

Learning with strategic agents: from adversarial learning to game-theoretic statistics

Patrick Loiseau, EURECOM (Sophia-Antipolis)

Graduate Summer School: Games and Contracts for Cyber-Physical Security

IPAM, UCLA, July 2015

Supervised machine learning

- Supervised learning has many applications
 - Computer vision, medicine, economics
- Numerous successful algorithms
 - GLS, logistic regression, SVM, Naïve Bayes, etc.

Learning from data generated by strategic agents

- Standard machine learning algorithms are based on the "iid assumption"
- The iid assumption fails in some contexts
 - Security: data is generated by an adversary
 - Spam detection, detection of malicious behavior in online systems, malware detection, fraud detection
 - Privacy: data is strategically obfuscated by users
 - Learning from online users personal data, recommendation, reviews

→ where data is generated/provided by strategic agents in reaction to the learning algorithm

\rightarrow How to learn in these situations?

Main objective: illustrate what game theory brings to the question "how to learn?" on the example of:

Classification from strategic data

- 1. Problem formulation
- 2. The adversarial learning approach
- 3. The game-theoretic approach
 - a. Intrusion detection games
 - b. Classification games

Main objective: illustrate what game theory brings to the question "how to learn?" on the example of:

Classification from strategic data

- 1. Problem formulation
- 2. The adversarial learning approach
- **3**. The game-theoretic approach
 - a. Intrusion detection games
 - b. Classification games

Binary classification

- Classifier's task
 - From $v_1^{(0)}, \dots, v_n^{(0)}, v_1^{(1)}, \dots, v_m^{(1)}$, make decision boundary
 - Classify new example v based on which side of the boundary

Binary classification

• Single feature ($v_1^{(0)}, \cdots$ scalar)

- Multiple features ($v_1^{(0)}, \cdots$ vector)
 - Combine features to create a decision boundary
 - Logistic regression, SVM, Naïve Bayes, etc.

Binary classification from strategic data

 Attacker modifies the data in some way in reaction to the classifier

Main objective: illustrate what game theory brings to the question "how to learn?" on the example of:

Classification from strategic data

- 1. Problem formulation
- 2. The adversarial learning approach
- 3. The game-theoretic approach
 - a. Intrusion detection games
 - b. Classification games

Machine learning and security literature

- A large literature at the intersection of machine learning and security since mid-2000
 - [Huang et al., AlSec '11]
 - [Biggio et al., ECML PKDD '13]
 - [Biggio, Nelson, Laskov, ICML '12]
 - [Dalvi et al., KDD '04]
 - [Lowd, Meek, KDD '05]
 - [Nelson et al., AISTATS '10, JMLR '12]
 - [Miller et al. AlSec '04]
 - [Barreno, Nelson, Joseph, Tygar, Mach Learn '10]
 - [Barreno et al., AlSec '08]
 - [Rubinstein et al., IMC '09, RAID '08]
 - [Zhou et al., KDD '12]
 - [Wang et al., USENIX SECURITY '14]
 - [Zhou, Kantarcioglu, SDM '14]
 - [Vorobeychik, Li, AAMAS '14, SMA '14, AISTATS '15]

Different ways of altering the data

- Two main types of attacks:
 - Causative: the attacker can alter the training set
 - Poisoning attack
 - Exploratory: the attacker cannot alter the training set
 - Evasion attack
- Many variations:
 - Targeted vs indiscriminate
 - Integrity vs availability
 - Attacker with various level of information and capabilities
- Full taxonomy in [Huang et al., AlSec '11]

Poisoning attacks

General research questions

- What attacks can be done?
 - Depending on the attacker capabilities
- What defense against these attacks?
- 3 examples of poisoning attacks
 - SpamBayes
 - Anomaly detection with PCA
 - Adversarial SVM

Poisoning attack example (1): SpamBayes [Nelson et al., 2009]

- SpamBayes: simple content based spam filter
- 3 attacks with 3 objectives:
 - Dictionary attack: send spam with all token so user disables filter
 - Controlling 1% of the training set is enough
 - Focused attack: make a specific email appear spam
 - Works in 90% of the cases
 - Pseudospam attack: send spam that gets mislabeled so that user receives spam
 - User receives 90% of spam if controlling 10% of the training set
- Counter-measure: RONI (Reject on negative impact)
 - Remove from the training set examples that have a large negative impact

