Learning with strategic agents: from adversarial learning to game-theoretic statistics

Patrick Loiseau, EURECOM (Sophia-Antipolis)

Graduate Summer School: Games and Contracts for Cyber-Physical Security

IPAM, UCLA, July 2015
Supervised machine learning

Supervised learning has many applications
- Computer vision, medicine, economics

Numerous successful algorithms
- GLS, logistic regression, SVM, Naïve Bayes, etc.
Learning from data generated by strategic agents

- Standard machine learning algorithms are based on the “iid assumption”

- The iid assumption fails in some contexts
 - Security: data is generated by an adversary
 - Spam detection, detection of malicious behavior in online systems, malware detection, fraud detection
 - Privacy: data is strategically obfuscated by users
 - Learning from online users personal data, recommendation, reviews

→ where data is generated/provided by strategic agents in reaction to the learning algorithm

→ How to learn in these situations?
Main objective: illustrate what game theory brings to the question “how to learn?” on the example of:

Classification from strategic data

1. Problem formulation

2. The adversarial learning approach

3. The game-theoretic approach
 a. Intrusion detection games
 b. Classification games
Main objective: illustrate what game theory brings to the question “how to learn?” on the example of:

Classification from strategic data

1. Problem formulation

2. The adversarial learning approach

3. The game-theoretic approach
 a. Intrusion detection games
 b. Classification games
Binary classification

Classifier’s task
- From $v_1^{(0)}, \ldots, v_n^{(0)}, v_1^{(1)}, \ldots, v_m^{(1)}$, make decision boundary
- Classify new example \mathbf{v} based on which side of the boundary
Binary classification

- **Single feature (** $v_1^{(0)}$, ⋯ scalar **)**

 New example v:
 - class 0 if $v < th$
 - class 1 if $v > th$

- **Multiple features (** $v_1^{(0)}$, ⋯ vector **)**
 - Combine features to create a decision boundary
 - Logistic regression, SVM, Naïve Bayes, etc.

False negative (missed detect.)
False positive (false alarm)
Binary classification from strategic data

- Attacker modifies the data in some way in reaction to the classifier
Main objective: illustrate what game theory brings to the question “how to learn?” on the example of:

Classification from strategic data

1. Problem formulation

2. The adversarial learning approach

3. The game-theoretic approach
 a. Intrusion detection games
 b. Classification games
A large literature at the intersection of machine learning and security since mid-2000

- [Huang et al., AISec '11]
- [Biggio et al., ECML PKDD '13]
- [Biggio, Nelson, Laskov, ICML ’12]
- [Dalvi et al., KDD ’04]
- [Lowd, Meek, KDD ’05]
- [Nelson et al., AISTATS ’10, JMLR ’12]
- [Miller et al. AISec ’04]
- [Barreno, Nelson, Joseph, Tygar, Mach Learn ’10]
- [Barreno et al., AISec ’08]
- [Rubinstein et al., IMC ’09, RAID ’08]
- [Zhou et al., KDD ’12]
- [Wang et al., USENIX SECURITY ’14]
- [Zhou, Kantarcioglu, SDM ’14]
- [Vorobeychik, Li, AAMAS ’14, SMA ’14, AISTATS ’15]
- …
Different ways of altering the data

- Two main types of attacks:
 - Causative: the attacker can alter the training set
 - Poisoning attack
 - Exploratory: the attacker cannot alter the training set
 - Evasion attack

- Many variations:
 - Targeted vs indiscriminate
 - Integrity vs availability
 - Attacker with various level of information and capabilities

- Full taxonomy in [Huang et al., AISec ’11]
Poisoning attacks

- General research questions
 - What attacks can be done?
 - Depending on the attacker capabilities
 - What defense against these attacks?

- 3 examples of poisoning attacks
 - SpamBayes
 - Anomaly detection with PCA
 - Adversarial SVM
Poisoning attack example (1): SpamBayes [Nelson et al., 2009]

- SpamBayes: simple content based spam filter

- 3 attacks with 3 objectives:
 - Dictionary attack: send spam with all token so user disables filter
 • Controlling 1% of the training set is enough
 - Focused attack: make a specific email appear spam
 • Works in 90% of the cases
 - Pseudospam attack: send spam that gets mislabeled so that user receives spam
 • User receives 90% of spam if controlling 10% of the training set

