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Do markets aggregate and reveal information?

• Hayek (1945), Grossman (1976), Radner (1979)

– Yes; no strategic foundations.

• Hellwig (1982), Dubey, Geanakoplos, and Shubik (1987),

Wolinsky (1990), Golosov, Lorenzoni, and Tsyvinski (2008)

– Mostly yes; dynamic trading with myopic traders.

• Wilson (1977), Milgrom (1981), Pesendorfer and Swinkels

(1997), Kremer (2002), Reny and Perry (2006)

– Mostly yes; in auctions with many traders, a suitably

chosen number of objects, and particular functional forms.



This talk

For a broad class of securities and information structures,

information in dynamic markets with partially informed strategic

traders always gets aggregated: in every equilibrium, as time

approaches the end of the trading interval, the market price of a

security converges in probability to its expected value conditional

on the traders’ pooled information.



Setup

• n risk-neutral players, i = 1, . . . , n

• Finite set of states of the world Ω

• Random variable (“security”) X : Ω→ R

• Each player i receives information about the true state ω ∈ Ω
according to partition Πi of Ω

• Π = (Π1, . . . ,Πn) is the partition structure

• The join of partitions Π1, . . . ,Πn consists of singleton sets

• Players have a common prior distribution P over states in Ω



Trading

• model of trading is based on the Market Scoring Rule (MSR)

of Hanson (2003).

(Note: the paper “Information aggregation in dynamic markets

with strategic traders” also contains a model of trading based

on Kyle (1985)).



Detour: Proper Scoring Rules

Suppose a risk-neutral individual has some information about
the value of random variable X, is asked to make a prediction,
y, about the value, and subsequently receives s(y, x∗) when the
realization x∗ of X is observed.

Function s(·, ·) is a proper scoring rule if it is optimal for the
individual to report his expectation of X truthfully.

Examples

• quadratic scoring rule (Brier, 1950):

s(y, x∗) = −(x∗ − y)2

• logarithmic scoring rule (Good, 1952):

s(y, x∗) = (x∗ − a) ln(y − a) + (b− x∗) ln(b− y).



Market Scoring Rules (Hanson, 2003; Dimitrov and Sami, 2008)

• Start with prediction y0 offered by the market sponsor.

• Players take turns making predictions yk ∈ [y, y] at times
t1, t2, t3, . . . in (0,1); sequence tk converges to 1.

• At time t∗ > 1, the value x∗ of security X is revealed.

• For each revision of the prediction from yk−1 to yk, player i
is paid s(yk, x

∗)− s(yk−1, x
∗).

• Discounted MSR: for each revision of the prediction from
yk−1 to yk, player i is paid βk(s(yk, x

∗)− s(yk−1, x
∗)).

• The total payoff of each player is the sum of all payments
for revisions.



Definition. In an equilibrium of game ΓMSR, information gets

aggregated if sequence yk converges in probability to random

variable X(ω∗).

Since the number of possible states of the world is finite, this

definition is equivalent to saying that for any ε > 0, there exists

K such that for any k > K, for any realization of the nature’s

draw ω∗ ∈ Ω, the probability that |yk −X(ω∗)| > ε is less than ε.



Example of non-aggregation (based on Geanakoplos and

Polemarchakis, 1982)

• Two players, 1 and 2

• Ω = {A,B,C,D}

• X(A) = X(D) = 1 and X(B) = X(C) = −1

• Π1 = {{A,B}, {C,D}} and Π2 = {{A,C}, {B,D}}

If the players’ common prior P assigns probability 1
4 to every

state, then for every ω it is common knowledge that each player’s

posterior belief about the value of the security is 0.



Dutta-Morris (1997) and DeMarzo-Skiadas (1998, 1999) use

similar examples to illustrate the generic existence of not fully

informative REE. D-S also define “separable orientation”:

Definition. Security X is non-separable under partition structure

Π if there exists distribution P on Ω such that for some v:

1. for every player i, state ω with P (ω) > 0, E[X|Πi(ω)] = v;

2. for some ω with P (ω) > 0, X(ω) 6= v.

Otherwise, security X is separable.



Separability

• If n = 1, every security is separable

• Arrow-Debreu securities are separable

• Securities with additive payoffs are separable

• Securities that are order statistics (min, max, median, etc.)

of players’ signals are separable

• Monotone transformations of additive and multiplicative

securities (e.g., call options on those securities) are separable



Theorem. Consider n, Ω, X, and Π.

1. If X is separable under Π, then for any prior P , for any strictly

proper scoring rule s, initial value y0, bounds y and y, and

discount factor β ∈ (0,1], in any equilibrium of game ΓMSR

information gets aggregated.

2. If X is non-separable under Π, then for some prior P , for any

s, y0, y, y, and β, there exists a PBE of game ΓMSR in which

information does not get aggregated.



Proof of Statement 1

Pick any equilibrium and consider the following stochastic

process Q. Nature draws ω according to P . Each player i

observes Πi(ω).

• Q0 = (q1
0, . . . , q

|Ω|
0 ), where qw0 = P (ωw).

Next, player 1 makes forecast y1. Based on y1, the strategy

of player 1, and the prior P , a Bayesian outside observer forms

posterior beliefs about the probability qw1 of each state ωw.

• Q1 = (q1
1, . . . , q

|Ω|
1 ).



The rest of the process is constructed analogously:

• Qk = (q1
k , . . . , q

|Ω|
k ), where qwk is the posterior belief of the

observer about the probability of state ωw after time tk.

Key observation: (Qk)k=1,... is a |Ω|-dimensional martingale.

By the martingale convergence theorem, it has to converge to a

random variable, Q∞ = (q1
∞, . . . , q

|Ω|
∞ ).

Rest of the proof: Q∞ has to place all weight on the states with

the correct value of the security, and yk has to converge to that

value as well.



