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Supervised machine learning

Quarterly change in GDP(A%)

Cat or dog'? .10 -05 00 05 10 15 20

Quarterly change in the unemployment rate(A%)

= Supervised learning has many applications
— Computer vision, medicine, economics

= Numerous successful algorithms
— GLS, logistic regression, SVM, Naive Bayes, etc.
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Learning from data generated by
strategic agents

= Standard machine learning algorithms are based on the
“lid assumption”

= The iid assumption fails in some contexts

— Security: data is generated by an adversary

® Spam detection, detection of malicious behavior in online systems,
malware detection, fraud detection

— Privacy: data is strategically obfuscated by users
° Learning from online users personal data, recommendation, reviews

- where data is generated/provided by strategic agents
In reaction to the learning algorithm

- How to learn in these situations?
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Content

Main objective: illustrate what game theory brings to the
question “how to learn?” on the example of:

Classification from strategic data

1. Problem formulation
2. The adversarial learning approach

3. The game-theoretic approach

a. Intrusion detection games
b. Classification games
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Content

Main objective: illustrate what game theory brings to the
question “how to learn?” on the example of.:

Classification from strategic data

1. Problem formulation
2. The adversarial learning approach

3. The game-theoretic approach

a. Intrusion detection games
b. Classification games

=
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Binary classification

Vector of features of nt training example

Classifier’s task

0 1
— From v\, v v e v make decision boundary

— Classify new example v based on which side of the boundary
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Binary classification

= Single feature (v, scalar)

class Oif v<th

New example y:
W PieV class 1 if v>th

>

False negative [l False positive
(missed detect.) (false alarm)

= Multiple features (v, .- vector)

— Combine features to create a decision boundary
— Logistic regression, SVM, Naive Bayes, etc.
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Binary classification from strategic data

Class 0 , Defender ( strateg|c
s V"
Attacker (strategic) w
(1 P(l) ive
Class 1

= Attacker modifies the data in some way in reaction to
the classifier
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Content

Classification from strategic data

2. The adversarial learning approach

3.

-
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Machine learning and security literature

= A large literature at the intersection of machine learning
and security since mid-2000

Huang et al., AlSec ’11]

Biggio et al., ECML PKDD '13]
Biggio, Nelson, Laskov, ICML '12]
Dalvi et al., KDD '04]

Lowd, Meek, KDD '05]

Nelson et al., AISTATS 10, JMLR ’12]
Miller et al. AlSec '04]

Barreno, Nelson, Joseph, Tygar, Mach Learn '10]
Barreno et al., AlSec '08]

Rubinstein et al., IMC "09, RAID ’'08]
Zhou et al., KDD ’12]

Wang et al., USENIX SECURITY ’14]
Zhou, Kantarcioglu, SDM ’14]

[
[
[
[
[
[
[
[
[
[
[
[
[
[Vorobeychik, Li, AAMAS 14, SMA "14, AISTATS "15]
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Different ways of altering the data

= Two main types of attacks:

— Causative: the attacker can alter the training set
® Poisoning attack

— Exploratory: the attacker cannot alter the training set
° Evasion attack

= Many variations:

— Targeted vs indiscriminate
— Integrity vs availability
— Attacker with various level of information and capabilities

= Full taxonomy in [Huang et al., AlSec '11]
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Poisoning attacks

= General research questions

— What attacks can be done?
* Depending on the attacker capabilities
— What defense against these attacks?

= 3 examples of poisoning attacks
— SpamBayes
— Anomaly detection with PCA
— Adversarial SVM
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Poisoning attack example (1):
SpamBayes [Nelson et al., 2009]

= SpamBayes: simple content based spam filter

= 3 attacks with 3 objectives:

— Dictionary attack: send spam with all token so user disables filter
® Controlling 1% of the training set is enough

— Focused attack: make a specific email appear spam
* Works in 90% of the cases

— Pseudospam attack: send spam that gets mislabeled so that user
receives spam

® User receives 90% of spam if controlling 10% of the training set

= Counter-measure: RONI (Reject on negative impact)

— Remove from the training set examples that have a large negative
impact

oM
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Poisoning attack example (2): Anomaly
detection using PCA [Rubinstein et al. 09]

