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Auction markets

Many marketplaces employ auctions to conduct trade:

Sponsored search

Online markets

Licensing, etc.



Dynamic auctions with learning

Inspired by auction settings where agents do not know their
valuation for an item a priori

Through repeated participation, agents learn their preferences
for goods in the market

Example: In sponsored search advertising, an advertiser only
learns the value of an ad based on conversion to a sale after a
user clicks on the ad



Sponsored search advertising

Online ads



Why study learning?

Major challenges:
What strategies are “optimal” for bidders?

Can we characterize market behavior, and in particular the
distribution of bids in the market?

What auction format should the market operator use?

Should the market operator subsidize learning?



Auction markets

In this talk

1 We use a mean field model to characterize agents’
behavior in presence of learning.

2 We establish existence and approximation theorems for
MFE.

3 We use MFE to study market design: the impact of auction
format and reserve prices on the auctioneer’s revenue.
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Finite market

Finite number of agents

Sequence of second price auctions:
α agents (sampled uniformly) per auction

Geometric lifetimes with parameter β:
After an auction, participating agents leave independently
with probability 1− β.
Each departing agent is replaced by a new agent.



[ Aside: Second price auctions ]

In a (static) second price auction:

The highest bidder wins, and pays the second highest bid.

Exercise: It is a dominant strategy to bid your true valuation.



Private valuation

Agent i’s private valuation vi ∈ [0,1]: unknown, independent.

Valuation determines the reward xi,t:

xi,t =

{
1 with probability vi;
0 otherwise.

e.g., in sponsored search:
reward = sale after a click-through

Observing reward xi,t informs an agent about her valuation vi.



Belief over valuation

Initial prior: Beta(m,n)

Density: f(m,n)(x) ∝ xm−1(1− x)n−1

Mean: µ(m,n) = m
m+n

Variance: σ2(m,n) decreasing in m and n
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Belief update

On winning the auction, and getting positive rewards:
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Belief update

On winning the auction, and getting zero rewards:
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Belief update

sk = Belief parameters after kth auction

Belief update: after kth auction,

sk =


sk−1 if the agent does not win;
sk−1 + e1 if the agent wins and xk = 1;
sk−1 + e2 if the agent wins and xk = 0,

where e1 = (1,0) and e2 = (0,1).
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Dynamic game

Standard tool to analyze dynamic games with incomplete
information is perfect Bayesian equilibrium (PBE).

PBE assumes agents are completely rational:

Agents track each competitor as long as they stay in the
market, and play optimally.

Agents maintain consistent beliefs about evolution of the
entire market, and update them using Bayes’ rule.



Two issues

PBE suffers from two issues:

1 Intractability: often showing equilibrium exists is difficult.

No structural insight

2 Implausibility: Not a good model of agent behavior in
practice
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Mean field equilibrium

Inspired by large markets

Weintraub et al. (’08), Lasry & Lions (’07), Huang et al.
(’07), ...

In an MFE,

Agents do not track individual competitors

Each agent plays against a “stationary” market

Sponsored search

Advertisers use bid landscape information to model the rest of
the market.
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Optimality:

Stationary
market

Actions are
optimal

Consistency:

Given
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actions

Same
stationary
distribution
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Mean Field Equilibrium = Optimality + Consistency
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market

Actions are
optimal

Same
stationary
distribution



OPTIMALITY



MFE: Stationary market

Suppose the distribution of bids in the market is g

 0
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For a fixed agent, in each of her auctions, bids of other α− 1
agents are sampled i.i.d. from g.



MFE: Stationary market

Suppose the distribution of bids in the market is g
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Probability of winning: q(b|g) = g(b)α−1

Expected payment: p(b|g)



MFE: Agent’s decision problem

Expected payoff in kth auction: q(b|g)µ(sk)− p(b|g).

Belief update: after kth auction,

sk =


sk−1 if the agent does not win;
sk−1 + e1 if the agent wins and xk = 1;
sk−1 + e2 if the agent wins and xk = 0.

Geometric lifetime

Expected total discounted payoff maximization
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MFE: Agent’s decision problem

From standard dynamic programming, optimal strategy is

Markovian: bid depends only on current belief

Stationary: no time dependence



CONSISTENCY



MFE: Consistency

Bid
distribution g

Optimal
strategy

Market bid
distribution

F(g)

For consistency, we need g to be a fixed point of F.



MFE: Consistency

Bid
distribution g

Optimal
strategy

Market bid
distribution

F(g)

For consistency, we need g to be a fixed point of F.



MFE

Definition
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1 Optimality: Given g, the strategy C is optimal.
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Existence of MFE

Theorem

A mean field equilibrium exists in the auction market.

Proof uses an infinite dimensional fixed point theorem.
Show: With the right topologies, F is continuous.
Show: Image of F is compact

Existence:
General belief models
Multiple units per auction
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OPTIMAL STRATEGY IN MFE



MFE: Agent’s decision problem

Given g, agent’s value function satisfies Bellman’s equation:

V(s|g) = max
b≥0

{
q(b|g)µ(s)− p(b|g) + βq(b|g)µ(s)V(s + e1|g)

+ βq(b|g)(1− µ(s))V(s + e2|g) + β(1− q(b|g))V(s|g)
}
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MFE: Agent’s decision problem

Rewriting:

V(s|g) = max
b≥0

{
q(b|g)C(s|g)− p(b|g)

}
+ βV(s|g),

where

C(s|g) = µ(s) + βµ(s)V(s + e1|g)

+ β(1− µ(s))V(s + e2|g)− βV(s|g).



