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Motivation
Strategic sensors and CPS

Example #1: False data injection attacks

picture from Miao et al.
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Motivation
Example #2: Participatory sensing

• Indirect: Query users’ devices (e.g., Mobile Millennium)
• Direct: Ask them to report (e.g., Waze)
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Motivation
Example #2: Participatory sensing

What if I intentionally
under-estimate?
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Motivation
Sounds far-fetched?...
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Questions

• How to model such strategic scenarios?
• Do self interest/ strategic behavior impose fundamental

limits on the quality of estimation?
• Does the ‘degree’ of strategic intent matter?
• Implications for system design?...
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Cheap talk: a general framework for
strategic information transmission

Definition
A game in which (a) better informed sender(s) are/is
communicating with a receiver, who ultimately takes a decision
influencing all utilities

In example #2, e.g., :
• Better informed senders: Participants
• Receiver: Traffic estimation platform (e.g., Waze)
• Decision influencing utilities: Routing recommendations,

via traffic estimate.

10 / 37



These talks

• Lecture 1: review some classical Cheap Talk models and
results, mainly [Crawford & Sobel, Strategic Information
Transmission, Econometrica, ’82]

• Lecture 2 (in week 3): present new ones that are arguably
better suited for CPS-motivated problems
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CS ’82 Model

• Two agents, a sender S and receiver R with utilities
US(a, x) and UR(a, x), respectively.

• x ∈ X = [0,1] is the state of Nature, observed only by
sender S.

• Receiver R does not know x and only has a uniform prior
on X . He makes a decision a ∈ R.

• S can issue a message z, based on her observation of x to
(mis)inform R about its value.

• Note that utilities do not depend on z: cheap talk!
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CS ’82 Model

Central technical assumptions

• For i ∈ {S,R}, U i is smooth with

U i
11 < 0 and U i

12 > 0. (1)

• US(., x) and UR(., x) have a well-defined unique maximum
for all x ∈ X which we call aS(x) and aR(x) respectively.

• Because of (1), ai(.) is a smooth and increasing function of
x .

For example, when maximum is interior point,
0 = d

dx U i
1(ai (x), x) = U i

11(ai (x), x)︸ ︷︷ ︸
<0

d
dx ai (x) + U i

12(ai (x), x)︸ ︷︷ ︸
>0
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CS ’82 Model

Central technical assumptions
aS(x) 6= aR(x) for all x ∈ X (2)

or, equivalently (since X is compact)

∃ε > 0 such that |aS(x)− aR(x)| > ε for all x ∈ X .

Both assumptions together mean that S and R have “similar but
different” interests (both decisions increase with state but exact
values are always different).

Example
US(a, x) = −(a− (x + θ))2, US(a, x) = −(a− x)2 where θ (the
“type of S”) measures the degree of conflict.
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CS ’82 Model

Equilibrium
Let γS be a stochastic kernel (i.e., γS(.|x) is a probability
distribution on R for every x ∈ X ) and γR : R→ R be a map.

They form a (Bayesian Nash cheap talk) equilibrium if

1 γS(z|x) > 0 iff z ∈ argẑ max US(γR(ẑ), x)

2 γR(z) maximizes

∫ 1

0
UR(a, x)µ(x |z)dx

with respect to a, where µ(x |z) = γS(z|x)∫
γS(z|t)dt
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A zoo of possible equilibria

• Babbling: γS(.|x) does not depend on x , messages are
uninformative.

• Fully Revealing: γS(.|x) has all its mass at a single point
mx , with mx0 6= mx1 whenever x0 6= x1.

• Partially Revealing: When not empty, the set
{x |γS(z|x) > 0} is not a singleton but not full X either...

• “Simple": γS(.|x) is a simple map, maybe linear
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Main result
Theorem [C&S, ’82]
There exists N∗ such that for every 1 ≤ N ≤ N∗, there exists an
equilibrium involving N-bin quantization. More precisely,

• X is partitioned into N bins and message space is also X
• γS(.|x) is uniformly distributed over the bin to which x

belongs
• γR(z) maximizes receiver’s expected utility subject to x

belonging to same bin as z.

• Every equilibrium is ‘essentially’ equivalent to one such
equilibrium.

• “N? is a decreasing function of the degree of conflict
between S and R’s utilities.”

Fully revealing equilibria do not exist in this model!
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Some extensions
Multiple senders

Particular case

• Two senders, one receiver with quadratic utilities:

USi (a, x) = −(a− (x + θi))2,UR(a, x) = −(a− x)2

• X = [−M,M].