= Context: detection of DoS attacks through anomaly
detection; using PCA to reduce dimensionality

= Attack: inject traffic during training to alter the principal
components to evade detection of the DoS attack
— With no poisoning attack: 3.67% evasion rate

-3 I?fvels of information on traffic matrices, injecting 10% of the
traffic

® Uninformed - 10% evasion rate
° Locally informed (on link to be attacked) - 28% evasion rate
* Globally informed - 40% evasion rate

= Defense: “robust statistics”
— Maximize maximum absolute deviation instead of variance

EURECOM
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Poisoning attack example (3): adversarial
SVM [Zhou et al., KDD ’12]

= |earning algorithm: support vector machine

= Adversary’s objective: alter the classification by
modifying the features of class 1 training examples

— Restriction on the range of modification (possibly dependent on
the initial feature)

= Defense: minimize SVM cost with worse-case possible
attack

— Zero-sum game “in spirit”
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Evasion attacks

= Fixed classifier, general objective of evasion attacks:
— By querying the classifier, find a “good” negative example

= “Near optimal evasion”: find negative instance of minimal cost

— [Lowd, Meek, KDD ’05]: Linear classifier (with continuous features
and linear cost)

° Adversarial Classifier Reverse Engineering (ACRE): polynomial queries
— [Nelson et al., AISTATS '10]: extension to convex-inducing classifiers

= “Real-world evasion”: find “acceptable” negative instance

= Defenses
— Randomization: no formalization or proofs
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Content

Classification from strategic data

3. The game-theoretic approach

a. Intrusion detection games
b.
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Game theory and security literature

= A large literature on game theory for security since
mid-2000

— Surveys:

[Manshaei et al., ACM Computing Survey 2011]
[Alpcan Basar, CUP 2011]

— Game-theoretic analysis of intrusion detection systems

[Alpcan, Basar, CDC '04, Int Symp Dyn Games '06]
[Zhu et al., ACC '10]

[Liu et al, Valuetools '06]

[Chen, Leneutre, IEEE TIFS '09]

— Many other security aspects approached by game theory

Control [Tambe et al.]

Incentives for investment in security with interdependence [Kunreuther and Heal 2003],
[Grossklags et al. 2008], [Jiang, Anantharam, Walrand 2009], [Kantarcioglu et al, 2010]
Cyber insurance [Lelarge, Bolot 2008-2012], [Boehme, Schwartz 2010], [Shetty, Schwartz,
Walrand 2008-2012], [Schwartz et al. 2014]

Economics of security [Anderson, Moore 2006]

E%gs)éjsgoqegi/vorks design: [Gueye, Anantharam, Walrand, Schwartz 2011-2013], [Laszka et al,
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Intrusion Detection System (IDS): simple
model

= |DS: Detect unauthorized use of network

— Monitor traffic and detect intrusion (signature or anomaly based)
— Monitoring has a cost (CPU (e.g., for real time))

= Simple model:

Attacker: {attack, no attack} ({a, na})

Defender: {monitoring, no monitoring} ({m, nm})

Payoffs o m nm
PA _ _[))c ﬁs
O O

“Safe strategy” (or- min-max)

° Attacker: na
° Defender: m if o>, NM if X <X¢

9
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Nash equilibrium: mixed strategy (i.e.,
randomized)

= Payoffs: i ] 7 e
pA -p. b, CpP a. 0 | a
0 O -a, 0 na
= Non-zero sum game
= There is no pure strategy NE
= Mixed strategy NE: p, = @& p = 2
a,;+a, +o, B+ b,

— Be unpredictable
— Neutralize the opponent (make him indifferent)
— Opposite of own optimization (indep. own payoff)
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Game-theoretic analysis of intrusion
detection

= |n networks:

— [Alpcan, Basar '04 '06 '11]
° Initial papers
— [Chen, Leneutre '09]
® Nash equilibrium with heterogeneous values targets
— [Liu et al. '06]
° Bayesian games
— [Zhu et al. '10]
° Stochastic games

= |n key physical locations (airports, ports, etc.)