- Counter-measure: RONI (Reject on negative impact)
 - Remove from the training set examples that have a large negative impact
Poisoning attack example (2): Anomaly detection using PCA [Rubinstein et al. 09]

- **Context:** detection of DoS attacks through anomaly detection; using PCA to reduce dimensionality

- **Attack:** inject traffic during training to alter the principal components to evade detection of the DoS attack
 - With no poisoning attack: 3.67% evasion rate
 - 3 levels of information on traffic matrices, injecting 10% of the traffic
 - Uninformed \rightarrow 10% evasion rate
 - Locally informed (on link to be attacked) \rightarrow 28% evasion rate
 - Globally informed \rightarrow 40% evasion rate

- **Defense:** “robust statistics”
 - Maximize maximum absolute deviation instead of variance
Poisoning attack example (3): adversarial SVM [Zhou et al., KDD ’12]

- Learning algorithm: support vector machine

- Adversary’s objective: alter the classification by modifying the features of class 1 training examples
 - Restriction on the range of modification (possibly dependent on the initial feature)

- Defense: minimize SVM cost with worse-case possible attack
 - Zero-sum game “in spirit”
Evasion attacks

- Fixed classifier, general objective of evasion attacks:
 - By querying the classifier, find a “good” negative example

- “Near optimal evasion”: find negative instance of minimal cost
 - [Lowd, Meek, KDD ’05]: Linear classifier (with continuous features and linear cost)
 - Adversarial Classifier Reverse Engineering (ACRE): polynomial queries
 - [Nelson et al., AISTATS ’10]: extension to convex-inducing classifiers

- “Real-world evasion”: find “acceptable” negative instance

- Defenses
 - Randomization: no formalization or proofs
Main objective: illustrate what game theory brings to the question “how to learn?” on the example of:

Classification from strategic data

1. Problem formulation

2. The adversarial learning approach

3. The game-theoretic approach
 a. Intrusion detection games
 b. Classification games
A large literature on game theory for security since mid-2000

- Surveys:
 - [Manshaei et al., ACM Computing Survey 2011]
 - [Alpcan Basar, CUP 2011]

- Game-theoretic analysis of intrusion detection systems
 - [Alpcan, Basar, CDC '04, Int Symp Dyn Games '06]
 - [Zhu et al., ACC '10]
 - [Liu et al, Valuetools '06]
 - [Chen, Leneutre, IEEE TIFS '09]

- Many other security aspects approached by game theory
 - Control [Tambe et al.]
 - Incentives for investment in security with interdependence [Kunreuther and Heal 2003], [Grossklags et al. 2008], [Jiang, Anantharam, Walrand 2009], [Kantarcioglu et al, 2010]
 - Economics of security [Anderson, Moore 2006]
 - ...
Intrusion Detection System (IDS): simple model

- IDS: Detect unauthorized use of network
 - Monitor traffic and detect intrusion (signature or anomaly based)
 - Monitoring has a cost (CPU (e.g., for real time))

- Simple model:
 - Attacker: \{attack, no attack\} (\{a, na\})
 - Defender: \{monitoring, no monitoring\} (\{m, nm\})
 - Payoffs
 - "Safe strategy" (or min-max)
 - Attacker: na
 - Defender: m if \(\alpha_s > \alpha_f\), nm if \(\alpha_s < \alpha_f\)
Nash equilibrium: mixed strategy (i.e., randomized)

- **Payoffs:**

 \[
 P^A = \begin{bmatrix}
 -\beta_c & \beta_s \\
 0 & 0
 \end{bmatrix}, \quad P^D = \begin{bmatrix}
 \alpha_c & -\alpha_s \\
 -\alpha_f & 0
 \end{bmatrix}
 \]

- **Non-zero sum game**

- **There is no pure strategy NE**

- **Mixed strategy NE:**

 \[
 p_a = \frac{\alpha_f}{\alpha_f + \alpha_c + \alpha_s}, \quad p_m = \frac{\beta_s}{\beta_c + \beta_s}
 \]

 - Be unpredictable
 - Neutralize the opponent (make him indifferent)
 - Opposite of own optimization (indep. own payoff)
Game-theoretic analysis of intrusion detection

- **In networks:**
 - [Alpcan, Basar ’04 ’06 ’11]
 - Initial papers
 - [Chen, Leneutre ’09]
 - Nash equilibrium with heterogeneous values targets
 - [Liu et al. ’06]
 - Bayesian games
 - [Zhu et al. ’10]
 - Stochastic games

