the 

plans they each made prior to the start of a period, even after they observe the 

period’s outcome (aka no regret, ex-post Nash)  
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Example, driving from the north suburbs to downtown Chicago 

 in a morning rush hour; use one of two possible roads, E or W. 

Predicting means that they know, with close to certainty, what the driving 

times on the two roads will be. 

Stability means that once they started driving and hear the reported driving 

times on the radio, no driver has the incentive to deviate to a different road. 

General principles: 
 

• Periods that are not stable are (potentially) chaotic. 
 

• Correct predictions are sufficient for stability, but not vice versa. 
 

• Correct forecasts, i.e., assessing correct probabilities of driving times, 

are not sufficient for  stability. 
 

• With a small number of players we learn to forecast, but with a large 

number we learn to predict. 
 

• Learning in period k if and only if period k’s outcome is unpredictable. 
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Part A: Motivation from Kalai, Econometrica (2004)  

 

Hindsight stability in large one-shot games with independent types,  

• Learning, predicting and hindsight Stability.  

• Markov perfect equilibrium in an imagined-continuum model of 

a repeated population game: A behaviorally simple 𝜖-equilibrium, 

of a highly complex game.  

• Stability Cycles in big games. 

Part B: Learning, predicting and stability in big games, Kalai and Shmaya (DPs 

2014a and 2014b) 

  

Lecture Road Map 
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Part A: Motivation from Kalai, Econometrica (2004)  

 

Hindsight stability in large one shot games with independent types,  

• Learning, predicting and hindsight Stability.  

• Markov perfect equilibrium in an imagined-continuum model of 

a repeated population game: A behaviorally simple 𝜖-equilibrium, 

of a highly complex game.  

• Stability Cycles in big games. 

Part B: Learning, predicting and stability in big games, Kalai and Shmaya (DPs 

2014a and 2014b) 

  

Lecture Road Map 



Example 

Players: i = 1,2,…,n;   each chooses an action: 𝑎𝑖 = PC   or   𝑎𝑖= M   

Player’s types: iid  Pr(𝑡𝑖 = PC) = Pr(𝑡𝑖 = M) = .50 

Individual’s payoff: 𝑢𝑖= prop𝑗≠𝑖  (𝑎𝑗=𝑎𝑖)1/3 + 0.2δ𝑎𝑖=𝑡𝑖, 

Choose your favorite computer (ai= ti) is a 𝑁𝑎𝑠ℎ equilibrium.  

It is “asymptotically hindsight stable,” as the number of players increases. 

Even more, it is “asymptotically structurally robust”: it remains an equilibrium 

in all extensive-game alterations that (1) start with the same initial information, (2) 

preserve the players’ strategic possibilities and (3) do not alter the players’ payoffs. 

and, more generally, under general dynamic play: revision of choices, 

information leakage, cheap talk, delegation possibilities, and more.. 

 i.e., (the proportion of opponents he matches)1/3  

     + 0.2 if he chooses his computer type (0 otherwise). 
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Simultaneous-move Computer choice game: independent types 

For example, it survives under sequential play (no herding), 

due to predictability obtained through the laws of large numbers 



Modelling Partially-specified games 

Students choosing computers on the web 

Instructions: “Go to web site xyz before Friday and click in your 
choice PC or M.”    Types, choices, and payoffs as before. 

Need to know: who are the players? the order of play?  monitoring? 

communications? commitments? delegations? revisions?... Impossible 

But under structural robustness: any equilibrium of the one-shot 

simultaneous-move game, (e.g., choose your favorite computer) remains 

equilibrium no matter how you answer the above. 

          Price formation in   

Shapley Shubik market games 

Hindsight stability →  price stability 
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All Nash equilibria  