— [Tambe et al. ~’'00—present]
° Stackelberg equilibrium
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Heterogeneous networks [Chen,
Leneutre, IEEE TIFS 2009]

= N independent targets T={1, ..., N}

Target / has value W,

Payoff of attack for target /

Monitor Not monitor
Attack (1 — QQ)WZ' — C,W;, W, — C,W;, —W,;
—(1 — QQ)Wz‘ — CmWZ'
Not attack 0, —bC';W; — Oy W 0,0

Total payoff: sum on all targets

Strategies

— Attacker chooses {p, i=1..N}, proba to attack i Ep,. <P
— Defender chooses {q, i=1..N}, proba to monitor i EqiSQ
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Sensible targets

= Sets Tﬁ (sensible targets) T, (quasi-sensible targets)

uniquely defined by

Definition 3: The sensible target set 7s and the quasi-sensible target set 7o are defined such that:

(| Ts|- (1= Cy) — 2aQ)
”’é = — K
(1 - Ca)(Z e, W)

’ Ts| - (1= Cy) — 2aQ
Wi == — T
(l - (--a)(ng:']'s m)

Yi € Tq <

[

Vi e Tg

High value

(1 — O — 2a(
W, < Ts| - (1= Cy) — 2aQ

~ = YieT -Tg-Tp €
{ (1-Ca)(Xjer #) s — 49

| ow value

where |7g| is the cardinality of 7, 7 — 7s — T denotes the set of targets in the target set 7 but neither

in 7s nor in 7p.

= Theorem:

— Arational attack does not attack in T — TS — TQ
— A rational defender does defend in T -T,-T,

23
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Nash equilibrium - case 1

Attacker and defender use up all their available
resources: Y p,=P and Yg =0

= Nash equilibrium given by

( A Na
bt (astere ) . —

Rrerve eTe < Sensible (and quasi-sensible)

2a+bC Ay
s E{ | nodes attacked and defended
WELIW
QO] e, ,

(W B 2 © Non-sensible nodes

(0, 1€ T —T~T,
Nl ° not attacked and not defended
qfk:{;a(l_oa_ ;‘V(iﬁj_jc’?), i € Ts
0, Y ieT —Ts
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Nash equilibrium - case 2

= |f the attack power Pis low relative to the cost of
monitoring, the defender does not use all his available

resources: Y p,=p and Yg <Q

= Nash equilibrium given by

a bi{'_—ll—)gm, W, > W1 < Sensible (and quasi-sensible)
4 bC - Co B nodes attacked and defended
Pi e [07 2a+bC; ] , Wi=Wn,4
=0, Wi <Wnpia Non-sensible nodes
¢ = { % (1 — %) , Wi> W, a1 not attacked and not defended
0, i < Wyt

Monitor more the targets

where Np = |(2a 4 bC¢)P/(bC + Cp) ] with higher values
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Nash equilibrium - case 3

= |f P and Q are large, or cost of monitoring/attack is too
large, neither attacker nor defender uses all available

resources: » p,<P and »g,<0Q

= Nash equilibrium given by

— All targets are sensible

i bC' ¢ + Cy, | _
p; = f)”’; e — Equivalent to N independent IDS
e f e T L .
. 1-C, ' — Monitoring/attack independent of W,
(. =
\ i 2a ° Due to payoff form (cost of attack

proportional to value)

» All IDS work: assumption that payoff is sum on all targets

26 EURECOM



Content

Classification from strategic data

3. The game-theoretic approach

a.
b. Classification games
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Classification games

Non attacker (noise)

Class 1 Attacker (strategic)
w chooses P""

| Attacker (strategic)
w Maximizes false negative th thh

}; Defender (strategic)

Defender (strategic)
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A first approach

= [Bruckner, Scheffer, KDD ’12, Brickner, Kanzow,
cheffer, JMLR '12]

= Model:

— Defender selects the parameters of a pre-specified generalized
linear model

— Adversary selects a modification of the features
— Continuous cost in the probability of class 1 classification

= Result:
— Pure strategy Nash equilibrium
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A more flexible model [Dritsoula, L.,
Musacchio, 2012, 2015]

= Model specification

= Game-theoretic analysis to answer the questions:

» How should the defender perform classification?