- **In key physical locations (airports, ports, etc.)**
 - [Tambe et al. ~’00—present]
 - Stackelberg equilibrium
Heterogeneous networks [Chen, Leneutre, IEEE TIFS 2009]

- N independent targets $T = \{1, \ldots, N\}$

- Target i has value W_i

- Payoff of attack for target i

<table>
<thead>
<tr>
<th>Attack</th>
<th>Monitor</th>
<th>Not monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack</td>
<td>$(1 - 2a)W_i - C_a W_i$, $-(1 - 2a)W_i - C_m W_i$</td>
<td>$W_i - C_a W_i$, $-W_i$</td>
</tr>
<tr>
<td>Not attack</td>
<td>$0, -bC_f W_i - C_m W_i$</td>
<td>$0, 0$</td>
</tr>
</tbody>
</table>

- Total payoff: sum on all targets

- Strategies
 - Attacker chooses $\{p_i, i=1..N\}$, proba to attack i $\sum p_i \leq P$
 - Defender chooses $\{q_i, i=1..N\}$, proba to monitor i $\sum q_i \leq Q$
Sensible targets

- Sets T_S (sensible targets) T_Q (quasi-sensible targets) uniquely defined by

Definition 3: The sensible target set T_S and the quasi-sensible target set T_Q are defined such that:

$$W_i > \frac{|T_S| \cdot (1 - C_a) - 2aQ}{(1 - C_a)(\sum_{j \in T_S} \frac{1}{W_j})} \quad \forall i \in T_S$$

$$W_i = \frac{|T_S| \cdot (1 - C_a) - 2aQ}{(1 - C_a)(\sum_{j \in T_S} \frac{1}{W_j})} \quad \forall i \in T_Q$$

$$W_i < \frac{|T_S| \cdot (1 - C_a) - 2aQ}{(1 - C_a)(\sum_{j \in T_S} \frac{1}{W_j})} \quad \forall i \in T - T_S - T_Q$$

where $|T_S|$ is the cardinality of T_S, $T - T_S - T_Q$ denotes the set of targets in the target set T but neither in T_S nor in T_Q.

- Theorem:
 - A rational attack does not attack in $T - T_S - T_Q$
 - A rational defender does defend in $T - T_S - T_Q$
Nash equilibrium – case 1

- Attacker and defender use up all their available resources: \(\sum p_i = P \) and \(\sum q_i = Q \)

- Nash equilibrium given by

\[
p_i^* = \begin{cases}
\frac{p_A}{W_i \sum_{j=1}^{N_A} \frac{1}{w_j}} - \left(\frac{N_A}{W_i \sum_{j=1}^{N_A} \frac{1}{w_j}} - 1 \right)
& i \in T_S \\
\left[0, \frac{p_A}{W_i \sum_{j=1}^{N_A} \frac{1}{w_j}} \right]
& i \in T_Q \\
0
& i \in T - T_S - T_Q
\end{cases}
\]

\[
q_i^* = \begin{cases}
\frac{1}{2a} \left(1 - C_a - \frac{N_A(1 - C_a) - 2aQ}{W_i \sum_{j=1}^{N_A} \frac{1}{w_j}} \right)
& i \in T_S \\
0
& i \in T - T_S - T_Q
\end{cases}
\]

Sensible (and quasi-sensible) nodes attacked and defended

Non-sensible nodes not attacked and not defended
Nash equilibrium – case 2

- If the attack power P is low relative to the cost of monitoring, the defender does not use all his available resources: $\sum_i p_i = P$ and $\sum_i q_i < Q$

- Nash equilibrium given by

$$p_i^* = \begin{cases} \frac{bC_f + C_m}{2a + bC_f}, & W_i > W_{ND+1} \\ 0, & W_i \leq W_{ND+1} \end{cases}$$

$$q_i^* = \begin{cases} \frac{1-C_a}{2a} \left(1 - \frac{W_{ND+1}}{W_i}\right), & W_i > W_{ND+1} \\ 0, & W_i \leq W_{ND+1} \end{cases}$$

where $N_D = \left[\frac{(2a + bC_f)P}{(bC_f + C_m)}\right]$
Nash equilibrium – case 3

- If \(P \) and \(Q \) are large, or cost of monitoring/attack is too large, neither attacker nor defender uses all available resources: \(\sum p_i < P \) and \(\sum q_i < Q \)