Poisoning attack example (2): Anomaly detection using PCA [Rubinstein et al. 09]

- Context: detection of DoS attacks through anomaly detection; using PCA to reduce dimensionality
- Attack: inject traffic during training to alter the principal components to evade detection of the DoS attack
 - With no poisoning attack: 3.67% evasion rate
 - 3 levels of information on traffic matrices, injecting 10% of the traffic
 - Uninformed \rightarrow 10% evasion rate
 - Locally informed (on link to be attacked) \rightarrow 28% evasion rate
 - Globally informed \rightarrow 40% evasion rate
- Defense: "robust statistics"
 - Maximize maximum absolute deviation instead of variance

Poisoning attack example (3): adversarial SVM [Zhou et al., KDD '12]

- Learning algorithm: support vector machine
- Adversary's objective: alter the classification by modifying the features of class 1 training examples
 - Restriction on the range of modification (possibly dependent on the initial feature)
- Defense: minimize SVM cost with worse-case possible attack
 - Zero-sum game "in spirit"

Evasion attacks

- Fixed classifier, general objective of evasion attacks:
 - By querying the classifier, find a "good" negative example
- "Near optimal evasion": find negative instance of minimal cost
 - [Lowd, Meek, KDD '05]: Linear classifier (with continuous features and linear cost)
 - Adversarial Classifier Reverse Engineering (ACRE): polynomial queries
 - [Nelson et al., AISTATS '10]: extension to convex-inducing classifiers
- "Real-world evasion": find "acceptable" negative instance
- Defenses
 - Randomization: no formalization or proofs

Main objective: illustrate what game theory brings to the question "how to learn?" on the example of:

Classification from strategic data

- 1. Problem formulation
- 2. The adversarial learning approach

3. The game-theoretic approach

- a. Intrusion detection games
- b. Classification games

Game theory and security literature

- A large literature on game theory for security since mid-2000
 - Surveys:
 - [Manshaei et al., ACM Computing Survey 2011]
 - [Alpcan Basar, CUP 2011]
 - Game-theoretic analysis of intrusion detection systems
 - [Alpcan, Basar, CDC '04, Int Symp Dyn Games '06]
 - [Zhu et al., ACC '10]
 - [Liu et al, Valuetools '06]
 - [Chen, Leneutre, IEEE TIFS '09]

Many other security aspects approached by game theory

- Control [Tambe et al.]
- Incentives for investment in security with interdependence [Kunreuther and Heal 2003], [Grossklags et al. 2008], [Jiang, Anantharam, Walrand 2009], [Kantarcioglu et al, 2010]
- Cyber insurance [Lelarge, Bolot 2008-2012], [Boehme, Schwartz 2010], [Shetty, Schwartz, Walrand 2008-2012], [Schwartz et al. 2014]
- Economics of security [Anderson, Moore 2006]
- Robust networks design: [Gueye, Anantharam, Walrand, Schwartz 2011-2013], [Laszka et al, 2013-2015]
- . .

Intrusion Detection System (IDS): simple model

- IDS: Detect unauthorized use of network
 - Monitor traffic and detect intrusion (signature or anomaly based)
 - Monitoring has a cost (CPU (e.g., for real time))

Simple model:

- Attacker: {attack, no attack} ({a, na})
- Defender: {monitoring, no monitoring} ({m, nm})
- "Safe strategy" (or min-max)
 - Attacker: na
 - Defender: m if $\alpha_s > \alpha_f$, nm if $\alpha_s < \alpha_f$

Nash equilibrium: mixed strategy (i.e., randomized)

Payoffs:

$$P^{A} = \begin{bmatrix} -\beta_{c} & \beta_{s} \\ 0 & 0 \end{bmatrix}, P^{D} = \begin{bmatrix} \alpha_{c} & -\alpha_{s} \\ -\alpha_{f} & 0 \end{bmatrix}$$
a na

m

nm

- Non-zero sum game
- There is no pure strategy NE
- Mixed strategy NE: $p_a = \frac{\alpha_f}{\alpha_f + \alpha_c + \alpha_s}, \quad p_m = \frac{\beta_s}{\beta_c + \beta_s}$
 - Be unpredictable
 - Neutralize the opponent (make him indifferent)
 - Opposite of own optimization (indep. own payoff)