» How to combine the features?
» How to select the threshold?

» How will the attacker attack?
» How does the attacker select the attacks features?

» How does the performance change with the system’s
parameters”?
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Model: players and actions

Defender (strategic)
flags NA (0) or A (1)

Non-attacker (noise)
v~P, given

= Attacker chooses V E‘@——> Set of feature vectors

= Defender chooses ¢ E©\> Set of classifiers {0,1}"

— Classifier ¢:V —{0,1} __ 5 Payoff-relevant

L Parameters

|
= Two-players game G = <V,C , P N’p’cd’cfa>

31 EURE
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Model: payoffs

" Attacker's payoff: Cost if detected

U@

Reward from attack
Cost of false alarm

= Defender’s payoff: 7
U”(v,¢) = p(-RW)+¢ 1, )+ (1= P, E Py ("1
escaling 2
UP (v.) = ~U™ (c.v) + 1 ; P). ; ( E PN(V')IC(V,H)
VEV
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Nash equilibrium

= Mixed strategies:

— Attacker: probability distribution o on V
— Defender: probability distribution 3 on C

= Utilities extended:  U*(a.f)= Y, Y a,U"(v.c)B.

v&eV ceC

= Nash equilibrium: (&, ) s.t. each player is at best-

response: * L
a €argmaxU”(a,fB )

B €argmaxU”(a’, B)
B
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“Easy solution”: linear programming
(almost zero-sum game)

(I-p)

UA (Va C) = R(V) - Cdlc(v)=1 -

Cfa

D PN<v'>1c<vl>-1)

V'ev

E Py (V’)lc(v')=1)

VEev

U°(v,c)==-U"(c,v)+ (1-p) C,
P

= The non-zero-sum part depends onlyon ¢ € C
= Best-response equivalent to zero-sum game
» Solution can be computed by LP, BUT

» The size of the defender’s action set is large
» (Gives no information on the game structure
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Main result 1: defender combines
features based on attacker’s reward

= Define C': set of threshold classifiers on R(V)
C' = {c EC:c(v)=1g,,, Vv, forsomerE fﬁ}

Theorem:

For every NE of G = <V,C,PN,p,cd,cfa>, there exists a NE of

G = <V,CT,PN,p,cd,cfa> with the same attacker’s strategy and
the same equilibrium payoffs

» Classifiers that compare R(v) to a threshold are optimal
for the defender

» Different from know classifiers (logistic regression, etc.)
» Reduces a lot the size of the defender’s strategy set

35 EURE
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Main result 1: proof’s key steps

1. The utilities depend on f only through the probability
of class 1 classification:

7T, (v)= E ﬁclc(v)=1

ceC

2. AtNE, if P,(v) >0 for all v, then
7 ,(v) increases with R(v)

3. Any m,(v) that increases with R(VI) can be achieved by
a mix of threshold strategies in C

36 EURECOM



Main result 1: illustration

-
Y
C
—
c:V—>{0,1}
-

-
“a

...
~

onto

37
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Reduction of the attacker’s strategy
space

« V¥ set of rewards

Proposition:

G =<V,CT,PN,p,Cd,Cfa> and GRT =<VR,CT,PA1;€,p,Cd,Cfa>
have the same equilibrium payoffs

= Pi(r)= E P, (v): non-attacker’s probability on V*

ViR(v)=r

> It is enough to study G*' = <V ,C' P}, p,c,c fa>

EUREC
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probability probability

probability

Main result 2: attacker’s equilibrium
strategy mimics the non-attacker

Lemma:

If (a,) isaNEof G =<V,C,PN,p,cd,cfa>, then

\%
P ¢

Attacker’s NE mixed straregy

hh |

0 10 20 30 40 50 60 70 80
Non-attacker’s distribution
T T T

0 10 20 30 40 50 60 70 80
Defender’s NE randomized threholds

0] 10 20 30 40 50 60 70 80
Number of attacks on main target

o, = 2P S P,(v), forall vs.t. m,(v)E(0,1)

= Attacker’s strategy:

scaled version of the
non-attacker
distribution on a
subset
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Game rewriting in matrix form