Let r = (r1, r2, . . . , r|Ω|) be any probability distribution over the

states and let z be any real number. Define instant opportunity

of player i given r and z as his highest possible expected payoff

from making only one change to the forecast, if the state is

drawn according to r and the initial forecast is z, i.e.,∑
ω∈Ω

r(ω) (s(Er[X|Πi(ω)], X(ω))− s(z,X(ω))) .

Lemma. Take any separable security X and distribution r such

that V arr[X] > 0. There exist φ > 0 and i ∈ {1,2, . . . , n} such

that for any z ∈ [y, y], the instant opportunity of player i given r

and z is greater than φ.

Now, suppose the statement of the theorem does not hold for

this equilibrium. Consider Q∞ and two possible cases.



Case 1: there is a positive probability that Q∞ assigns positive
likelihoods to two states ωa and ωb with X(ωa) 6= X(ωb).

This implies that there is a vector of posterior probabilities
r = (r1, . . . , r|Ω|) such that ra > 0, rb > 0, and for any ε > 0,
the probability that Q∞ is in the ε-neighborhood of r is positive.
Since Qk converges to Q∞, for any ε > 0, there exists K and
ζ > 0 such that for any k > K, the probability that Qk is in the
ε-neighborhood of r is greater than ζ.

Now, by the Lemma, for some player i and φ > 0, the instant
opportunity of player i is greater than φ given r and any z ∈ [y, y].
By continuity, this implies that for some ε > 0, the instant
opportunity of player i is greater than φ for any z ∈ [y, y] and
any vector of probabilities r′ in the ε-neighborhood of r.

Therefore, for some player i, time tK, and η > 0, the expected
(over all realizations of stochastic process Q) instant opportunity
of player i at any time tnκ+i > tK is greater than η.



Case 2: there is a zero probability that Q∞ assigns positive

likelihoods to two states ωa and ωb with X(ωa) 6= X(ωb).

Then, for every realization ω of the nature’s draw, with

probability 1, Q∞ will place likelihood 1 on the value of the

security being equal to X(ω), i.e., in the limit, the outside

observer’s belief about the value of the security converges to

its true value.

Suppose now that process yk does not converge in probability

to the true value of the security. That is, there exist state ω

and ε > 0 such that after state ω is drawn by nature, for any K,

there exists k > K such that Prob(|yk − X(ω)| > ε) > ε. This,

together with the fact that even for the uninformed outsider the

belief about the value of the security converges to the correct

one with probability 1, implies that for some player i and η > 0,

for any K, there exists time tnκ+i > tK at which the expected

instant opportunity of player i is greater than η.



Crucially, in both Case 1 and Case 2, there exist player i∗ and

value η∗ > 0 such that there is an infinite number of times tnκ+i∗

in which the expected instant opportunity of player i∗ is greater

than η∗. Fix i∗ and η∗.

Let Sk be the expected score of prediction yk (where the

expectation is over all draws of nature and moves by players).

The expected payoff to the player who moves in period tk (it is

always the same player) from the forecast revision made in that

period is βk(Sk − Sk−1).

The rest of the proof is split into two parts, depending on the

value of parameter β: β < 1 and β = 1.



Part “β = 1”

Take any player i. His expected payoff is equal to

∞∑
j=1

(Si+nj − Si+nj−1).

In equilibrium, the players’ expected payoffs exist and are finite,

so the infinite sum has to converge. Therefore, for any ε > 0,

there exists J such that ∀j > J, |
∑∞
j′=j(Si+nj′ − Si+nj′−1)| < ε.

But in both Case 1 and Case 2, that contradicts the assumption

that players are profit-maximizing after any history. To see that,

it is enough to consider player i∗ and some period tnj+i∗ such

that the expected instant opportunity of i∗ is greater than η∗ and

|
∑∞
j′=j(Si∗+nj′ − Si∗+nj′−1)| is less than η∗.



Part “β < 1”

Let Ψk = (Sk − Sk−1) + β(Sk+1 − Sk) + β2(Sk+2 − Sk+1) + . . . .

Then (i) Ψk ≥ 0 and (ii) Ψk ≥ the expected instant opportunity
of the player who makes the forecast at tk.

Consider now limK→∞
∑K
k=1 Ψk. This limit is infinite, because

each term Ψk is non-negative, and an infinite number of them
are greater than η∗. At the same time,

∑K
k=1 Ψk =

(S1 − S0) + β(S2 − S1) + β2(S3 − S2) · · ·
+

(S2 − S1) + β(S3 − S2) + β2(S4 − S3) · · ·
+

...
+

(SK − SK−1) + β(SK+1 − SK) + β2(SK+2 − SK+1) · · ·

=
∑∞
k=0 β

k(Sk+K − Sk) < 2M
1−β for some M.



Open Questions

• Within the current model

– For non-separable securities, under a generic prior, price

converges to a “common knowledge/belief” equilibrium of

Dutta-Morris and DeMarzo-Skiadas—but to which one?

• Beyond the current model

– Other dynamic microstructures (+1 in the paper . . . )

– Risk-averse traders (with different utility functions)

– Costly trading or information acquisition

– Dynamic uncertainty





Key idea of the proof

Consider a |Ω|-dimensional stochastic process Q tracking the

evolution of an outside observer’s beliefs about the probabilities

of the true state ω.

Q is a bounded martingale, and therefore converges to some

random variable Q∞.

If there is a positive chance that Q∞ does not place all weight

on the states with the correct value of the security, then by

separability, at least one trader has a non-vanishing arbitrage

opportunity in the limit — and thus in any sufficiently late period.

This, in turn, implies that this trader never actually takes

advantage of this opportunity, contradicting the assumption of

profit-maximizing behavior.