- Nash equilibrium given by

\[
\begin{align*}
p_i^* &= \frac{bC_f + C_m}{2a + bC_f} \\
q_i^* &= \frac{1 - C_a}{2a}
\end{align*}
\]

\(i \in T \)

- All targets are sensible
- Equivalent to \(N \) independent IDS
- Monitoring/attack independent of \(W_i \)
 - Due to payoff form (cost of attack proportional to value)

- All IDS work: assumption that payoff is sum on all targets
Main objective: illustrate what game theory brings to the question “how to learn?” on the example of:

Classification from strategic data

1. Problem formulation

2. The adversarial learning approach

3. The game-theoretic approach
 a. Intrusion detection games
 b. Classification games
Classification games

Class 0
Non-attacker (noise)

Class 1
Attacker (strategic)

Classifier

Attacker (strategic)
Maximizes false negative

Defender (strategic)
Minimizes false negative (zero-sum)

Nash equilibrium?
A first approach

[Brückner, Scheffer, KDD ’12, Brückner, Kanzow, Scheffer, JMLR ’12]

Model:
- Defender selects the parameters of a pre-specified generalized linear model
- Adversary selects a modification of the features
- Continuous cost in the probability of class 1 classification

Result:
- Pure strategy Nash equilibrium
A more flexible model [Dritsoula, L., Musacchio, 2012, 2015]

- Model specification

- Game-theoretic analysis to answer the questions:
 - How should the defender perform classification?
 - How to combine the features?
 - How to select the threshold?
 - How will the attacker attack?
 - How does the attacker select the attacks features?
 - How does the performance change with the system’s parameters?
Model: players and actions

- **Attacker** chooses $\nu \in \mathcal{V}$ → Set of feature vectors
- **Defender** chooses \mathcal{C} → Set of classifiers $\{0,1\}^{\mathcal{V}}$
 - Classifier $c : \mathcal{V} \rightarrow \{0,1\}$
- **Two-players game** $G = \langle \mathcal{V}, \mathcal{C}, P_N, p, c_d, c_{fa} \rangle$
Model: payoffs

- **Attacker’s payoff:**
 \[U^A(v, c) = R(v) - c_d \mathbf{1}_{c(v)=1} \]

 - Reward from attack
 - Cost if detected

- **Defender’s payoff:**
 \[U^D(v, c) = p \left(-R(v) + c_d \mathbf{1}_{c(v)=1} \right) + (1 - p) c_{fa} \sum_{v' \in V} P_N(v') \mathbf{1}_{c(v')=1} \]

 - Cost of false alarm
 - Rescaling

 \[U^D(v, c) = -U^A(c, v) + \frac{(1 - p)}{p} c_{fa} \left(\sum_{v' \in V} P_N(v') \mathbf{1}_{c(v')=1} \right) \]
Nash equilibrium

- Mixed strategies:
 - Attacker: probability distribution \(\alpha \) on \(V \)
 - Defender: probability distribution \(\beta \) on \(C \)

- Utilities extended:
 \[
 U^A(\alpha, \beta) = \sum_{v \in V} \sum_{c \in C} \alpha_v U^A(v, c) \beta_c
 \]

- Nash equilibrium: \((\alpha, \beta)\) s.t. each player is at best-response:
 \[
 \alpha^* \in \arg\max_{\alpha} U^A(\alpha, \beta^*) \\
 \beta^* \in \arg\max_{\beta} U^D(\alpha^*, \beta)
 \]
“Easy solution”: linear programming (almost zero-sum game)

\[U^A(v, c) = R(v) - c^d_1 c(v) = 1 \left(1 - \frac{1}{p} \right) c \left(\sum_{v' \in V} P_N(v') 1_{c(v') = 1} \right) \]

\[U^D(v, c) = -U^A(c, v) + \left(1 - \frac{1}{p} \right) c \left(\sum_{v' \in V} P_N(v') 1_{c(v') = 1} \right) \]

- The non-zero-sum part depends only on \(c \in C \)
- Best-response equivalent to zero-sum game
 - Solution can be computed by LP, **BUT**
 - The size of the defender’s action set is large
 - Gives no information on the game structure
Main result 1: defender combines features based on attacker’s reward

- Define C^T: set of threshold classifiers on $R(v)$

 $$C^T = \left\{ c \in C : c(v) = 1_{R(v) \geq t} \forall v, \text{ for some } t \in \mathbb{R} \right\}$$

Theorem:

For every NE of $G = \langle V, C, P_N, p, c_d, c_{fa} \rangle$, there exists a NE of $G^T = \langle V, C^T, P_N, p, c_d, c_{fa} \rangle$ with the same attacker’s strategy and the same equilibrium payoffs.

