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OUTLINE !

•  Networked (control) systems: 
Resilience, reliability & security 

•  Why a game-theoretic framework?  
•  An overview of GT: models, solution 

concepts, key results, algorithms  
•  Incentivizing agents toward 

efficiency 
•  Selected applications 
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Failure of Channels 
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Multiple Criteria / Games 
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Non-cooperating 
controllers (agents) /
multiple objectives / 
lack of trust

Multi-Agent Networked System with 
Multiple Objectives 
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Multiple agents 
distributed over 
a network 
interacting with 
limited 
information (on 
line and off line) 
under possibly 
conflicting 
objectives  

Multi-agent networked systems 
•  Multiple heterogeneous agents connected in various 

ways, distributed over a network (or interacting 
networks) and interacting with limited information 
(on line and off line) under possibly conflicting 
objectives 

July 21, 2015  IPAM Summer School

Multi-agent networked systems 
•  Multiple heterogeneous agents connected in various 

ways, distributed over a network (or interacting 
networks) and interacting with limited information 
(on line and off line) under possibly conflicting 
objectives 

•  Multiple (layered) networks 
–  Collaboration network 
–  Information network 
–  Physical communication network 
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Network is a 
connected graph 
 
Nodes are 
agents / dynamic 
systems /mobile 
 
Links are one of 
three types of 
connections 

 Multi-agent networked systems  
as graphs 
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Links are one of 
three types of 
connections:  
 
•  Communication 
•  Collaboration 
•  Physical 

! Layered 
            graphs 
 

 Multi-agent networked systems  
as graphs 
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Some nodes/agents could be 
adversarial (and even mobile):  
•  jamming  communication 
•  interrupting collaboration 
•  breaking physical links 

Leads to a game situation 
! Dynamic%zero;sum%%

%game%between%mulAple%
agents%as%teams%with%
directly%opposing%goals%
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Even friendly nodes/agents  
may have misaligned (but not  
directly opposing) goals due to: 
•  selfish interests 
•  localized information 

Leads again to a game  
situation  
! Dynamic nonzero-sum  
 (stochastic) game 
(with Nash equilibrium) 
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Even friendly nodes/agents  
may have misaligned (but not  
directly opposing) goals due to: 
•  selfish interests 
•  localized information 

Nash equilibrium is  
generally inefficient! 
! Relieving inefficiency 
through hierarchical DM: 
mechanism design & 
Stackelberg equilibrium 

July%21,%2015%%IPAM%Summer%School%

•  Social networks 
•  Optimal methods to limit the 

spread of misinformation 

•  Measures and 
countermeasures to limiting 
popularity of products, 
candidates, etc.  

Application  
Control of Information Spread 

•  Epidemics: prevent (or decelerate) the spread  
    of disease  
•  Interaction between an intelligent adversary  
   and a dynamical network 
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Application 
Global Spread from Local Interaction 

Ebola Spread in Africa, Oct 4-6 
(BBC) 

Global Spread of Ebola (BBC) 

•  Local interactions lead to fast spread of viruses 
•  Scale of spread requires finding efficient mitigation techniques 
•  Numbers of healthy/infected nodes and network topology vary with time 
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Application 
Evolution of Opinions 
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Opinion Dynamics

A particularly interesting topic: Opinion Dynamics

Understand how an individual’s opinion evolves over time
Develop models to capture the underlying process of opinion formation
(probabilistic or deterministic)

Most social interactions are a↵ected by individuals’ opinions, either
directly or indirectly. (Voting, Buying products, Evaluating policies...)

Figure: Network structure of political blogs prior to 2004 presidential elections.

Zhi Xu, Ji Liu, Tamer Başar (UIUC) ACC 2015 July 1, 2015 2 / 19

•  Understanding how an individual’s opinion evolves over time 
when s/he is in (partial) contact with others 

•  Developing models to capture the underlying process of 
opinion formation (probabilistic or deterministic) 

 
Most social interactions are affected by individuals’ opinions, 
either directly or indirectly (s.a. voting, buying products) 

Figure: Network structure of political blogs prior to 2004 
            presidential election 
 

Application 
Aerial Jamming Attack on the 
CommNet of a team of UAVs Problem Statement

Time Optimal Di�erential Game

The jammer wants to
maximize the time for which
communication can be
jammed.

The two UAVs want to
minimize the time for which
communication remains
jammed.

Bhattacharya NCESW’11 4 / 14
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Assessing Security and Resilience

" Systems operate in adversarial environments 
#  Adversaries seek to degrade system operation by 

affecting the confidentiality, integrity, and/or availability 
of the system information and services, or disrupting 
communication. 

#  “Resilient” systems aim to meet their ongoing operational 
objectives despite attack attempts made by adversaries 
(or failures due to environmental changes), take pre-
cautionary measures (security), and restore normal 
operating conditions with minimum disruption. 