Game-theoretic analysis of intrusion detection

In networks:

- [Alpcan, Basar '04 '06 '11]
 - Initial papers
- [Chen, Leneutre '09]
 - Nash equilibrium with heterogeneous values targets
- [Liu et al. '06]
 - Bayesian games
- [Zhu et al. '10]
 - Stochastic games
- In key physical locations (airports, ports, etc.)
 - [Tambe et al. ~'00—present]
 - Stackelberg equilibrium

Heterogeneous networks [Chen, Leneutre, IEEE TIFS 2009]

- N independent targets T={1, ..., N}
- Target *i* has value W_i
- Payoff of attack for target i

	Monitor	Not monitor
Attack	$(1-2a)W_i - C_a W_i,$	$W_i - C_a W_i, -W_i$
	$-(1-2a)W_i - C_m W_i$	
Not attack	$0, -bC_f W_i - C_m W_i$	0,0

Total payoff: sum on all targets

Strategies

- Attacker chooses { p_i , i=1..N}, proba to attack i $\sum p_i \le P$
- Defender chooses {q_i, i=1..N}, proba to monitor i $\sum_{i}^{i} Q_{i} \leq Q$

Sensible targets

Sets T_S (sensible targets) T_Q (quasi-sensible targets) uniquely defined by

Definition 3: The sensible target set T_S and the quasi-sensible target set T_Q are defined such that:

where $|\mathcal{T}_{S}|$ is the cardinality of \mathcal{T}_{S} , $\mathcal{T} - \mathcal{T}_{S} - \mathcal{T}_{Q}$ denotes the set of targets in the target set \mathcal{T} but neither in \mathcal{T}_{S} nor in \mathcal{T}_{Q} .

• Theorem:

- A rational attack does not attack in
- A rational defender does defend in

$$T - T_s - T_Q$$
$$T - T_s - T_Q$$

Nash equilibrium – case 1

- Attacker and defender use up all their available resources: $\sum_{i} p_i = P$ and $\sum_{i} q_i = Q$
- Nash equilibrium given by

Nash equilibrium – case 2

• If the attack power *P* is low relative to the cost of monitoring, the defender does not use all his available resources: $\sum_{i} p_i = P$ and $\sum_{i} q_i < Q$

Nash equilibrium given by

$$p_{i}^{*} \begin{cases} = \frac{bC_{f} + C_{m}}{2a + bC_{f}}, & W_{i} > W_{N_{D}+1} \\ \in \begin{bmatrix} 0, \frac{bC_{f} + C_{m}}{2a + bC_{f}} \end{bmatrix}, & W_{i} = W_{N_{D}+1} \\ = 0, & W_{i} < W_{N_{D}+1} \\ = 0, & W_{i} < W_{N_{D}+1} \\ 0, & W_{i} > W_{N_{D}+1} \\ 0, & W_{i} \le W_{N_{D}+1} \\ \end{bmatrix}$$
 Non-sensible nodes not attacked and not defended with higher values

EURECOM

Nash equilibrium – case 3

- If P and Q are large, or cost of monitoring/attack is too large, neither attacker nor defender uses all available resources: $\sum_{i} p_i < P$ and $\sum_{i} q_i < Q$
- Nash equilibrium given by

$$\begin{cases} p_i^* = \frac{bC_f + C_m}{2a + bC_f} \\ q_i^* = \frac{1 - C_a}{2a} \end{cases} \quad i \in \mathcal{T} \end{cases}$$

- All targets are sensible
- Equivalent to N independent IDS
- Monitoring/attack independent of W_i
 - Due to payoff form (cost of attack proportional to value)

> All IDS work: assumption that payoff is sum on all targets

Main objective: illustrate what game theory brings to the question "how to learn?" on the example of:

Classification from strategic data

- 1. Problem formulation
- 2. The adversarial learning approach

3. The game-theoretic approach

- a. Intrusion detection games
- b. Classification games

Classification games

A first approach

- [Brückner, Scheffer, KDD '12, Brückner, Kanzow, Scheffer, JMLR '12]
- Model:
 - Defender selects the parameters of a pre-specified generalized linear model
 - Adversary selects a modification of the features
 - Continuous cost in the probability of class 1 classification
- Result:
 - Pure strategy Nash equilibrium

A more flexible model [Dritsoula, L., Musacchio, 2012, 2015]

Model specification

- Game-theoretic analysis to answer the questions:
 - > How should the defender perform classification?
 - How to combine the features?
 - How to select the threshold?
 - How will the attacker attack?
 - How does the attacker select the attacks features?
 - How does the performance change with the system's parameters?