Theorem (Battaglini ’02)
A fully revealing equilibrium exists iff |θ2 − θ1| ≤ M.
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Some extensions
Multidimensional variables

Particular case

• X ⊂ R2

• UR(a, x) = −‖x − a‖2, US(a, x) = −‖x + θ − a‖2

Theorem (Battaglini ’02)
There exists a fully revealing equilibrium (with message space
X ) if θ1 and θ2 are not on the same ray from the origin.
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Our cheap talk model
1-sensor case

RS

x

✓

z
x̂(y, z)

y

Fig. 1. Communication structure between sender S and the side channel
with receiver R.

that herding between strategic senders (including malicious
ones) is indeed a virtue (for the receiver).

The rest of the paper is organized as follows. First, we
consider the single sender cheap talk game in Section II. In
Section III, we generalize the setup to multiple sender case.
We focus on the cheap talk game in which the senders are
herding in Section IV. Numerical results are presented in
Section V. Finally, we conclude the paper in Section VI.

A. Notation

Let R, N, and Z denote the sets of real, natural, and integer
numbers, respectively. We use the notation JNK = {n 2
N | n  N}. Furthermore, let Sn

+ and Sn
++ denote the set of

semi-positive definite and positive definite matrices in Rn⇥n.
For any A 2 Rn⇥n, we use the notation A � 0 and A > 0
to denote A 2 Sn

+ and A 2 Sn
++, respectively. For any

two random variables x and y, we use the notation Vxy =
E{xy>}. Finally, kxk2 denotes the 2-norm of vector x 2
Rn for any n 2 N. For any matrix A 2 Rn⇥n, A† is the
Moore–Penrose pseudoinverse of A.

II. SINGLE SENDER WITH SIDE INFORMATION

In this section, we use the communication structure that
is illustrated in Figure 1. The receiver (denoted by R in
Figure 1) wants to estimate a random variable x 2 Rnx

(throughout this paper, we use the notation x̂(·) to denote
this estimation as a function of the information available
to the receiver). The sender (denoted by S in Figure 1)
transmit a signal z 2 Rnz (that may or may not contain some
information about x). We assume that the sender has access
to a perfect measurement of x. In addition, to the message
initiated from the sender, the receiver also has access to a
side channel that provides the measurement y 2 Rny . The
timing of the game is as follows. First, the measurement y
is revealed. Then, the sender S announces z. Finally, the
receiver R uses an optimal estimator of the following from
to extract its estimate

x̂(y, z) 2 arg min
⇣2⌥

E{kx � ⇣(y, z)k2
2},

where ⌥ denotes the set of all Lebesgue-measurable func-
tions from Rny ⇥ Rnz to Rnz . The goal of the sender is to
minimize the following cost function

min
�2�

E{k(x + ✓) � x̂(y, �(x, y, ✓))k2
2}.

where ✓ 2 Rnx is the private information of the sender
(i.e., it is only available to the sender S). In this problem
formulation, � denotes the set of all Lebesgue-measurable
functions from Rnx ⇥Rny ⇥Rnx to Rnz . Throughout the rest

of this section, we assume that x, y, z are jointly distributed
Gaussian random variables with zero mean and co-variance
matrix

E

8
><
>:

2
4

x
✓
y

3
5
2
4

x
✓
y

3
5
>9>=
>;

=

2
4

Vxx Vx✓ Vxy

V✓x V✓✓ V✓y

Vyx Vy✓ Vyy

3
5 .

Now, we are ready to present the strategy of the sender and
the receiver at the equilibrium.

THEOREM 2.1: At equilibrium, the receiver follows

x̂(y, z) =
⇥

Vxy Vxz

⇤  Vyy Vyz

Vzy Vzz

��1 
y
z

�
,

and the sender employs a linear policy in which Vzx, Vz✓, Vzy

are determined by solving the optimization problem

min
Y 2R3nx⇥nz

trace
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where W and Q are defined in equation (1) on top of the
next page.

Proof: Following the results of optimal linear esti-
mation [5, p. 80], it is easy to see that the receiver’s best
response (upon employing a linear policy by the sender) is to
follow x̂(y, z) = E{x|y, z}. Therefore, we only need to show
that the sender’s best response is actually the one introduced
in the statement of the theorem. In this case, we can prove
the identity in (2). In the rest of the proof, without loss of
generality, we assume that Vzz � VzyV �1

yy Vyz = I , which
results in


Vyy Vyz

Vzy Vzz

��1

=


I �V �1

yy Vyz

0 I

�

⇥


V �1
yy 0
0 (Vzz � VzyV �1

yy Vyz)
�1

�

⇥


I 0
�VzyV �1

yy I

�

=


V �1

yy + V �1
yy VyzVzyV �1

yy �V �1
yy Vyz

�VzyV �1
yy I

�
.