 
#  Reliability (trust) is an integral element of successful 

operation of a multi-agent network, which endows agents 
with confidence on the outcome of their strategic 
decisions and actions. 
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Games / Game Theory 

   Quantification of strategic 
interactions between entities/players 
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Games / Game Theory 

   Quantification of strategic 
interactions between entities/players 

•  70+ years of scientific development 
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Games / Game Theory 

   Quantification of strategic interactions 
between entities/players 

•  70+ years of scientific development 
•  10 Nobel Prizes (1994 / 2005 / 2007 / 2012) 

–  1994: John Harsanyi, John Nash, Reinhard Selten 
    �for their pioneering analysis of equilibria in the 

theory of non-cooperative games�  
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Games / Game Theory 

   Quantification of strategic interactions 
between entities/players 

•  70+ years of scientific development 
•  10 Nobel Prizes (1994 / 2005 / 2007 / 2012) 

–  2005: Robert Aumann, Thomas Schelling 
    �for having enhanced our understanding of 

conflict and cooperation through game-theory 
analysis�  
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Games / Game Theory 

   Quantification of strategic interactions 
between entities/players 

•  70+ years of scientific development 
•  10 Nobel Prizes (1994 / 2005 / 2007 / 2012) 

–  2007: Leonid Hurwicz, Eric Maskin, Roger Myerson 
    �for having laid the foundations of mechanism 

design theory�  
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Games / Game Theory 

   Quantification of strategic interactions 
between entities/players 

•  70+ years of scientific development 
•  10 Nobel Prizes (1994 / 2005 / 2007 / 2012) 

–  2012: Alvin Roth, Lloyd Shapley 
    �for the theory of stable allocations and the 

practice of market design�� 
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Games / Game Theory 

   Quantification of strategic interactions 
between entities/players 

•  70+ years of scientific development 
•  10 Nobel Prizes (1994 / 2005 / 2007 / 2012) 
•  Crafoord Prize (1999) 

–   John Maynard Smith (with Ernst Mayr, G. Williams) 
  � for developing the concept of evolutionary 

biology� 
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Robustness 
•    Economists have also been interested in 

“robustness” 
In the preface of their 2008 PUP book Robustness, 

Lars Hansen & Thomas Sargent (2013 & 2011 NLs) 
say 
“When we became aware of Whittle’s 1990 book, Risk Sensitive 

Control, and later his 1996 book, Optimal Control: Basics and 
Beyond, we eagerly worked through them. These and other books 
on robust control theory, such as Başar and Bernhard’s 1995 H∞-
Optimal Control and Related Minimax Design Problems: A Dynamic 
Game Approach, provide tools for approaching the `soft’ but 
important question of how to make decisions when you don’t fully 
trust your model.” 
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Games / Game Theory 

         Rich in models and concepts 
•  Zero-sum vs Nonzero-sum games 
•  Non-cooperative vs Cooperative games 
•  Complete vs Incomplete information 
•  Deterministic vs Stochastic games 
•  Static vs Dynamic/Differential games 
•  Bargaining, bidding, auctions, …. 
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Game Theory: the beginning 
•  John von Neumann (1903-57) and  
               Oskar Morgenstern (1902-76) 

   Theory of Games and Economic Behavior (1944/7) 
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Game Theory: the beginning 
•  Von Neumann (1903-57) and Morgenstern (1902-76) 
   Theory of Games and Economic Behavior (1944/7) 

•  John von Neumann   (minimax theorem) 
    �Zur theorie der Gesellschaftspiele�  (1928) 
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Game Theory: the beginning 
•  Von Neumann (1903-57) and Morgenstern (1902-76) 
   Theory of Games and Economic Behavior (1944/7) 
•  John von Neumann   (minimax theorem) 
    �Zur theorie der Gesellschaftspiele�  (1928) 

•  E. Borel (~1920) -- �minimax theorem is false� 
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Elements of Games 

•  Players:  1, 2, . . , M 
•  Decision variables: u1, . . , uM

  ; ui ∈ Ui 

•  Cost functions Vi(ui, u-i), i=1, . . , M 
•  Nash equilibrium u*: 
      min {Vi(ui, u*

-i): ui ∈ Ui} = Vi(u*
i, u*

-i) 
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Elements of Games 

•  Players:  1, 2, . . , M 
•  Decision variables: u1, . . , uM

  ; ui ∈ Ui 

•  Cost functions Vi(ui, u-i), i=1, . . , M 
•  Nash equilibrium u*: 
      min {Vi(ui, u*

-i): ui ∈ Ui} = Vi(u*
i, u*

-i) 
Coupled constraints also possible: u ∈ U 
min {Vi(ui, u*

-i): (ui, u*
-i) ∈ U} = Vi(u*

i, u*
-i) 
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Elements of Games 

Coupled constraints also possible: u ∈ U 
min {Vi(ui, u*

-i): (ui, u*
-i) ∈ U} = Vi(u*

i, u*
-i) 

E.g. 
•  ui ∈ R+  U = { u : Σi ui ≤ C} (capacity constraint) 
•  Cost fns Vi(ui, u-i) = Vi(ui), i=1, . . , M 
•  Multiple Nash equilibria :  
             (ui

* = C, u-i
* = 0),   i=1, . . , M 
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Elements of Games 