MFE: Optimality

Agent’s decision problem is

max
b≥0

{
q(b|g)C(s|g)− p(b|g)

}

Same decision problem as in

Static second-price auction
against α− 1 bidders drawn i.i.d. from g
with agent’s known valuation C(s|g).

We show C(s|g) ≥ 0 for all s

=⇒ Bidding C(s|g) at posterior s is optimal!
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Conjoint valuation

C(s|g): Conjoint valuation at posterior s

C(s|g) = µ(s) + βµ(s)V(s + e1|g) + β(1− µ(s))V(s + e2|g)− βV(s|g)



Conjoint valuation

C(s|g): Conjoint valuation at posterior s

C(s|g) = µ(s) + βµ(s)V(s + e1|g) + β(1− µ(s))V(s + e2|g)− βV(s|g)

Conjoint valuation = Mean + Overbid

(We show Overbid ≥ 0)



Conjoint valuation: Overbid

Overbid: βµ(s)V(s + e1|g) + β(1− µ(s))V(s + e2|g)− βV(s|g)

Overbid

Expected marginal future gain from one additional
observation about private valuation
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Approximation

Does an MFE capture rational agent behavior in finite market?

Issues:

Repeated interactions =⇒ agents no longer independent.

Keeping track of history will be beneficial.

Hope for approximation only in the asymptotic regime



Approximation

Look at the market as an interacting particle system.

Interaction set of an agent: all agents influenced by or that had
an influence on the given agent.
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Intuition: As market size increases, any two agents’ interaction
sets become disjoint with high probability.
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Approximation

Theorem

As the number of agents in the market increases, the
maximum additional payoff on a unilateral deviation converges
to zero.

As the market size increases,

Expected payoff under
optimal strategy, given

others play C(·|g)
−

Expected payoff under
C(·|g), given others play

C(·|g)
→ 0
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Mean field equilibrium is good approximation to agent behavior
in finite large market.

Good approximation even in small markets due to behavioral
reasons



Approximation

Theorem

As the number of agents in the market increases, the
maximum additional payoff on a unilateral deviation converges
to zero.

Mean field equilibrium is good approximation to agent behavior
in finite large market.

Good approximation even in small markets due to behavioral
reasons



Outline

1 Market model

2 Dynamic game

3 Mean field equilibrium

4 Approximation

5 Computation

6 The auction format

7 Reserve price



Heuristic to compute MFE

A natural heuristic inspired by model predictive control.

Implicitly encodes a learning algorithm for the agents

Closely models market evolution when agents optimize
given current average estimates.



Algorithm

1 Initiate the market at bid distribution g0.

2 Given gk, compute conjoint valuation C(·|gk).

3 Evolve the market one time period, assuming each agent
bids her conjoint valuation.

4 Compute the new bid distribution gk+1.

5 Repeat until ‖gk+1 − gk‖∞ < ε.
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Performance

Heuristic converges to MFE within 30-50 iterations in practice,
for reasonable error bounds (ε ∼ 0.0015)

Computation takes ∼ 30 mins on a laptop.



Overbidding
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Repeated standard auctions

Standard auction:
1 Winner has the highest bid.
2 Zero bid implies zero payment.

Example: First price, all pay, third price, etc.

Theorem

MFE exists in any repeated standard auction if the static
auction has a symmetric Bayes-Nash equilibrium.



Repeated standard auctions

Dynamic revenue equivalence

Expected revenue to the auctioneer is same irrespective of
static auction format

(This is an analog of a similar result in static auction theory.)

Moral: Auctioneer’s expected revenue not affected by choice of
auction format.
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Reserve price

Setting a reserve can increase auctioneer’s revenue.

Effects of a reserve:

1 Relinquishes revenue from agents with low conjoint
valuation.

2 Extracts more revenue from those with high conjoint
valuation.

3 Imposes a learning cost:
- Precludes agents from learning, and reduces incentives to

learn.
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Reserve price

Due to learning cost, agents change behavior on setting a
reserve.

Auctioneer sets a reserve r and agents behave as in an
MFE with reserve r.

Defines a game between the auctioneer and the agents.



Optimal reserve

Two approaches:

1 Nash equilibrium: Ignores learning cost. Auctioneer sets
reserve assuming bid distribution is fixed, and agents
behave as in MFE with reserve r.

2 Stackelberg equilibrium: Includes learning cost.
Auctioneer computes revenue in MFE for each r, and sets
the maximizer rOPT.

We compare these two approaches using numerical
computation.



Optimal reserve: Numerical findings

By definition, Π(rOPT) ≥ Π(rNASH).

Π(rOPT)−Π(0) is greater than Π(rNASH)−Π(0) by ∼ 1− 30%.

Ignoring learning incurs a potentially significant cost.

Improvement depends on the distribution of initial beliefs of
arriving agents.



CONCLUSION



Conclusion

The methodology of MFE allows for

Tractability: many analytical insights possible

Plausibility: conjoint valuation captures nicely the value of
learning

Numerical computation feasible =⇒ questions of practical
relevance such as optimal reserve can be answered through
computation.



Open problems

Proof of convergence of the heuristic

How does efficiency of such repeated one-shot mechanisms
compare with optimal mechanisms?

Empirical validation

Other models:
Unit demand bidders (eBay, Amazon, etc.)
Budget constrained bidders



THANK YOU

Paper at http://ssrn.com/abstract=1799085
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