- Classifiers that compare $R(v)$ to a threshold are optimal for the defender
 - Different from know classifiers (logistic regression, etc.)
 - Reduces a lot the size of the defender’s strategy set
Main result 1: proof’s key steps

1. The utilities depend on β only through the probability of class 1 classification:

$$\pi_d(v) = \sum_{c \in C} \beta_c 1_{c(v) = 1}$$

2. At NE, if $P_N(v) > 0$ for all v, then $\pi_d(v)$ increases with $R(v)$

3. Any $\pi_d(v)$ that increases with $R(v)$ can be achieved by a mix of threshold strategies in C^T
Main result 1: illustration

\[c : V \rightarrow \{0, 1\} \]

\[\pi_d : V \rightarrow [0, 1] \]

In NE, \(\pi_d \) is increasing in \(R(v) \).
Reduction of the attacker’s strategy space

- V^R: set of rewards

$$G^T = \langle V, C^T, P_N, p, c_d, c_{fa} \rangle$$ and $$G^{R,T} = \langle V^R, C^T, P_N^R, p, c_d, c_{fa} \rangle$$ have the same equilibrium payoffs

- $P_N^R(r) = \sum_{v: R(v) = r} P_N(v)$: non-attacker’s probability on V^R

- It is enough to study $$G^{R,T} = \langle V^R, C^T, P_N^R, p, c_d, c_{fa} \rangle$$
Main result 2: attacker’s equilibrium strategy mimics the non-attacker

Lemma:

If \((\alpha, \beta)\) is a NE of \(G = \langle V, C, P_N, p, c_d, c_{fa}\rangle\), then

\[
\alpha_v = \frac{1 - p c_{fa}}{p c_d} P_N(v), \quad \text{for all } v \text{ s.t. } \pi_d(v) \in (0,1)
\]

- Attacker’s strategy: scaled version of the non-attacker distribution on a subset
Game rewriting in matrix form

- **Game** $G^{R,T} = \langle V^R, C^T, P^R_N, p, c_d, c_{fa} \rangle$
 - **Attacker** chooses attack reward in $V^R = \{r_1 < r_2 < \cdots\}$
 - **Defender** chooses threshold strategy in C^T

\[U^A(\alpha, \beta) = -\alpha'\Lambda\beta \quad \text{and} \quad U^D = \alpha'\Lambda\beta - \mu'\beta \]

\[
\Lambda = c_d \begin{pmatrix}
1 & 0 & \ldots & \ldots & 0 & 0 \\
\vdots & 1 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & 0 & 0 & 0 \\
1 & \ldots & \ldots & 1 & 0 & 0 \\
\end{pmatrix}
- \begin{pmatrix}
r_1 \\
\vdots \\
\vdots \\
r_{|V^R|} \\
\end{pmatrix}
\cdot 1'_{|V^R|+1}
\]

\[
\mu_i = \frac{1-p}{p} c_{fa} \sum_{r \geq r_i} P^R_N(r)
\]
Main result 3: Nash equilibrium structure (i.e., how to choose the threshold)

Theorem:

At a NE of $G^{R,T} = \langle V^R, C^T, P^R_N, p, c_d, c_{fa} \rangle$, for some k:

- The attacker’s strategy is $\left[0, \cdots, 0, \alpha_k, \cdots, \alpha_{|V^R|}\right]$
- The defender’s strategy is $\left[0, \cdots, 0, \beta_k, \cdots, \beta_{|V^R|}, \beta_{|V^R|+1}\right]$

where

$$\beta_i = \frac{r_{i+1} - r_i}{c_{d}}, \text{ for } i \in \{k + 1, \cdots, |V^R|\}$$

$$\alpha_i = \frac{1 - p \cdot c_{fa}}{p \cdot c_{d}} P^R_N (r_i), \text{ for } i \in \{k + 1, \cdots, |V^R| - 1\}$$
NE computation

- Defender: try all vectors β of the form (for all k)
 \[\beta_i = \frac{r_{i+1} - r_i}{c_d} \]
 Mix of defender threshold strategies
 \[k + 1 \]
 \[|V^R| + 1 \]