•  Players:  1, 2, . . , M 
•  Decision variables: u1, . . , uM

  ; ui ∈ Ui 

•  Cost functions Vi(ui, u-i), i=1, . . , M 
•  Nash equilibrium u*: 
      min {Vi(ui, u*

-i): ui ∈ Ui} = Vi(u*
i, u*

-i) 
•  Saddle-point eqm (M=2, -V2=V1 =:V) 
    V(u*

1, u2) ≤ V(u*
1, u*

2) ≤  V(u1, u*
2) 
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Strategically Equivalent Games 
(no coupling constraints) 

•  SE transformation on Vi’s based on 
positive scaling and self-action 
independent translation: for ai > 0, bi �i, 

  Vi(ui, u-i) $ aiVi(ui, u-i) + bi(u-i) =: Wi(ui, u-i) 
!   Strategically equivalent games (even 
though agents/players incur different 
costs under each game) 
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Strategically Equivalent Games 
•  SE transformation on Vi’s based on 

positive scaling and self-action 
independent translation: for ai > 0, bi �i, 

  Vi(ui, u-i) $ aiVi(ui, u-i) + bi(u-i) =: Wi(ui, u-i) 
•  NE of {Wi} do not depend on {ai}, {bi} 
      min {Wi(ui, u*

-i): ui ∈ Ui} = Wi(u*
i, u*

-i) 
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Strategically Equivalent Games 
•  SE transformation on Vi’s based on 

positive scaling and self-action 
independent translation: for ai > 0, bi �i, 

  Vi(ui, u-i) $ aiVi(ui, u-i) + bi(u-i) =: Wi(ui, u-i) 
•  NE of {Wi} do not depend on {ai}, {bi} 
      min {Wi(ui, u*

-i): ui ∈ Ui} = Wi(u*
i, u*

-i) 
•  For  {V1, V2} either W1�W2, or W1�-W2 
      OR neither (genuine game) 
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Strategically Equivalent Games 
•  A 2-player game could be team-equivalent 

(potential game), or 0-sum equivalent, or a 
genuine NZS game 

•  M-player game could be team-equivalent, or 
team vs team 0-sum, or genuine NZS 

•  Concept applies to games with stochastic 
parameters and stochastic information 
patterns, and dynamic games as well  

•  Congestion games, oligopoly games are team-
equivalent              (First introduced in: TB-Ho, JET’74) 
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Example: Stochastic Duopoly Game 
•  2 firms with production levels of q and r 
•  Linear demand curve: p = a – b(q+r), where p is 

price, b>0 known to both firms, a ~ N(a,ξ) 
•  Firms have access to a through noisy channels: 

zi = a + wi,  wi ~ N(0, si),  i = 1, 2 
                                                           
 
 

             (TB-Ho, JET’74) 
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Example: Stochastic Duopoly Game 
•  2 firms with production levels of q and r 
•  Linear demand curve: p = a – b(q+r), where p is 

price, b>0 known to both firms, a ~ N(a,ξ) 
•  Firms have access to a through noisy channels: 

zi = a + wi,  wi ~ N(0, si),  i = 1, 2 
•  Profit functions: P1 = qp – k1q2 ; P2 = rp – k2r2  
•  SE team utility: W = P1 + ra –(b+k2)r2 
 
                                                          (TB-Ho, JET’74) 
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Example: Stochastic Duopoly Game 
•  2 firms with production levels of q and r 
•  Linear demand curve: p = a – b(q+r), where p is 

price, b>0 known to both firms, a ~ N(a,ξ) 
•  Firms have access to a through noisy channels: 

zi = a + wi,  wi ~ N(0, si),  i = 1, 2 
•  Profit functions: P1 = qp – k1q2 ; P2 = rp – k2r2  
•  SE team utility: W = P1 + ra –(b+k2)r2 
•  By Radner’62, stochastic team E[W] admits a 

unique team-optimal solution--also unique NE 
                                                          (TB-Ho, JET’74) July%21,%2015%%IPAM%Summer%School%

Example: Stochastic Duopoly Game 
•  2 firms with production levels of q and r 
•  Linear demand curve: p = a – b(q+r), where p is 

price, b>0 known to both firms, a ~ N(a,ξ) 
•  Firms have access to a through noisy channels: 

zi = a + wi,  wi ~ N(0, si),  i = 1, 2 
•  Profit functions: P1 = qp – k1q2 ; P2 = rp – k2r2  
•  SE team utility: W = P1 + ra –(b+k2)r2 
•  By Radner’62, stochastic team E[W] admits a 

unique team-optimal solution--also unique NE 
                                                          (TB-Ho, JET’74) 

Better information for one player (si lower)  
improves the average net profit E[Pi] of that player  
while decreasing the net profit of the other. 
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Example: Stochastic Duopoly Game 
•  2 firms with production levels of q and r 
•  Linear demand curve: p = a – b(q+r), where p is 

price, b>0 known to both firms, a ~ N(a,ξ) 
•  Firms have access to a through noisy channels: 

zi = a + wi,  wi ~ N(0, si),  i = 1, 2 
•  Profit functions: P1 = qp – k1q2 ; P2 = rp – k2r2  
•  SE team utility: W = P1 + ra –(b+k2)r2 
•  By Radner’62, stochastic team E[W] admits a 

unique team-optimal solution--also unique NE 
                                                          (TB-Ho, JET’74) 

Better information for one player (si lower)  
improves the average net profit E[Pi] of that player  
while decreasing the net profit of the other. 