= Game GR’T=<VR,CT,P]§,p,cd,cfa> ‘CT‘=‘VR‘+1

— Attacker chooses attack reward in V" = {r1 <r, < ceek
— Defender chooses threshold strategy in C’'

U(a,B)=-a'AB and U” =od'AB-u'p

I O -0 0 h
1 Do
— Do L 1-p R
_Cd 0 - 1‘VR‘+1 Mi=7cfa§PN(r)
1 I O qw‘
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Main result 3: Nash equilibrium structure
(i.e., how to choose the threshold)

Theorem:
At a NE of G*' =<VR,CT,P]5,p,Cd,Cfa>, for some k:

 The attacker’s strategy is 0,---,0,Otk,-'-,06‘VR‘)

« The defender’s strategy is [0,'",0,/3},”"/3‘VR"/”‘VR‘+1)

where /a’l.=r"+1_r", foriE{k+1,---,‘VR‘}

Cy

. = 1—_I?Cfa p]\f(ri), fori & {k+1,---,‘VR‘—1}

l

P ¢

41 EURE
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NE computation

= Defender: try all vectors g of the form (for all k)

52
Mix of
defender
threshold

strategies

Complement to 1

/5_L /J)i=z+l_’;'
c,
---nl el
k+1 ‘V ‘+1 k ‘V ‘ ‘V ‘.,.1

= Take the one maximizing payoff

— Unique maximizing g = unique NE.
— Multiple maximizing g = any convex combination is a NE

= Attacker: Use the formula
— Complete first and last depending on f

EUREC
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Nash equilibrium illustration

Non-attacker’s distribution

. ; = Case
S 04L .
-8 ] ] D
] r=ic,
Q. : :

0 ' '

0 1 2 3 4 5 6 7 8 9 10 11 12 13

06 Attacker’s equilibrium strategy
=
= 04F i |
0
3
© 02 o N W AR
Q :

0 | L 1 |

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.6 Defender’s equilibrium strategy
> ‘ : : : : : : : : : :
S ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
kS, : : : : : : : : : :
o 0.2r et

N 1 I 1 1 1 1 1 1 1 &=

o
-
N
w
N
(&)
(e}

7 8 9 10 11 12 13
Attack vectors
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Main result 3: proof’s key steps

1. AtNE, g maximizes minAf-u'S

> Solve LP: maximize z-u'f3
s.t. AP = z-l‘VR‘, p =0, I‘VR‘+1 -p=1

» extreme points of  Ax= 1‘VR‘, x=0 (/3 = x/ HXH)

e +(r g -n+e)|x| =1
2. Look at polyhedron 4
and eliminate points 0+ )+ —ry+e)x| =1
that are not 4
extreme

c,(x, +x, +"'+X|VR|)+8||X|| >1
I

44



Example

- Case r=i-c,,N=100,P, ~ Bino(),p=0.2

Attacker’s NE mixed straregy

0.2

0.1

probability

40 50 60 70 80 90 100

03 Non-attacker’s distribution

probability

30 40 50 60 70 80 90 100
Defender’s NE randomized threholds

0-4 T T T T T T T T T T
= 03
S 0.2}
0
o
a 0.1
0 i i i i i i i i i i
o 10 20 30 40 50 60 70 80 90 100
Number of attacks on main target
EURECOM
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Example (2): variation with cost of attack

- =— = attacker
defender

>

Players’ NE payoff
o

0 1 2 3 4 5 6 7 8 9 10
cost of single attack, C,
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Example (3): variation with false alarm
cost

- = = attacker
defender

Players’ NE payoff
o

i i i i ‘ i i i i
0 2 4 6 8 10 12 14 16 18 20

fa

oM
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Example (4): Variation with noise strength

Player’'s NE payoff

o

0

i i i i i i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
non attacker’s per period frequency 60

48
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Example (5): is it worth investing in a
second sensor?