- Take the one maximizing payoff
 - Unique maximizing $\beta \rightarrow$ unique NE.
 - Multiple maximizing $\beta \rightarrow$ any convex combination is a NE

- Attacker: Use the formula
 - Complete first and last depending on β
Nash equilibrium illustration

\[r_i = i \cdot c_a \]

- Case
Main result 3: proof’s key steps

1. At NE, β maximizes $\min \Lambda \beta - \mu' \beta$

- Solve LP: maximize $z - \mu' \beta$

 s.t. $\Lambda \beta \geq z \cdot 1_{V^R}$, $\beta \geq 0, 1_{V^R} \cdot \beta = 1$

- extreme points of $\Lambda x \geq 1_{V^R}$, $x \geq 0$ $(\beta = x/\|x\|)$

2. Look at polyhedron and eliminate points that are not extreme

\[
\begin{align*}
 c_d x_1 + (r_{V^R}[1] - r_1 + \varepsilon) \|x\| &\geq 1 \\
 c_d (x_1 + x_2) + (r_{V^R}[2] - r_2 + \varepsilon) \|x\| &\geq 1 \\
 \vdots \\
 c_d (x_1 + x_2 + \cdots + x_{V^R}) + \varepsilon \|x\| &\geq 1
\end{align*}
\]
Example

- Case $r_i = i \cdot c_a, N = 100, P_N \sim \text{Bino}(\theta), p = 0.2$

\begin{align*}
 r_i &= i \cdot c_a, \\
 N &= 100, \\
 P_N &\sim \text{Bino}(\theta), \\
 p &= 0.2
\end{align*}
Example (2): variation with cost of attack

Players' NE payoff vs. cost of single attack, c_a
Example (3): variation with false alarm cost
Example (4): Variation with noise strength
Example (5): is it worth investing in a second sensor?

- There are two features

- 3 scenarios:
 - 1: defender classifies on feature 1 only
 • Attacker uses maximal strength on feature 2
 - 2: defender classifies on features 1 and 2 but attacker doesn’t know
 • Attacker uses maximal strength on feature 2
 - 3: defender classifies on features 1 and 2 and attacker knows
 • Attacker adapts strength on feature 2

- Is it worth investing?
 - Compare the investment cost to the payoff difference!
Conclusion: binary classification from strategic data

- Game theory provides new insights into learning from data generated by a strategic attacker

- Analysis of a simple model (Nash equilibrium):
 - Defender should combine features according to attacker’s reward → not use a known algorithm
 - Mix on threshold strategies proportionally to marginal reward increase, up to highest threshold
 - Attacker mimics non-attacker on defender’s support
Extensions and open problems

- Game theory can bring to other learning problems with strategic agents!

- Models with one strategic attacker [security]
 - Extensions of the classification problem
 - Model generalization, multiclass, regularization, etc.
 - Unsupervised learning
 - Clustering
 - Sequential learning
 - Dynamic classification

- Models with many strategic agents [privacy]
 - Linear regression, recommendation
THANK YOU

Patrick.Loiseau@eurecom.fr
Outline

1. Classification from strategic data
 a. The adversarial learning approach
 b. The game-theoretic approach

2. Linear regression from strategic data
 a. The game-theoretic approach
General motivation and questions

- An analyst wants to learn from data using linear regression
 - Medicine, economics, etc.

- Data provided by humans are revealed strategically
 - Privacy concerns: users add noise
 - Effort put by users to provide good data
 - Data manipulation

- Incentives are an integral part of the learning problem

- Research questions
 - How to model users objectives? What will be the outcome?
 - What is the loss of efficiency due to strategic aspects?
 - How to design a learning algorithm that gives good incentives to users?
Why do users reveal data?

- Because they are paid for it
 - Mechanism design problem: the learning algorithm is fixed and you ask “how to pay users to obtain optimal accuracy with minimal cost”
 - [Ghosh, Roth, 2011], [Dandekar et al., 2012], [Roth, Schoenebeck, 2012], [Ligett, Roth, 2012], [Cai et al., 2015], etc.