There’re other examples showing better information  
for one player benefits both, with the benefit to the  
recipient being less than that to the other player. 

             TB Allerton’72 

General Results 
Von Neumann (1928) 

•  Every finite zero-sum matrix game has a 
SPE in mixed strategies – minimax theorem 
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Von Neumann (1928) 

•  Every finite zero-sum matrix game has a 
SPE in mixed strategies – minimax theorem 

•  P1, minimizer, has m possible actions:   x1, …, xm 
•  P2, maximizer, has n possible actions: y1, …, yn 

•  Prob vector p = (p1,…,pm)  – mixed strategy for P1 
•  Prob vector qT = (q1,…,qn)  – mixed strategy for P2 
•  m x n cost/utility matrix A 
•  There exist (p*, q*) such that p*Aq ≤ p*Aq* ≤ pAq* 

                         July 21, 2015  IPAM Summer School
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Solving for MSSPE is equivalent to solving an LP  
July 21, 2015  IPAM Summer School

John Nash (1950/1951) 
                      

•  Players:  1, 2, …, M 
–  Decision/action for Player i: ui ε Ui – finite set 
–  Net cost function for each player: Vi(ui, u-i) 
–  µi  : probability vector on Ui 
–  Ji(µi, µ-i) : Expected value of  Vi(ui, u-i) 

•  There exists a NE in mixed strategies, µ*: 
      Ji(µ*

i, µ*
-i)  ≤ Ji(µi, µ*

-i)  for all µi ε P(Ui ), all i 
        [Uses Kakutani Fixed-Point Theorem] 
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Extension to Infinite 
(Continuous-Kernel) Games 

 
                     
•  Infinite Games; compact action spaces; continuity 

–  There exists a NE in mixed strategies; pms on Ui   
–   If further Vi is convex in ui, NE in pure strategies 
      Vi(u*

i, u*
-i)  ≤ Vi(ui, u*

-i)  for all  ui ε Ui  
If Vi�s are further differentiable, and Ui ‘s are open, 
          Di Vi(u*

i, u*
-i)  = 0,   for all i 

•  Multiple NE are not necessarily interchangeable 
          but multiple SPE are 
•  Refinements to remove non-uniqueness (a bit later) 
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Recursive Computation 
 

                     
•  ui

(n+1) = arg minξ Vi (ξ, u-i
(n)), n=0, 1,…; for all i 

–  The above is parallel update based on best 
response  

–  If argmin is unique and the sequence converges, 
then there is a unique NE 

–  In the update on the RHS, u-i
(n) can be replaced 

with delayed versions   
•  The iterate is: ui

(n+1) = νi(u-i
(n)), n = 0, 1,… 

     %! u(n+1) = ν(u(n)), n =  0, 1,… NE is FP of ν           
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Recursive Computation 
 

                     
•  ui

(n+1) = arg minξ Vi (ξ, u-i
(n)), n=0, 1,…; for all i 

–  The above is parallel update based on best 
response  

–  If argmin is unique and the sequence converges, 
then there is a unique NE 

–  In the update on the RHS, u-i
(n) can be replaced 

with delayed versions, respecting also network 
imposed restrictions   

•  The iterate is: ui
(n+1) = νi(u-i

(n)), n = 0, 1,… 
     %! u(n+1) = ν(u(n)), n =  0, 1,… NE is FP of ν           

Also continuous-time gradient based algorithms: 
  d ui(t) / dt  = - DiVi(ui,u-i),   i = 1,…,M 
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Recursive Computation 
Four Specific Types of Update Mechanisms 

 
   All four are of the form                     
   ui

(n+1) = νi(u-i
(n))  if  i ε Kn   (subset of players who update at n) 

                =   ui
(n)          else             

1.  Parallel update : Kn = {1, …, M} =: N        
2. Round robin : Kn = {(n+k)mod M + 1}, k arbitrary  
3. Random polling : Kn  independent process on N    
4. Stochastic asynchronous : Kn    independent set-

valued process on all subsets of N   
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Recursive Computation  
Four Specific Types of Update Mechanisms 

 
   All four are of the form                     
   ui

(n+1) = νi(u-i
(n))  if  i ε Kn   (subset of players who update at n) 

                =   ui
(n)          else             

1.  Parallel update : Kn = {1, …, M} =: N        
2. Round robin : Kn = {(n+k)mod M + 1}, k arbitrary  
3. Random polling : Kn  independent process on N    
4. Stochastic asynchronous : Kn    independent set-

valued process on all subsets of N   
These all will have to respect the “exchange” 
restrictions due to network graph structure  
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Recursive Computation 
Update Mechanism with Memory 

 
   It is possible also to introduce memory to tame convergence                     
   ui

(n+1) = νi(y-i
(n))  if  i ε Kn   (subset of players who update at n) 