are asymptotically  

hindsight stable 

many players, 

semi-anonymity,  

continuity & 

Independent types 

All Nash equilibria  

are asymptotically  

structurally robust 30 

Price stability 

in market 

games  

Kalai Econometrica (2004): In n-player one-shot 

simultaneous-move Bayesian games with independent types: 



````` 

Hindsight stability fails with correlated types 

Computer choice game with correlated types. 

Players: i = 1,2,…,n, each chooses PC or M. 

Unknown state of nature: the computer with better overall features is: 
 

                                           s = PC  or  s = M  with prob .50 , .50 . 

Payoffs: as before. 

Equilibrium: everybody chooses her favorite computer. 

It is not hindsight stable when n is large. 
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Player types: iid conditional on s:  Pr 𝑡𝑖 = 𝑠 = 0.7 , Pr 𝑡𝑖 = 𝑠𝑐 = 0.3 .  

But notice: after the one-shot play they all know the state of 
nature and now their types are (conditionally) independent. 
This suggests the study taken next 

What happens with hindsight stability in large 
 

repeated games with correlated types?     

will be used 

repeatedly   

in the 

following 

slides 
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Hindsight stability fails with correlated types 

Computer choice game with correlated types. 

Players: i = 1,2,…,n, each chooses PC or M. 

Unknown state of nature: the computer with better overall features is: 
 

                                           s = PC  or  s = M  with prob .50 , .50 . 

Payoffs: as before. 

Equilibrium: everybody chooses her favorite computer. 

It is not hindsight stable when n is large. 
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Player types: iid conditional on s:  Pr 𝑡𝑖 = 𝑠 = 0.7 , Pr 𝑡𝑖 = 𝑠𝑐 = 0.3 .  

But notice: after the one-shot play they all know the state of 
nature and now their types are (conditionally) independent. 
This suggests the study taken next 

What happens with hindsight stability in large 
 

repeated games with correlated types?     

will be used 

repeatedly   

in the 

following 

slides 
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Part A: Motivation from Kalai, Econometrica (2004)  

 

Hindsight stability in one shot games with independent types,  

• Learning, predicting and hindsight Stability.  

• Markov perfect equilibrium in an imagined-continuum model of 

a repeated population game: A behaviorally simple equilibrium, 

of a highly complex game.  

• Stability Cycles in big games. 

Part B: Learning, predicting and stability in big games, Kalai and Shmaya (DPs 

2014a and 2014b) 

  

Lecture Road Plan 



The Repeated Game with fixed unknown fundamentals 

A symmetric anonymous repeated game of proportions with: 
 

1. A large but unknown number of players n. 
 

2. Fixed types, correlated through an unknown state of nature (game fundamentals). 
 

3. Imperfect monitoring.  

An imagined-continuum equilibrium: 
 

• every player computes her best response based on expected values, as if she 

is negligible in a continuum of players. 
 

• But (as game theorists) we compute probabilities of events in the actual n-

person process, in which the n players follows the imagined-continuum 

reasoning above.  

Will illustrate the concepts through a 

 Repeated computer choice game with correlated types. 
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Prior probabilities: 
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The Stage Game,  

 a = PC or a =M, chooses PC or chooses M.  

played in periods k = 0,1,2,…: 
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Infinitely repeated with discounting. 

Finitely repeated with the average of the periods payoffs. 

Any function that is continuous and strictly monotonic in 
the periods payoffs. Will elaborate. 

The repeated computer choice game is infinitely repeated with individual 

discount parameters. 

Can be: 

The Repeated game 
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Strategies and equilibrium terminology 

A common strategy F is a symmetric profile in which all the 
players play F. 

F is Markov, if it depends only on the player’s type and the 
“public-belief” over the unknown state, will elaborate. 
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An 𝜶 threshold strategy : With prob 1: 
 

Choose your type of computer 𝑡 in periods with 

𝛼 < 𝜃 t   , 

choose the other computer 𝑡𝑐  in periods with  

𝜃 t ≤ 𝛼 i.e., Fθ, t (t 
c) = 1  

i.e.,Fθ, t (t) = 1  
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the expected values from 

the continuum game. 

The public beliefs (in the imagined game) 
about s under a common strategy F 
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Recall, the period 
outcome x(PC) is 
the proportion of 
PC  users in a 
sample with 
replacement of J 
computer users 
from the 
population. 
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The probability that the player 

assigns to the outcome x 

The probability that the player assigns to the 
outcome x, for a given s, 
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Kalai and Shmaya (2014a) define an equilibrium in the imagined game without the 
Markov and Myopicity properties, and show that: 
• Myopicity is a result, not an assumption. 
• When the number of players is large: 