Model: players and actions

Model: payoffs

Nash equilibrium

- Mixed strategies:
 - Attacker: probability distribution α on V
 - Defender: probability distribution β on C

• Utilities extended:
$$U^{A}(\alpha,\beta) = \sum_{v \in V} \sum_{c \in C} \alpha_{v} U^{A}(v,c) \beta_{c}$$

• Nash equilibrium: (α, β) s.t. each player is at best-response:

$$\alpha^* \in \operatorname*{argmax}_{\alpha} U^{A}(\alpha, \beta^*)$$
$$\beta^* \in \operatorname*{argmax}_{\beta} U^{D}(\alpha^*, \beta)$$

"Easy solution": linear programming (almost zero-sum game)

$$U^{A}(v,c) = R(v) - c_{d} 1_{c(v)=1} - \frac{(1-p)}{p} c_{fa} \left(\sum_{v' \in V} P_{N}(v') 1_{c(v')=1} \right)$$
$$U^{D}(v,c) = -U^{A}(c,v) + \frac{(1-p)}{p} c_{fa} \left(\sum_{v' \in V} P_{N}(v') 1_{c(v')=1} \right)$$

- The non-zero-sum part depends only on $c \in C$
- Best-response equivalent to zero-sum game
- Solution can be computed by LP, BUT
 - The size of the defender's action set is large
 - Gives no information on the game structure

Main result 1: defender combines features based on attacker's reward

• Define C^T : set of threshold classifiers on R(v)

$$C^{T} = \left\{ c \in C : c(v) = 1_{R(v) \ge t} \forall v, \text{ for some } t \in \Re \right\}$$

Theorem:

For every NE of $G = \langle V, C, P_N, p, c_d, c_{fa} \rangle$, there exists a NE of $G^T = \langle V, C^T, P_N, p, c_d, c_{fa} \rangle$ with the same attacker's strategy and the same equilibrium payoffs

> Classifiers that compare R(v) to a threshold are optimal for the defender

Different from know classifiers (logistic regression, etc.)

 \succ Reduces a lot the size of the defender's strategy set

Main result 1: proof's key steps

1. The utilities depend on β only through the probability of class 1 classification:

$$\pi_d(v) = \sum_{c \in C} \beta_c \mathbb{1}_{c(v)=1}$$

2. At NE, if $P_N(v) > 0$ for all v, then $\pi_d(v)$ increases with R(v)

3. Any $\pi_d(v)$ that increases with R(v) can be achieved by a mix of threshold strategies in C^T

Main result 1: illustration

Reduction of the attacker's strategy space

• V^R : set of rewards

Proposition:

$$G^{T} = \langle V, C^{T}, P_{N}, p, c_{d}, c_{fa} \rangle$$
 and $G^{R,T} = \langle V^{R}, C^{T}, P_{N}^{R}, p, c_{d}, c_{fa} \rangle$
have the same equilibrium payoffs

•
$$P_N^R(r) = \sum_{v:R(v)=r} P_N(v)$$
: non-attacker's probability on V^R

> It is enough to study $G^{R,T} = \langle V^R, C^T, P_N^R, p, c_d, c_{fa} \rangle$

Main result 2: attacker's equilibrium strategy mimics the non-attacker

Lemma:

f(
$$\alpha, \beta$$
) is a NE of $G = \langle V, C, P_N, p, c_d, c_{fa} \rangle$, then
 $\alpha_v = \frac{1-p}{p} \frac{c_{fa}}{c_d} P_N(v)$, for all v s.t. $\pi_d(v) \in (0,1)$