                =   ui
(n)          else 

 
      yj

(n)  = αi uj
(n) + (1-αi) Average (uj

(n-m)), m=1, …, Li) 
          j= 1, …, i-1, i+1, …, M  
          0 < αi < 1 
      Appropriate selection of αi  and  Li improves  
      convergence 
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Recursive Computation 
Update Mechanisms 

 
                     
•  ui

(n+1) = arg minξ Vi (ξ, u-i
(n)), n=0, 1,…; for all i 

–  The above is parallel update based on best 
response  

–  If argmin is unique and the sequence converges, 
then there is a unique NE 

–  In the update on the RHS, u-i
(n) can be replaced 

with delayed versions   
•  The iterate is: ui

(n+1) = νi(u-i
(n)), n = 0, 1,… 

     %! u(n+1) = ν(u(n)), n =  0, 1,… NE is FP of ν           

Contraction mapping ν on a complete space 
guarantees convergence to a unique NE 



Dynamic Games: Discrete time 

•  State equation:   xk+1 = fk(xk, uk), x1 given
•  u :=(u1, …, uM),   ui

k =  γi
k(ηi

k),   ui
k �Ui

k

•  Cost functions:  Li(ui, u-i) = Σk=1
K gi

k(xk+1, ui
k, u-i

k)
•  Normal form:  Ji(γi, γ-i) ! NE (dependent on IS)
•  Selected information structures {ηk}:
          open-loop :  x1

                closed-loop with memory: xk, …, x1 =: x[1,k]

                 closed-loop no-memory:   xk, x1      
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Network structure: subsystems connected through  
physical links, players connected also through  
communication and collaboration links 
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Network structure: subsystems connected through  
physical links, players connected also through  
communication and collaboration links 

Information for each player could be “localized”,  
becoming “less precise” on subsystems at multiple hops  
away—imperfect, noisy measurements 
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Network structure: subsystems connected through  
physical links, players connected also through  
communication and collaboration links 

Information for each player could be “localized”,  
becoming “less precise” on subsystems at multiple hops  
away—imperfect, noisy measurements 

Stochastic uncertainty can be introduced into both 
state dynamics and measurement equations (IS) 

Dynamic Games: Continuous time 
Differential Games 

•  State equation:   dx = f(x, u, t) dt, x0 given, t ≥ 0
•  u :=(u1, …, uM),   ui

t =  γi
t(ηi

t),   ui
t �Ui

t

•  Cost functions:  Li(ui, u-i) = int[0, T]  gi(x, ui, u-i, t)
•  Normal form:  Ji(γi, γ-i) ! NE (dependent on IS)
•  Selected information structures {ηt}:
          open-loop :  x0

                closed-loop with memory: {xs , s ≤ t} =: x[0,t]

                 closed-loop no-memory:   xt, x0      
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Dynamic Games: Continuous time 
Differential Games 

•  State equation:   dx = f(x, u, t), x0 given, t ≥ 0
•  u :=(u1, …, uM),   ui

t =  γi
t(ηi

t),   ui
t �Ui

t

•  Cost functions:  Li(ui, u-i) = int[0, T]  gi(x, ui, u-i, t)
•  Normal form:  Ji(γi, γ-i) ! NE (dependent on IS)
•  Selected information structures {ηt}:
          open-loop :  x0

                closed-loop with memory: {xs , s ≤ t} =: x[0,t]

                 closed-loop no-memory:   xk, x0      
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The beginning: Rufus Isaacs (early 1950’s) 
within the zero-sum game framework  
(pursuit evasion games) 

Equilibrium Concept for Both Types

•  Normal form:  Ji(γi, γ-i) ! NE (dependent on IS) 
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Nash Equilibrium (in PS):   γ := (γi, γ-i) 
         Ji(γi, γ-i) ≤ Ji(γi, γ-i)       for all  γi� Γi 
    and all i = 1, …, M     

Solution approach: If compatible with the IS,  
temporal decomposition into single stage or 
otherwise static games, and iteration in the  
spirit of dynamic programming 

Equilibrium Concept for Both Types

•  Normal form:  Ji(γi, γ-i) ! NE (dependent on IS) 
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Nash Equilibrium (in PS):   γ := (γi, γ-i) 
         Ji(γi, γ-i) ≤ Ji(γi, γ-i)       for all  γi� Γi 
    and all i = 1, …, M     
BUT, formidable difficulties if the game is one 
with asymmetric information; NE can be obtained  
in only some special formulations, and with a  
restricted equilibrium concept, such as MPE of a 
lifted common information game 
                                  Gupta-Nayyar-Langbort-TB SICON’14 

Strategic Equivalence 
•  Strategic equivalence of different games 

(particularly equivalence to dynamic teams 
and ZSDGs) holds as before, but now one 
has to be careful with the dynamic nature 
of the information while scaling and 
translating cost functions 

•  Even the �same game� with OL and CL 
information (considered as two separate 
games) will not be strategically equivalent 
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Weak vs Strong Time Consistency 

•  All PSNE for a dynamic game are weakly time 
consistent (WTC), that is if the game is truncated 
at any time, say k, assuming that NE is respected 
until then (that is no deviation), then part of the 
original NE restricted to [k, K] is still a PSNE for 
the game on [k, K], with initial state x*

k. 
•  A PSNE is strongly time consistent (STC), if it is 

WTC, and further the condition holds for all 
executions of past policies (particularly for all xk). 
CL FB NE is STC.  
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Large Number of Players 
(a certain interaction network $ MFGs) 

                     
TGEB’44, pp. 13-14: 

–  “When the number of participants becomes really great, some 
hope emerges that the influence of every particular 
participant will become negligible and that the above 
difficulties may recede and a more conventional theory 
becomes possible.” 