= There are two features

= 3 scenarios:

— 1. defender classifies on feature 1 only

° Attacker uses maximal strength on
feature 2

— 2: defender classifies on features 1
and 2 but attacker doesn’t know

° Attacker uses maximal strength on
feature 2

— 3: defender classifies on features 1
and 2 and attacker knows

° Attacker adapts strength on feature 2

[ | I S it WO rth i nve Sti n g ? 0 Scenario 1 Scenario 2 Scenario 3

— Compare the investment cost to the
payoff difference!

Defender’s equilibrium payoff

EURE
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Conclusion: binary classification from
strategic data

= Game theory provides new insights into learning from
data generated by a strategic attacker

Defender (strategic)
flags NA (0) or A (1)
5

Non-attacker (noise)

= Analysis of a simple model (Nash equilibrium):

» Defender should combine features according to attacker’s
reward = not use a known algorithm

» Mix on threshold strategies proportionally to marginal reward increase,
up to highest threshold

» Attacker mimics non-attacker on defender’s support
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Extensions and open problems

= Game theory can bring to other learning problems with
strategic agents!

= Models with one strategic attacker [security]

— Extensions of the classification problem

° Model generalization, multiclass, regularization, etc.
— Unsupervised learning

* Clustering
— Sequential learning

* Dynamic classification

= Models with many strategic agents [privacy]
— Linear regression, recommendation

EURE
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Patrick.Loiseau@eurecom.fr

THANK YOU
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Outline

2. Linear regression from strategic data

a. The game-theoretic approach
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General motivation and questions

= An analyst wants to learn from data using linear regression

— Medicine, economics, etc.

= Data provided by humans are revealed strategically

— Privacy concerns: users add noise
— Effort put by users to provide good data
— Data manipulation

» Incentives are an integral part of the learning problem

= Research questions

— How to model users objectives? What will be the outcome?
— What is the loss of efficiency due to strategic aspects?
— How to design a learning algorithm that gives good incentives to users?
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Why do users reveal data?

= Because they are paid for it
— Mechanism design problem: the learning algorithm is fixed and you
ask “how to pay users to obtain optimal accuracy with minimal
cost”

— [Ghosh, Roth, 2011], [Dandekar et al., 2012], [Roth, Schoenebeck,
2012], [Ligett, Roth, 2012], [Cai et al., 2015], etc.

= Because they have an interest in the result from the learning
algorithm

— Interest in the result in a user’s direction
* What algorithm can guarantee that users don't lie?
° [Dekel, Fischer, Procaccia, SODA '08]
— Interest in the global result: information as a public good

° Without payment, which algorithm is optimal?
° [loannidis, L., WINE '13], [Chessa, Grossklags, L., FC 15, CSF ’15]

EURECOM
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Model (1): linear model of user data

A
T
) !

X+€

anate data of | Inherent noise of |
mean O, variance O‘

Model parameter| | Public features of i

e R’ E R’
(unknown)

User jadds nois€  aAdded noise of i
mean O, variance (7

[J’x+8+z/

/ v

Data reported by i Total noise of | , ,
ER mean O, variance O + 0,

% EURECOM



Model (2): analyst’s parameter estimation

) (nx1) vector of reported data
(nxd) matrix of public features
A - —1\ 7oA inverse variance of y,
- B=(X"AX) X"A -
* 0
9 N
weights A -
1
O 2 2
o +0,

= Generalized least-square estimator 1
® — Unbiased, covariance V = (XTAX)

— Gauss-Markov/Aitken thm: smallest covariance
amongst all linear unbiased estimators

> EURE

O

oM



Model (3): utilities/cost functions

= User i chooses inverse variance
1
> A = €|0,1/0°
o’ +0; [ ]
— “contribution to result accuracy (public good)”

= Minimize cost
J(A, A ) =c,(A)+ f(A,A)

< E——
Privacy cost Estimation cost

Increasing convex f(A,A)=F(\V(A,A))
F, hence f, increasing convex
Examples: F,(:)=trace(), F,(")= HH? = trace(-")
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Nash equilibrium [loannidis, L., 2013]

= |f <d users contribute, infinite estimation cost
=» trivial equilibria

= Main equilibrium result

There exists a unique non-trivial equilibrium

= Proof:
— Potential game  ®(A, A ) = Ec (A)+ f(ALA)

— Potential is convex

> EURECOM



Equilibrium efficiency

= Social cost: sum of cost of all users

C(A)=Y c,(A)+nf(A)

= |nefficiency of eq. measure by price of stability:

~ NE . e
C()L ) Social cos.t. at.the non-trivial
Nash equilibrium

PoS =

7 SO
C()L ) — Minimal social cost

= Remarks:

— Same as PoA if we remove the trivial equilibria
— PoS=>1, “large PoS: inefficient”, “small PoS: efficient”
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Equilibrium efficiency (2)
= A first result:

The PoS increases at most linearly: PoS = n.