By substituting this identity into (2), we can observe that

E{k(x + ✓) � x̂k2
2} = trace

�
� VxyV �1

yy VyzVzyV �1
yy Vyx

+ VxyV �1
yy VyzVzx + VxzVzyV �1

yy Vyx � VxzVzx

� V✓yV �1
yy VyzVzyV �1

yy Vyx + V✓yV �1
yy VyzVzx

+ V✓zVzyV �1
yy Vyx � V✓zVzx � VxyV �1

yy VyzVzyV �1
yy Vy✓

+ VxyV �1
yy VyzVz✓ + VxzVzyV �1

yy Vy✓ � VxzVz✓

�
+ c,

where
c =Vxx + Vx✓ + V✓x + V✓✓

� VxyV �1
yy Vyx � V✓yV �1

yy Vyx � VxyV �1
yy Vy✓,

is a constant term (i.e., it does not depend on the sender’s
strategy). Noting that dim(✓) = dim(x) and because of the

• Sender S has a private type θ, observes state of Nature x ,
and sends message z

• Receiver R observes z and side channel’s signal y and
computes x̂(.) = arg minφ(.) E‖x − φ(y , z)‖2

• Sender chooses z so that

E‖(x + θ)− x̂(y , z)‖2

is minimized, i.e., so that receiver is misled in thinking that x is
x + θ.
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Differences with CS

1 State of nature is assumed Gaussian with zero mean.
2 The private type θ of the sender(s) is a random variable in

our model.
3 We focus on Stackelberg equilibria rather than Nash

equilibria, i.e., the receiver commits to a strategy.
4 Other unusual notions of equilibria for the multi-sender and

multistep cases...
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Stackelberg equilibrium

Theorem
Assume x , y , z jointly Gaussian with zero mean, then

(i) There exists an equilibrium in which the sender’s strategy
is affine

z = aT x + bT θ + cT y + v , v ∼ N(0,V )

(ii) It is possible to rescale a,b, c so that v = 0 and Σzz = I but
we never simply get “flat-out lie" (i.e., z = x + θ)

(iii) There does not exist an equilibrium where sender’s
strategy is not affine.
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Proof
• Regardless of sender S’s strategy, receiver uses

x̂(.) = E(x |.)
• Assuming S uses an affine strategy, R’s best response is

usual LMSE. In this case, S’s strategy is such that

E‖(x + θ)− x̂LMSE (y , z)‖2

is minimized w.r.t. z
• This can be rewritten solely in terms of signals’ covariance

matrices and yields a QCQP of the form

min trace




Σxz
Σθz
Σyz




T

Q


Σ[ x

θ
y

][ x
θ
y

]





Σxz
Σθz
Σyz




s.t .




Σxz
Σθz
Σyz




T

R


Σ[ x

θ
y

][ x
θ
y

]





Σxz
Σθz
Σyz


 � I

with Q � 0.
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Proof – c’ed
• Under the additional constraint that

Σ x
θ
y
z

 x
θ
y
z

 � 0,

any solution to the QCQP can be realized with an affine
sender strategy.

• (iii) is proved using the maximal correlation measure
theorem...

When z is required to be a scalar message, a,b, c can be
computed more explicitly:

• Constraint in QCQP is tight
• Optimal vector of covariances is the eigenvector with

smallest eigenvalue of (R−
1
2 )T QR−

1
2 ...
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Multisensor case

R

S1

S2

...
SN

x

θ1

θ2

θN

x̂((yi )
N
i=1)

y1
y2

yn

State of Nature: x ∼ N (0,Σxx )
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Multisensor case

R

S1

S2

...
SN

x

θ1

θ2

θN

x̂((yi )
N
i=1)

y1
y2

yn

At the first step, N strategic sensors receive their information:
• Sensor Si ’s cost: E{‖(x + θi)− x̂‖2}
• Si has perfect measurements of x , θi , knows nothing about

others
• θ = (θi)

N
i=1 ∼ N (0,Σθθ)
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Multisensor case

R

S1

S2

...
SN

x

θ1

θ2

θN

x̂((yi )
N
i=1)

y1
y2

yn

At the second step, sensors transmit scalar signals:
• yi = γi(x , θi) ∈ R where γi(x , θi) = a>i x + b>i θi + vi