–   “It is well known phenomenon in many branches of the exact 
and physical sciences that very great numbers are often 
easier to handle than those of medium size. This is of course 
due to the excellent possibility of applying the laws of 
statistics and probabilities in the first case.” 

Mean Field Games 
•  A large number of players/agents, coupled (through 

dynamics or cost functions) through aggregate 
quantities, such as average of states of all (other) 
agents or fused information received from other 
agents. 

•  Each agent interacts not with an identifiable agent, 
but with a population of agents, and responds to the 
population. 

•  Aggregate of responses of all agents has to be 
consistent with the population behavior ! requires 
existence of a fixed point (FPK equation) 

•  Makes a large class of stochastic dynamic games 
tractable, which otherwise would be impossible to 
solve 
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Refinements of NE 
•  Coalition proof given fixed coalition sizes 
•  Resilient NE (remains NE under any coalition) 
•  Trembling hand NE (remains NE under 

infinitesimal perturbations in the parameters 
of the game)—proper, perfect, etc.   

•  Strongly time consistent (SGP) NE (NE from 
any time point & state forward) 

•  Efficiency: NE u* is also Pareto optimal, 
minimizing a convex combination of Vi’s 
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Price of Anarchy 

•  Price of Anarchy (PoA): 
    Sum of costs under NE / min sum 
       Σi Vi(u*

i, u*
-i)  / minuεU  Σi Vi(ui, u-i) 
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Price of Anarchy 

•  Price of Anarchy (PoA): 
    Sum of costs under NE / min sum 
       Σi Vi(u*

i, u*
-i)  / minuεU  Σi Vi(ui, u-i) 

•  Different games in the same 
equivalence class (SE games) could have 
different PoA’s 

•  But clearly |PoA| ≥ 1 (and generally > 1) 
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Incentivizing/Coordination 

•  Price of Anarchy (PoA): 
    Sum of costs under NE / min sum 
       Σi Vi(u*

i, u*
-i)  / minuεU  Σi Vi(ui, u-i) 

  
•  How to get |PoA| closer to 1 ? 
•  Introduce a decision variable into 

utility functions – pricing variable 
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Leader-Followers Game 
Leader�s cost function:  V0(r; u, w) 
Followers��cost functions: 
              Vi (ui; u-i,  r, w) ,    i = 1, .. , M 
 r is the instrument variable of L, 
entering Vi through its different 
components --- pricing/coordination 
 w is a vector, with subcomponents 
private information to individual 
players 
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Leader-Followers Game
Leader�s cost function:  V0(r; u, w) 
Followers’ cost functions: 
        Vi (ui; u-i,  r, w) ,    i = 1, . . , M 
Information available to L:   
          yL = ηL(u, w)  !    r = γ0(yL)  
Information available to Fi: yi = ηi(w) 
   !      ui = γi(yi) ,    i = 1, . . , M 
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Leader-Followers Game
Leader�s cost function:  V0(r; u, w) 
Followers��cost functions: 
        Vi (ui; u-i,  r, w) ,    i = 1, . . , M 
Information available to L:   
          yL = ηL(u, w)  !    r = γ0(yL)  
Information available to Fi: yi = ηi(w) 
   !      ui = γi(yi) ,    i = 1, . . , M Does there exist γ0 such that NE of 
{Vi(ui,u-i, γ0(yL), w)} is (nearly-)efficient 
while also optimizing V0? July 21, 2015  IPAM Summer School

Leader-Followers Game
Leader�s cost function:  V0(r; u, w) 
Followers��cost functions: 
        Vi (ui; u-i,  r, w) ,    i = 1, . . , M 
Information available to L:   
          yL = ηL(u, w)  !    r = γ0(yL)  
Information available to Fi: yi = ηi(w) 
   !      ui = γi(yi) ,    i = 1, . . , M Does there exist γ0 such that NE of 
{Vi(ui,u-i, γ0(yL), w)} is (nearly-)efficient 
while also optimizing V0? 