 Attacker's strategy: scaled version of the non-attacker distribution on a subset

Game rewriting in matrix form

• Game
$$G^{R,T} = \left\langle V^R, C^T, P^R_N, p, c_d, c_{fa} \right\rangle$$

- Attacker chooses attack reward in $V^R = \{r_1 < r_2 < \cdots\}$
- Defender chooses threshold strategy in C^T

$$U^{A}(\alpha,\beta) = -\alpha'\Lambda\beta$$
 and $U^{D} = \alpha'\Lambda\beta - \mu'\beta$

$$\Lambda = c_d \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & 0 \\ \vdots & 1 & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ \vdots & & & \ddots & 0 & \vdots \\ 1 & \cdots & \cdots & 1 & 0 \end{pmatrix} - \begin{pmatrix} r_1 \\ \vdots \\ \vdots \\ r_{|V^R|} \end{pmatrix} \cdot 1'_{|V^R|+1} \qquad \mu_i = \frac{1-p}{p} c_{fa} \sum_{r \ge r_i} P_N^R(r)$$

 $= V^R$

Main result 3: Nash equilibrium structure (i.e., how to choose the threshold)

Theorem:

At a NE of
$$G^{R,T} = \langle V^R, C^T, P_N^R, p, c_d, c_{fa} \rangle$$
, for some k:

- The attacker's strategy is
- The defender's strategy is

$$igl(0,\cdots,0,lpha_k,\cdots,lpha_{ig|V^Rigr|}igr) \ igl(0,\cdots,0,eta_k,\cdots,eta_{ig|V^Rigr|},eta_{ig|V^Rigr|^{+1}}igr)$$

where
$$\beta_{i} = \frac{r_{i+1} - r_{i}}{c_{d}}$$
, for $i \in \{k+1, \dots, |V^{R}|\}$
 $\alpha_{i} = \frac{1 - p}{p} \frac{c_{fa}}{c_{d}} P_{N}^{R}(r_{i})$, for $i \in \{k+1, \dots, |V^{R}| - 1\}$

NE computation

• Defender: try all vectors β of the form (for all k)

- Take the one maximizing payoff
 - Unique maximizing $\beta \rightarrow$ unique NE.
 - Multiple maximizing $\beta \rightarrow$ any convex combination is a NE
- Attacker: Use the formula
 - Complete first and last depending on β

Nash equilibrium illustration

Main result 3: proof's key steps

1. At NE, β maximizes $\min \Lambda \beta - \mu' \beta$

Solve LP: maximize
$$z - \mu'\beta$$

s.t. $\Lambda\beta \ge z \cdot 1_{|V^R|}, \beta \ge 0, 1_{|V^R|+1} \cdot \beta = 1$

> extreme points of
$$\Lambda x \ge 1_{|V^R|}, x \ge 0$$
 $(\beta = x/||x||)$

2. Look at polyhedron and eliminate points that are not extreme

$$\begin{split} c_d x_1 + (r_{|V^R|} - r_1 + \varepsilon) \|x\| &\geq 1 \\ c_d (x_1 + x_2) + (r_{|V^R|} - r_2 + \varepsilon) \|x\| &\geq 1 \end{split}$$

Example

• Case
$$r_i = i \cdot c_a, N = 100, P_N \sim Bino(\theta), p = 0.2$$

Example (2): variation with cost of attack

Example (3): variation with false alarm cost

Example (4): Variation with noise strength

Example (5): is it worth investing in a second sensor?

- There are two features
- 3 scenarios:
 - 1: defender classifies on feature 1 only
 - Attacker uses maximal strength on feature 2
 - 2: defender classifies on features 1 and 2 but attacker doesn't know
 - Attacker uses maximal strength on feature 2
 - 3: defender classifies on features 1 and 2 and attacker knows
 - Attacker adapts strength on feature 2
- Is it worth investing?
 - Compare the investment cost to the payoff difference!