- Because they have an interest in the result from the learning algorithm
 - Interest in the result in a user’s direction
 - What algorithm can guarantee that users don’t lie?
 - [Dekel, Fischer, Procaccia, SODA ’08]
 - Interest in the global result: information as a public good
 - Without payment, which algorithm is optimal?
 - [Ioannidis, L., WINE ’13], [Chessa, Grossklags, L., FC ’15, CSF ’15]
Model (1): linear model of user data

\[y_i = \beta^T x_i + \varepsilon_i \]

- **Private data of** \(i \) \(\in \mathbb{R} \)
- **Inherent noise of** \(i \) mean 0, variance \(\sigma^2 \)
- **Model parameter** \(\in \mathbb{R}^d \) (unknown)
- **Public features of** \(i \) \(\in \mathbb{R}^d \)
- **User** \(i \) **adds noise**
- **Added noise of** \(i \) mean 0, variance \(\sigma_i^2 \)
- **Data reported by** \(i \) \(\in \mathbb{R} \)
- **Total noise of** \(i \) mean 0, variance \(\sigma^2 + \sigma_i^2 \)

\[\tilde{y}_i = \beta^T x_i + \varepsilon_i + z_i \]
Model (2): analyst’s parameter estimation

\[
\hat{\beta} = \left(X^T \Lambda X \right)^{-1} X^T \Lambda \tilde{y}
\]

- Generalized least-square estimator
 - Unbiased, covariance \(V = \left(X^T \Lambda X \right)^{-1} \)
 - Gauss-Markov/Aitken thm: smallest covariance amongst all linear unbiased estimators

\[
\Lambda = \begin{pmatrix}
\frac{1}{\sigma^2 + \sigma_1^2} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma^2 + \sigma_2^2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sigma^2 + \sigma_n^2}
\end{pmatrix}
\]

\((n \times 1)\) vector of reported data

\((n \times d)\) matrix of public features

inverse variance of \(\tilde{y}_i \)

weights \(\Lambda \)
Model (3): utilities/cost functions

- User i chooses inverse variance
 \[\lambda_i = \frac{1}{\sigma^2 + \sigma_i^2} \in \left[0, 1 / \sigma^2 \right] \]
 - “contribution to result accuracy (public good)"

- Minimize cost
 \[J_i(\lambda_i, \lambda_{-i}) = c_i(\lambda_i) + f(\lambda_i, \lambda_{-i}) \]

 Privacy cost
 Increasing convex

 Estimation cost
 \[f(\lambda_i, \lambda_{-i}) = F(V(\lambda_i, \lambda_{-i})) \]
 \(F \), hence \(f \), increasing convex

Examples:
\[F_1(\cdot) = \text{trace}(\cdot), \quad F_2(\cdot) = \|\cdot\|_F^2 = \text{trace}(\cdot^2) \]
Nash equilibrium [Ioannidis, L., 2013]

- If d users contribute, infinite estimation cost \(\rightarrow \) trivial equilibria
- Main equilibrium result

Theorem:
There exists a unique non-trivial equilibrium

Proof:
- Potential game
 \[\Phi(\lambda_i, \lambda_{-i}) = \sum_i c_i(\lambda_i) + f(\lambda_i, \lambda_{-i}) \]
- Potential is convex
Equilibrium efficiency

- Social cost: sum of cost of all users
 \[C(\vec{\lambda}) = \sum_{i} c_i(\lambda_i) + nf(\vec{\lambda}) \]

- Inefficiency of eq. measure by price of stability:
 \[PoS = \frac{C(\vec{\lambda}^{NE})}{C(\vec{\lambda}^{SO})} \]

 - Social cost at the non-trivial Nash equilibrium
 - Minimal social cost

- Remarks:
 - Same as PoA if we remove the trivial equilibria
 - \(PoS \geq 1 \), “large PoS: inefficient”, “small PoS: efficient”
A first result:

Theorem:
The PoS increases at most linearly: $PoS \leq n$.

- Obtained only from potential structure: by positivity of the estimation and privacy costs:
 \[
 \frac{1}{n} C(\vec{\lambda}^{NE}) \leq \Phi(\vec{\lambda}^{NE}) \leq \Phi(\vec{\lambda}^{SO}) \leq C(\vec{\lambda}^{SO})
 \]
- Works for any estimation cost, i.e., any scalarization F
- But quite rough!
Equilibrium efficiency (3) [Ioannidis, L., 2013]

- Monomial privacy costs: \(c_i(\lambda_i) = c_i \cdot \lambda_i^k, \quad c_i > 0, k \geq 1 \)

Theorem:

If the estimation cost is \(F_1(\cdot) = \text{trace}(\cdot) \), then \(\text{PoS} \leq n^{1/(k+1)} \)

If the estimation cost is \(F_2(\cdot) = \| \cdot \|_F^2 \), then \(\text{PoS} \leq n^{2/(k+2)} \)

- Sharper bounds: \(n^{1/2} \) for trace, \(n^{2/3} \) for Frobenius

- “More convex” privacy cost \(\rightarrow \) slower PoS increase
 - Worst case: linear privacy cost (\(k=1 \))

- Proof: KKT and

\[
\frac{\partial \text{tr}(V(\tilde{\lambda}))}{\partial \lambda_i} = -x_i^T V^2 x_i, \quad \frac{\partial \|V(\tilde{\lambda})\|_F^2}{\partial \lambda_i} = -x_i^T V^3 x_i \quad \left(V = (X^T \Lambda X)^{-1} \right)
\]
Equilibrium efficiency (4) [Ioannidis, L., 2013]

- Worst-case extends beyond monomials

Theorem:

With the estimation cost is $F_1(\cdot) = \text{trace}(\cdot)$:

if $n c_i'(\lambda) \leq c_i'(n^{1/2} \lambda)$, then $\text{PoS} \leq n^{1/2}$

With the estimation cost is $F_2(\cdot) = \|\cdot\|_F^2$:

if $n c_i'(\lambda) \leq c_i'(n^{1/3} \lambda)$, then $\text{PoS} \leq n^{2/3}$

- More general than monomials, but
 - c_i grows \simlarger than λ^3 for F_1 and λ^4 for F_2

- Proof based on Brouwer’s fixed-point thm
What is the best estimator? [IL ’13]
Aitken-like theorem

- Why generalized least-square?

Theorem (Aitken, 1935):

GLS yields smallest covariance amongst linear unbiased estimators. (Λ fixed!)

GLS

- Linear estimator: \(\hat{\beta} = L\tilde{y}, \quad L = \left(X^T \Lambda X \right)^{-1} X^T \Lambda + D^T \)

- What about the strategic setting?

Theorem:

In the **strategic setting**, GLS gives optimal covariance amongst linear unbiased estimators. (Λ depends on the estimator!)
Can we improve the estimation? [Chessa, Grossklags, L. FC ’15, CSF ’15]

- Case where the analyst only estimates the mean (d=1 and all x_i’s are the same)

- Theorem: for a well chosen η, the analyst can strictly improve the estimator’s variance by restricting the inverse variance chosen by the user to $\{0\} \cup [\eta, 1/\sigma^2]$

- Improves by a constant factor (PoS still increases the same with η)
Open questions

- General model
 - Linear regression with regularization
 - Recommendation

- Selection of agent to ask data from

- Combine monetary incentives with the users interest in the result
Is the iid assumption always valid?

- **Security**
 - Spam detection, detection of malicious behavior in online systems, malware detection, fraud detection

- **Personal data**
 - Privacy research: users obfuscating data before revealing it to an analyst, incentivizing high quality data, recommendations, reviews

- **Data to learn from is generated or provided by humans**
 - Strategic agents reacting to the learning algorithm

- **How to learn in this situation?**
Outline

1. Classification from strategic data
 a. The adversarial learning approach
 b. The game-theoretic approach

2. Linear regression from strategic data
 a. The game-theoretic approach
What’s not covered here...

- Main focus of the tutorial: illustrate what game theory can bring on simple examples

- Non-covered topics:
 - Unsupervised learning
 - Sequential learning
 - Multi-armed bandits, prediction with expert advice
Outline

1. Classification from strategic data
 a. The adversarial learning approach
 b. The game-theoretic approach

2. Linear regression from strategic data
 a. The game-theoretic approach
1. Classification from strategic data
 a. The adversarial learning approach
 b. The game-theoretic approach

2. Linear regression from strategic data
 a. The game-theoretic approach
Outline

1. Classification from strategic data
 a. The adversarial learning approach
 b. The game-theoretic approach

2. Linear regression from strategic data
 a. The game-theoretic approach
Open problems

- **Generalized model:** how is the NE classifier affected
 - Generalized payoffs
 - Generalized action sets
 - Kernel based features
 - Regularization
 - Multi-class classification

- **Dynamic classification**
 - Learning the attacker’s utility
 - Optimizing trade-off between acquiring vs using reputation

- **Unsupervised learning**
 - Clustering