      1 Period probabilities in the imagined game approximate the real probabilities. 
      2 Best response strategies in the imagined game are uniform e - best              
         response uniformly, for all n> n0 (same for Nash equi.) 

Due to myopicity 
• Markov equilibrium and the predictability / stability results are applicable to 

many repetition-payoff structures, e.g., finitely repeated games with average 
payoff, short and long lived players, overlapping generations, etc. 

• The equilibrium may be used in segments within the big repeated games with 
changing fundamentals. 

• Existence and equilibrium computation are simple matters. 

The players needs no information about the size of the population.  



44 



45 

Definition: consider a common Markov strategy F, period k is 

(uniformly) asymptotically predictable up to  [ r, d, r ]  , if with 

sufficiently many players 

Every player assigns probability ≥ 1- d to the  ball 
of radius r around the true outcome of period k  

PrF ≥ 1- r 

Theorem 1: For every positive d and r there is a finite integer K s.t. 

under any Markov strategy F and any positive r, all but at most K 

periods are asymptotically predictable up to  [ r, Q(r)+ d, Q(r)+ r ].  

The lack of concentration of the outcome function, i.e., the measure of the set of 
outcomes that cannot fit into a ball of diameter r in the worst case (over all s and e). 

Corollary: Suppose the outcome function has a variance s2. For 

every positive d and r there is a finite integer K s.t. under any 

Markov strategy F and any positive r, all but at most K periods are 

asymptotically predictable up to      [ r,  4(s/r)2+ d,  4(s/r)2 + r ].  

Uniform Learning to Predict 



In the computer choice game,  

 

for arbitrarily small d and r there is a finite K s.t. under any Markov strategy F 

and for any positive r, all but at most K periods are asymptotically predictable 

up to  

                                                [ r, 1/Jr2 + d , 1/Jr2 + r ],  

 

i.e.,  with sufficiently many players 

every player assigns probability > 1- (1/Jr2 + d) 
to the  ball of radius r around the true 
outcome of period k  

PrF 
> 1- (1/Jr2 + r)  

With a large sample size J, there is a high probability of approximate uniform predictability. 



47 

Definition: A common Markov strategy F is asymptotically 

hindsight stable in period k up to [e, r], if with sufficiently many 

players 
after observing the period’s outcome, by a unilateral change of 
her action some player can improve her payoff by more than e 

PrF ≤  r 

Theorem 2. For every positive e, r there is an integer K s.t. in every 

Markov equilibrium F and every d > 0 all but at most K periods are 

hindsight stable up to    [ 2d + 2Q( w-1(d) ) + 2e, Q( w-1(d) ) + r ] 

Corollary for payoff with Lipschitz constant L and outcome with 

variances ≤ s2.  For every positive e, r there is an integer K s.t. in every 

Markov equilibrium F all but at most K periods are asymptotically 

hindsight stable up to      

                               [8(s L / e)2 + 2e ,  8(s L / e)2  + r]  . 

W-1(d) is the modulus of continuity of u, a generalized Lipschitz value for 
points that are d units apart.   

Hindsight Stability 
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• But with substantial noise in the observed outcomes, hindsight 
instability is unavoidable, regardless of the number of players.  

In the computer choice game,  
 

for arbitrarily small ε and r there is a finite K s.t. under any Markov equilibrium 

F all but at most K periods are uniformly asymptotically stable up to  

                        [ 4ε + 2 / Jε6 , r + 1 / Jε6 ],  

i.e.,  with sufficiently many players 

With hindsight, by a unilateral change of his 
action some player can improve his payoff by 
more than 4ε + 2 / Jε6 

PrF 
<  r  +  1 / Jε6  
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Rough intuition about the proof of learning to predict 

• Merging, under the automatic grain of truth, implies that with high probability, 
except for a finite number of  learning periods, the forecasted probabilities over 
the outcome of the periods are appx accurate. (Fudenberg-Levin, Sorin, Kalai-
Lehrer), i.e., the same as would be forecasted with knowledge of the unknown 
state. 

• High concentration (small variance in our example) of the outcome distribution, 
combined with the fact that the empirical distributions in the imagined 
processes are deterministic conditional on the states, implies that with high 
probability at the non-learning periods they predict the realized period 
outcomes (not just their probabilities). 

So in the imagined processes, in all non-learning periods players will have 
approximately correct predictions.  

Consider first the |T | imagined processes, in which for every s the t-types hold 
deterministic beliefs about the probabilities of the period empirical 
distributions of type and actions, dθ(t,a). 

(That hindsight stability follows from predictability is intuitively clear) 
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Remarks: 
 
1. Predictability is a result of “no further learning” from some time on. 

Similar to multi arm bandit problems, the players do not necessarily learn 
the real state of nature, or even learn to play “as if” they know it.  
 

2. On the rate of getting to predictability: We know from Sorin (1999) that 