Conclusion: binary classification from strategic data

 Game theory provides new insights into learning from data generated by a strategic attacker

- Analysis of a simple model (Nash equilibrium):
 - Defender should combine features according to attacker's reward -> not use a known algorithm
 - Mix on threshold strategies proportionally to marginal reward increase, up to highest threshold
 - > Attacker mimics non-attacker on defender's support

Extensions and open problems

- Game theory can bring to other learning problems with strategic agents!
- Models with one strategic attacker [security]
 - Extensions of the classification problem
 - Model generalization, multiclass, regularization, etc.
 - Unsupervised learning
 - Clustering
 - Sequential learning
 - Dynamic classification
- Models with many strategic agents [privacy]
 - Linear regression, recommendation

Patrick.Loiseau@eurecom.fr

- a. The adversarial learning approach
- b. The game-theoretic approach

2. Linear regression from strategic data

a. The game-theoretic approach

General motivation and questions

- An analyst wants to learn from data using linear regression
 - Medicine, economics, etc.
- Data provided by humans are revealed strategically
 - Privacy concerns: users add noise
 - Effort put by users to provide good data
 - Data manipulation
- Incentives are an integral part of the learning problem
- Research questions
 - How to model users objectives? What will be the outcome?
 - What is the loss of efficiency due to strategic aspects?
 - How to design a learning algorithm that gives good incentives to users?

Why do users reveal data?

- Because they are paid for it
 - Mechanism design problem: the learning algorithm is fixed and you ask "how to pay users to obtain optimal accuracy with minimal cost"
 - [Ghosh, Roth, 2011], [Dandekar et al., 2012], [Roth, Schoenebeck, 2012], [Ligett, Roth, 2012], [Cai et al., 2015], etc.
- Because they have an interest in the result from the learning algorithm
 - Interest in the result in a user's direction
 - What algorithm can guarantee that users don't lie?
 - [Dekel, Fischer, Procaccia, SODA '08]
 - Interest in the global result: information as a public good
 - Without payment, which algorithm is optimal?
 - [Ioannidis, L., WINE '13], [Chessa, Grossklags, L., FC '15, CSF '15]

Model (1): linear model of user data

EURECOM

Model (2): analyst's parameter estimation

Model (3): utilities/cost functions

• User *i* chooses inverse variance

$$\lambda_{i} = \frac{1}{\sigma^{2} + \sigma_{i}^{2}} \in [0, 1/\sigma^{2}]$$
• contribution to result accuracy (public good)"
• Minimize cost

$$J_{i}(\lambda_{i}, \lambda_{-i}) = c_{i}(\lambda_{i}) + f(\lambda_{i}, \lambda_{-i})$$
• Privacy cost
Increasing convex
Estimation cost

$$f(\lambda_{i}, \lambda_{-i}) = F(V(\lambda_{i}, \lambda_{-i}))$$
F, hence *f*, increasing convex
Examples: $F_{1}(\cdot) = trace(\cdot), \quad F_{2}(\cdot) = \|\cdot\|_{F}^{2} = trace(\cdot^{2})$

Nash equilibrium [loannidis, L., 2013]

- If <*d* users contribute, infinite estimation cost
 Trivial equilibria
- Main equilibrium result

Theorem:

There exists a unique non-trivial equilibrium

Proof:

- Potential game $\Phi(\lambda_i, \lambda_{-i}) = \sum c_i(\lambda_i) + f(\lambda_i, \lambda_{-i})$
- Potential is convex

Equilibrium efficiency

• Social cost: sum of cost of all users $C(\vec{\lambda}) = \sum_{i} c_i(\lambda_i) + nf(\vec{\lambda})$

Inefficiency of eq. measure by price of stability:

 $PoS = \frac{C(\vec{\lambda}^{NE})}{C(\vec{\lambda}^{SO})} - \frac{Social \ cost \ at \ the \ non-trivial}{Nash \ equilibrium}$

• Remarks:

- Same as *PoA* if we remove the trivial equilibria

- PoS≥1, "large PoS: inefficient", "small PoS: efficient"

Equilibrium efficiency (2)

• A first result:

Theorem:

The *PoS* increases at most linearly: $PoS \le n$.

 Obtained only from potential structure: by positivity of the estimation and privacy costs:

$$\frac{1}{n}C(\vec{\lambda}^{NE}) \le \Phi(\vec{\lambda}^{NE}) \le \Phi(\vec{\lambda}^{SO}) \le C(\vec{\lambda}^{SO})$$

- Works for any estimation cost, i.e., any scalarization F
- But quite rough!