• vi ∼ N (0,Σvi vi )

• The set of such mappings is Γi (isomorph to
Rnx × Rnx × R≥0).
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Multisensor case

R

S1

S2

...
SN

x

θ1

θ2

θN

x̂((yi )
N
i=1)

y1
y2

yn

At the third step, the receiver announces its estimate

x̂∗ = arg minE{‖x − x̂(y1, . . . , yn)‖2}

over Ψ, the set of all Lebesgue-measurable functions from RN

to Rnx .
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Multisensor case

R

S1

S2

...
SN

x

θ1

θ2

θN

x̂((yi )
N
i=1)

y1
y2

yn

At the fourth step, the cost functions are realized:
• Receiver: E{‖x − x̂‖2};
• Sensor i : E{‖(x + θi)− x̂‖2}.
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Nash-Stackelberg Equilibrium

Definition
A tuple (x̂∗, (γ∗i )N

i=1) ∈ Ψ× Γ1 × · · · × ΓN constitutes a
(Nash-Stackelberg) equilibrium in affine strategies if

x̂∗(.) ∈ arg min
x̂(.)∈Ψ

E{‖x − x̂((γ∗j (x , θj))N
j=1)‖2},

γ∗i (.) ∈ arg min
γi (.)∈Γi

E{‖(x + θi)− x̂∗(γi(x , θi), (γ
∗
j (x , θj))j 6=i)‖2}, ∀i .
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Symmetric strategies

• In a large homogeneous sensor population (N >> 1, i.i.d.
types), we would expect all sensors to use the same
reporting strategy.

• In this case, receiver R’s best response is LMSE with
respect to y = y1+...+yN

N .

From this and previous results, can show
There exists a(n essentially) unique symmetric equilibrium in
affine strategies of the form

yi = aT x + bT θi + vi , vi ∼ N(0,V ).

It is explicitly computable when each yi is scalar.
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How good is the equilibrium?
Assume that Σxθ = 0, Σθiθj = δijΣθθ.
At equilibrium

Receiver’s error covariance matrix =: Σ̂ = Σxx −
1

α + βN
U,

where α, β ∈ R≥0 and U ∈ Rnx×nx with 0 < U ≤ (α + β)Σxx . In
particular,

lim
N→∞

Σ̂ = Σxx ,

i.e., receiver is essentially getting no useful information from the
senders, in aggregate.

“Too many (strategic) cooks spoil the broth”...
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Another class of equilibrium

Herding Equilibrium
A tuple (x̂∗, γ∗) ∈ Ψ× Γ constitutes a herding equilibrium in
affine strategies if

x̂∗ ∈ arg min
x̂∈Ψ

E{‖x − x̂((γ∗(x , θj))N
j=1)2},

γ∗ ∈ arg min
γ∈Γ

E{‖(x + θi)− x̂(γ(x , θi), (γ(x , θj))j 6=i)
2}, ∀i .

This captures some notion of bounded rationality:
“Each sender is strategic enough to think others are optimizers

too, but not refined/informed enough to guess what their actions
might be. Assumes everyone will act as and reason as self.”
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Herding equilibrium
Theorem
Under same assumptions. There exists a unique herding equilibrium
in affine strategies where the receiver follows

x̂∗(y) = E{x |(y1 + · · ·+ yN)/N}
and sender Si , 1 ≤ i ≤ N, employs a linear policy

γ∗(x , θi ) = a∗>x + b∗>θi

where (
b∗

a∗

)
=

( √
NΣ
−1/2
θθ 0

0 Σ
−1/2
xx

)
ζ,

and ζ is the unit-norm eigenvector corresponding to the smallest
eigenvalue of the matrix

(
0 − 1√

N
V−1/2
θθ Σ

−1/2
xx

− 1√
N

Σ
−1/2
xx V−1/2

θθ −Σxx

)
.
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When herding is a virtue

Assume that Σxθ = 0,
Σθiθj = δijVθθ, then

• at the herding
equilibrium,
limN→∞ Σ̂ = 0.

• The rate of
convergence is
faster than with
nonstrategic noisy
sensors.
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Extensions and Future Works

Main lesson

• Strategic sensing is a fact of CSPS life
• Results show the importance of degree of strategic intent

and can help design mitigation policies for sensing/crowd
sourcing in this context

Other current extensions

• Dynamic or repeated cheap talk game
• Arbitrary communication graphs
• A richer theory of Strategic Information Transmission using

IT tools...
• Applications to adversarial machine learning
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