Yes, depending on ηL, but in general case 
PoA (loss in efficiency) can be computed 
and corresponding γL be determined. 
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Leader-Followers Game 
Leader�s cost function:  V0(r; u, w) 
Followers��cost functions: 
              Vi (ui; u-i,  r, w) ,    i = 1, .. , M 
 r is the instrument variable of L, 
entering Vi through its different 
components --- pricing/coordination 
 w is a vector, with subcomponents 
private information to individual 
players 

Through an appropriate mechanism design 
PoA can be driven closer to 1, AND 
solution could be made least sensitive to 
deviations from nominal cost functions. 
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Leader-Followers Game 
(an example) 

Ui: utility for resource & disutility for excess 

& cost to Fi of using a certain amount 
    of the resource 

 Ui = -Vi = wi log(1+ui) - 1/(C-utotal) - ri 
         wi: Fi-specific parameter (random) 
                ri = γ0i(wi,ui),   U0 = -V0(r) =  r = Σi ri 
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Leader-Followers Game 
(an example)—cont. 

Complete information : L and Fs know precisely  
different F types, and this value of w 

Incomplete information : L does not have 
access to F type information; Fs may or 
may not 
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Issues/Questions 

•  What is the best L can do? 
•  How can different pricing policies  
   control the user population 
•  Asymptotics as M becomes large 
•  Impact of incompleteness of information 
   on performance, and fair and efficient  
   allocation of resources  
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General Mathematical Questions 

•  Structure of the stochastic Nash game  
   at the lower level for different γ0 ? 
•  What if NE does not exist or is not 
   unique for some γ0 ? 
•  Functional optimization by L on  
      NE reaction set ? 
•  Tradeoff between complexity and  
       optimality 
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One Approach 
parameterize L�s policy 

 e.g. pick 
    γ0i(ui) = pi ui  (pi : unit price charged to Fi) 
==> 
•  Nash game does not depend structurally on γ0 
•  Functional optimization on the NE reaction set 
is now a finite-dimensional optimization problem 

But how much degradation in optimality? 
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Pricing and Admission !

SP 

U1 U2 U3 UN 

p 

u1 (p)     u2 (p)     u3 (p)             uN (p) 

 NE dictates whether a Follower will be admitted or 
not (zero resource allocation) 

max  revenue(p) 
u1(p*) = 0   

not admitted 
==> p* 
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Nonlinear Pricing? 
General policies for L 

–  Incentive strategies / incentive design 
– Mechanism design 

July 21, 2015  IPAM Summer School

Nonlinear Pricing? 
General policies for L 

–  Incentive strategies / incentive design 
– Mechanism design 
–  Find (indirectly) the best L can do, and 

design a mechanism (policy) that 
achieves this in the face of uncertainty 
and rational responses of Fs 
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Nonlinear Pricing? 
General policies for L 

–  Incentive strategies / incentive design 
– Mechanism design 
–  Find (indirectly) the best L can do, and 

design a mechanism (policy) that 
achieves this in the face of uncertainty 
and rational responses of Fs 

 
    ==> Reverse engineering  
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With Complete Information 

Best possible outcome for L  
(realistic team solution): 
{(ui

t, ri
t)} =  arg max (u, r)≥0,  u(total) < c  rtotal 

s.t.   Ui(ui; u-i,  ri , wi) ≥ Ui(0; u-i,  0 , wi) ∀i 
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With Complete Information 
(cont.) 

Realistic team solution: 
{(ui

t, ri
t)} =  arg max (u, r)≥0,  u(total) < c  rtotal 

s.t.   Ui(ui; u-i,  ri , wi) ≥ Ui(0; u-i,  0 , wi) ∀i 
Incentive design problem: Find   {γ0i} s.t.  
arg max 0 ≤ z≤ c - other opt flows Ui(z; ut

-i,  γ0i(z) , wi)                                                                   
                                     = ui

t (w) 
γ0i(ui

t(w)) = ri
t (w)   and γ0i(0) = 0 
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Solution: single follower 
  ut(w) = [ 1 + 2w - √(1+8w) ] / 2w 
  rt(w) = w log (1+ ut(w) ) + 1 - [1 / (1- ut(w))] 
There exists an   ε-optimal incentive policy 
   --- almost quadratic 
 
Comparing with best linear policy: 
us(w) =   1 - 2 / (1+  3√w )  <  ut(w)  
rs(w) =   (1/4) (23√w-1)2 (1+  23√w )  <  rt(w)  
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Solution: large population 
•  Admittance:  wi >  wav / 2 
•  Team-optimal flows: ui

t(w) ~ (2wi/wav) -1 
•  Team-opt charges: 
                     ri

t(w) ~ wi log(2wi/wav) 
•  Team-opt revenue:  
             rt(w)(n) ~ Σi wi log(2wi/wav)  
            higher than under linear pricing 
•  Fi�s flow higher if  wi > (wav / Σj (√wj )/n) 
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What does this lead to? 
With non-linear pricing / complete information 
 

–  L achieves almost maximum revenue as though all 
Fs that pass an admission threshold are fully 
cooperating (ε-incentive controllable) 

–  Increase in revenue (compared with linear pricing) 
could be as high as 38 % even with uniform types 
of Fs in high population regime. With diverse F 
types, it could be higher than 50% 

–  Fs willing to pay more benefit from nonlinear 
pricing, while �poor��Fs suffer. 