Equilibrium efficiency (3) [loannidis, L., 2013]

• Monomial privacy costs: $c_i(\lambda_i) = c_i \cdot \lambda_i^k, \ c_i > 0, k \ge 1$

Theorem:

If the estimation cost is $F_1(\cdot) = trace(\cdot)$, then $PoS \le n^{1/(k+1)}$ If the estimation cost is $F_2(\cdot) = \left\| \cdot \right\|_F^2$, then $PoS \le n^{2/(k+2)}$

- Sharper bounds: n^{1/2} for trace, n^{2/3} for Frobenius
- "More convex" privacy cost \rightarrow slower *PoS* increase

Worst case: linear privacy cost (k=1)

• Proof: KKT and $\frac{\partial tr(V(\vec{\lambda}))}{\partial \lambda_i} = -x_i^T V^2 x_i$, $\frac{\partial \left\| V(\vec{\lambda}) \right\|_F^2}{\partial \lambda_i} = -x_i^T V^3 x_i$ $\left(V = \left(X^T \Lambda X \right)^{-1} \right)$

Equilibrium efficiency (4) [loannidis, L., 2013]

Worst-case extends beyond monomials

Theorem:

With the estimation cost is $F_1(\cdot) = trace(\cdot)$: if $nc'_i(\lambda) \le c'_i(n^{1/2}\lambda)$, then $PoS \le n^{1/2}$ With the estimation cost is $F_2(\cdot) = \left\|\cdot\right\|_F^2$: if $nc'_i(\lambda) \le c'_i(n^{1/3}\lambda)$, then $PoS \le n^{2/3}$

More general than monomials, but

- c_i grows ~larger than λ^3 for F_1 and λ^4 for F_2

Proof based on Brouwer's fixed-point thm

What is the best estimator? [IL '13] Aitken-like theorem

Why generalized least-square?

Theorem (Aitken, 1935):

GLS yields smallest covariance amongst linear unbiased estimators. (Λ fixed!) GLS

- Linear estimator: $\hat{\beta} = L\tilde{y}, \quad L = (X^T \Lambda X)^{-1} X^T \Lambda + D^T$
- What about the strategic setting?

Theorem:

In the strategic setting, GLS gives optimal covariance amongst linear unbiased estimators. (A depends on the estimator!)

Can we improve the estimation? [Chessa, Grossklags, L. FC '15, CSF '15]

 Case where the analyst only estimates the mean (d=1 and all x_i's are the same)

- Theorem: for a well chosen η , the analyst can strictly improve the estimator's variance by restricting the inverse variance chosen by the user to $\{0\}U[\eta,\,1/\sigma^2]$

 Improves by a constant factor (PoS still increases the same with n)

Open questions

- General model
 - Linear regression with regularization
 - Recommendation

Selection of agent to ask data from

Combine monetary incentives with the users interest in the result

Is the iid assumption always valid?

Security

 Spam detection, detection of malicious behavior in online systems, malware detection, fraud detection

Personal data

- Privacy research: users obfuscating data before revealing it to an analyst, incentivizing high quality data, recommendations, reviews
- Data to learn from is generated or provided by humans
 - Strategic agents reacting to the learning algorithm
- How to learn in this situation?

- a. The adversarial learning approach
- b. The game-theoretic approach

- 2. Linear regression from strategic data
 - a. The game-theoretic approach

What's not covered here...

 Main focus of the tutorial: illustrate what game theory can bring on simple examples

- Non-covered topics:
 - Unsupervised learning
 - Sequential learning
 - Multi-armed bandits, prediction with expert advice

- a. The adversarial learning approach
- b. The game-theoretic approach

- 2. Linear regression from strategic data
 - a. The game-theoretic approach

- a. The adversarial learning approach
- b. The game-theoretic approach

- 2. Linear regression from strategic data
 - a. The game-theoretic approach

- a. The adversarial learning approach
- b. The game-theoretic approach

2. Linear regression from strategic data

a. The game-theoretic approach

Open problems

- Generalized model: how is the NE classifier affected
 - Generalized payoffs
 - Generalized action sets
 - Kernel based features
 - Regularization
 - Multi-class classification
- Dynamic classification
 - Learning the attacker's utility
 - Optimizing trade-off between acquiring vs using reputation
- Unsupervised learning
 - Clustering