— Obtained only from potential structure: by positivity of
the estimation and privacy costs:

lC()INE) < DAY= D(A52) = C(A5)
n

— Works for any estimation cost, i.e., any scalarization F
— But quite rough!
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Equilibrium efficiency (3) [loannidis, L.,
2013]

= Monomial privacy costs: ¢, (A)=c,-Af, ¢, >0,k=1

If the estimation cost is F, (") = trace(’) , then PoS <n""**"

If the estimation cost is F,(*) = H‘ then PoS <n”"*?

2
F '

= Sharper bounds: n'2 for trace, n?3 for Frobenius

= “More convex” privacy cost = slower PoS increase

— Worst case: linear privacy cost (k=1) )
) V(A p
* Proof: KKT and a”’gy)) TV, %bﬁ Vi (V=(XTAX) )
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Equilibrium efficiency (4) [loannidis, L.,
2013]

= Worst-case extends beyond monomials

With the estimation cost is F, (*) = trace("):
if nc;()L) < c; (n"?A), then PoS <n""
2
With the estimation cost is F,(*) = HHF .
if nc;()t) < c;(nm)L), then PoS <=n”"

= More general than monomials, but

— ¢, grows ~larger than A3 for F, and A% for F,

= Proof based on Brouwer’s fixed-point thm
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What is the best estimator? [IL ’13]
Aitken-like theorem

= Why generalized least-square?

GLS yields smallest covariance amongst linear
unbiased estimators. (A fixed!) GLS

= Linear estimator: [3’ =Ly, L= (XTAX)_1 X'A+D'
= What about the strategic setting?

In the strategic setting, GLS gives optimal
covariance amongst linear unbiased estimators.
(A depends on the estimator!)
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Can we improve the estimation?
[Chessa, Grossklags, L. FC ’15, CSF ’15]

= Case where the analyst only estimates the mean
(d=1 and all x/'s are the same)

= Theorem: for a well chosen n, the analyst can
strictly improve the estimator’s variance by

restricting the inverse variance chosen by the user
to {0}U[n, 1/07]

Improves by a constant factor (PoS still increases
the same with n)
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Open questions

= (General model

— Linear regression with regularization
— Recommendation

= Selection of agent to ask data from

= Combine monetary incentives with the users
interest in the result
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Is the iid assumption always valid?

= Security

— Spam detection, detection of malicious behavior in online systems,
malware detection, fraud detection

= Personal data

— Privacy research: users obfuscating data before revealing it to an
analyst, incentivizing high quality data, recommendations, reviews

= Data to learn from is generated or provided by humans
— Strategic agents reacting to the learning algorithm

= How to learn in this situation?
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Outline

1. Classification from strategic data

a. The adversarial learning approach
0. The game-theoretic approach

2. Linear regression from strategic data

a. The game-theoretic approach
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What’s not covered here...

= Main focus of the tutorial: illustrate what game
theory can bring on simple examples

= Non-covered topics:

— Unsupervised learning

— Sequential learning
° Multi-armed bandits, prediction with expert advice
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Outline

1. Classification from strategic data
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Outline

1. Classification from strategic data

a. The adversarial learning approach
D.
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Outline

1. Classification from strategic data

a.
0. The game-theoretic approach
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Open problems

= Generalized model: how is the NE classifier affected

Generalized payoffs
Generalized action sets
Kernel based features
Regularization
Multi-class classification

= Dynamic classification

Learning the attacker’s utility

— Optimizing trade-off between acquiring vs using reputation

= Unsupervised learning
— Clustering
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