the number of chaotic periods is monotone in the size of the grain of 
truth, which is bounded below in our population game.  Thus the number 
of unpredictable periods is bounded above. 

Building on Kalai (2005), Kalai and Shmaya (2013) show that when the number 
of players is large and outcome probabilities are continuous, real probabilities of 
period events are approximated well by the probabilities in the imagined 
process. Thus appx correct predictions holds with (real) high probability in the 
non-learning periods. 

But what about in the real process, in which the players observe the randomly 
realized real outcomes? 

So in the imagined processes, in all non-learning periods players will have 
approximately correct predictions.  
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Abstract. In a big game a large anonymous population plays an infinitely 
repeated (stochastic) game in which:  
(1) game fundamentals (stochastic state) and the set of players change over 

time, 
(2) players private types are correlated through the fundamentals, and 
(3) information about fundamentals and play is incomplete and imperfect. 
Important games, but difficult to analyze.  

Stability Cycles in Big Games 
by 

Ehud Kalai and Eran Shmaya 

Good news 

When fundamental changes are guided by aggregate population data:  

• The play admits a simple behavioral myopic Markov perfect 

equilibrium, and 

• the period outcomes are highly predictable and the play is hindsight 

stable, provided that fundamental changes are infrequent and  

external uncertainty is low. 



Example: Market for Butter 

Play periods 
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Example:Use of computing devices 

Play periods 
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k’ 

Example: Repeated Rush-Hour Commute 
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k 

Ex. predictability on day k: before observing 

the driving times, every driver assigns  99%  

to the 5 minutes ball around the driving times 

to be realized. 

Ex. hindsight stability of chosen routes on day k’: after 

observing the driving times,  no player can gain more than 

4 minutes by deviating from her chosen route. 



k’ time 

Repeated Rush-Hour Commute 
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k 
At equilibrium: 
Predictability on day k implies hindsight 
stability on day k, but not the converse. 
 

Thus, driving patterns on a day with 
unpredicted driving times is 
(potentially) unstable and chaotic. 
 

Learning happens at the end of day k if 
and only if the observed driving times 
on this day were unpredicted. 

No 

learning 

Predicted 

outcome 

Stability, 

no chaos 

learning 

Unpredicted 

outcome 

Potential 

instability and 

chaos 

Two types of periods 

Ex. predictability on day k: before observing 

the driving times, every driver assigns  99%  

to the 5 minutes ball around the driving times 

to be realized. 

Ex. hindsight stability of chosen routes on day k’: after 

observing the driving times,  no player can gain more than 

4 minutes by deviating from her chosen route. 
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Predictable 

stable 
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No 

learning 

Predicted 

outcome 

Stability, no 

chaos 

learning 

Unpredicted 

outcome 

Potential instability 

and chaos 

Two types of periods 
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No 

learning 

Predicted 

outcome 

Stability, no 

chaos 

learning 

Unpredicted 

outcome 

Potential instability 

and chaos 

Two types of periods 

In any segment [C i … C i+1) 
 1. the play admits a simple behavioral Markov-

perfect myopic equilibrium of the infinitely repeated 

game. 
 

2. The number of learning periods is bounded by a 

finite k that depends on: 

• The accuracy of the players beliefs about the 

new parameters at C i ,  not at C i+1 , and 

• On the desired level of predictability and 

stability. 



Li
ke

lih
o

o
d

 o
f 

in
st

ab
ili

ty
 A stability cycle 

unpredictable  

learning 

periods 

Predictable 

stable 

periods 

58 

In any segment [C i … C i+1) 
 1. the play admits a simple behavioral Markov-

perfect myopic equilibrium of the infinitely repeated 

game. 
 

2. The number of learning periods is bounded by a 

finite k that depends on: 

• The accuracy of the players beliefs about the 

new parameters at C i ,  not at C i+1 , and 

• On the desired level of predictability and 

stability. 
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Warning: not to be confused 
with the business cycle:  
the y-axis does not represent 
the quality of the period 
outcome, only the inability to 
predict it. 



A stability cycle 
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The percentage of predictable stable 

periods increases with: 

1. Lower external uncertainty in the 

outcome function, 

2. Less frequent fundamental 

changes, 

3. Players information about the new 

fundamentals. 
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Open questions 
 

Many questions about big games with changing 

fundamentals, for example: 

• What do players observe, if any, about the changing 

fundamentals? 

• How to measure the level of changes that reflects on the 

number of learning periods? 

• …. 