–  Details in Shen-TB (CDC’06, JSAC’07, TelecomSyst’11) 

Revisit of UAV application: 
Adversarial jamming with mobiity 

    
Communication jamming in teams vs    
teams, with application in formation of 
UAVs or AGVs 
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Aerial Jamming Attack on the 
CommNet of a team of UAVs Problem Statement

Time Optimal Di�erential Game

The jammer wants to
maximize the time for which
communication can be
jammed.

The two UAVs want to
minimize the time for which
communication remains
jammed.

Bhattacharya NCESW’11 4 / 14
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Adversarial action: jamming 
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•  Mobility (as a means for increasing the  
       resilience in autonomous vehicular networks) 
•  Disruption of communication by  
    adversary (team of adversaries) 
•  Dynamic/Differential game theory as an 
    underlying framework for designing secure systems. 
•  Termination: Graph being disconnected, Fiedler  
     value of its Laplacian to become zero. 
   (Bhattacharya & TB JAR‘11, Annals of ISDG’12, CDC’12) 

Connectivity Maintenance 

" Formation Control 

" Mobile Sensor Networks 

" Rendezvous 

" Flocking 

Many cooperative control 
tasks require connectivity 
of the underlying network. 
Challenge is that each agent  
has a limited communication 
range. 

Problem Scenario 

( )JiJ
i

J
i

J
i f u,xx =!

( )ViV
i

V
i

V
i f u,xx =!

"  The%network%is%modeled%as%a%graph%G=(V,E)%

%

 
 
"  An%edge%exists%between%verAces%i%and%j%%%%%%%%%Vehicle%i%and%vehicle%j%can%

communicate%with%each%other%

E(t))% DYNAMIC(GRAPH(
 
" The%jammers%try%to%disconnect%the%underlying%communicaAon%network,%
and%the%vehicles%try%to%retain%the%connecAvity.%

Problem Scenario%Game Formulation 

%
" The%vehicles%try%to%maximize%the%Ame%for%which%the%network%remains%
connected.%

" The%jammers%try%to%minimize%the%Ame%for%which%the%network%remains%
connected.%

Problem(Formula6on(
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Jamming Model 
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Laplacian of a Graph G 

•  L(G) is an nxn matrix with 
–  ij’th entry -1 if i and j are connected; 

otherwise 0 
–  aii = minus sum of all aik’s (except k=i) 

•  Second smallest eigenvalue of L(G) is 
the Fiedler value – λ2(L(G)) 

•  G is connected iff λ2(L(G)) > 0 
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Solution Process 

•  Framework of differential (P-E) game theory, with 
termination defined as loss of connectivity —
Laplacian L(G) having Fiedler value zero 

•  Express λ2(L(G)) = 0 condition in terms of state 
variables, for the jamming model adopted ! 
terminal manifold for the Isaacs conditions 

•  Details in  

  S. Bhattacharya & TB, “Differential Game-
Theoretic Approach to a Spatial Jamming Problem,” 
in Annals of DGs, December 2012  
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Heterogeneous Networks 
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Double Sided Jamming 
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Closure: General Thoughts  
•  How to design agent interactions so that 

complex networks have predictable 
behavior, when 
–  there is environmental uncertainty 
–  there is adversarial action 
–  there is mobility 
–  there is mis-alignment of interests 
–  there is a large population of agents 

•  REVERSE ENGINEERING network 
architectures as in mechanism design 

Selected References on Game 
Theory and Security 

•  Network Security: A Decision and Game-
Theoretic Approach (Alpcan, TB, CUP, 2011) 

•  Game theory meets network security and privacy 
(Manshei, Zhu, Alpcan, TB, Hubaux; ACM Survey, ‘13) 

•  A hierarchical security architecture for the smart 
grid (Zhu, TB; in Hossain, Han, Poor, edts, Smart 
Grid Communications and Networking, CUP, 2012) 

•  Hybrid learning in stochastic games and its 
applications in network security (Zhu, Tembine, TB; 
in Lewis, Liu, edts, Comput Intell Series, IEEE’12) 

•  Game Theory in Wireless and Comm Nets (Han, 
Niyato, Saad, TB, Hjorunges; CUP, Oct 2011) 
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o  Network Security       
                          Concepts 
o  Security Games (SGs) 

•  Deterministic SGs 
•  Stochastic SGs 
•  SGs w information 

limitations 
o  Decision Making for  
                Network Security 

•  Security risk-management 
•  Resource allocation for 

security 
•  Usability, trust, and privacy 

o  Security Attack and  
             Intrusion Detection 

•  Machine learning for 
intrusion  and anomaly 

                        detection 
•  Hypothesis testing for 

attack detection 
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o  Non-cooperative Games 
o  Bayesian Games 
o  Differential Games 
o  Evolutionary Games 
o  Cooperative Games  

•  Bargaining theory 
•  Coalitional game theory 
•  Canonical coalitional games 
•  Coalition formation games 
•  Coalitional graph games 

o  Auction Theory and 
Mechanism Design 

•  VCG auction / Share auction 
•  Double auction 
•  Physical layer security 

o  Applications 
•  Multihop networks 
•  Cooperative transmission 

networks 
•  Cognitive radio networks 
•  Internet networks 
 
        


