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Introduction

During the course of this workshop, we have used periodic boundary conditions in first-principles
calculations to efficiently describe macroscopic, crystalline materials. It is important to realize
that the application of periodic boundary conditions relies on the assumption that the nuclei con-
stitute an immobile grid with fixed periodicity. However, thermodynamic fluctuations constantly
lead to displacements from this perfectly periodic grid of equilibrium positions – even at zero
temperature due to the quantum mechanical zero point motion. Accounting for this dynamics is
essential to understand the physics of many fundamental material properties such as the specific
heat, the thermal expansion, as well as charge and heat transport.

To introduce you to these effects, this tutorial consists of two parts:

Part I: Phonons: Harmonic Vibrations in Solids

Problem I: Using phonopy-FHI-aims

Problem II: Supercell Size Convergence

Problem III: Lattice Expansion: The Quasi-Harmonic Approximation

Part II: Electron-Phonon Coupling: Band Gap Renormalization

Problem IV: The Role of the Lattice Expansion

Problem V: The Role of the Atomic Motion

In part I, we will compute the vibrational properties of a solid using the harmonic approxima-
tion. In particular, we will discuss and investigate the convergence with respect to the supercell
size used in the calculations. Furthermore, we will learn how the harmonic approximation can be
extended in a straightforward fashion to approximatively account for a certain degree of anhar-
monic effects (quasi-harmonic approximation) and how this technique can be used to compute
the thermal lattice expansion.

In part II, we will then go back to electronic structure theory and investigate how the fact that
the nuclei are not immobile affects the electronic band structure. Both the role of the lattice
expansion and of the atomic motion will be discussed and analyzed.

Phonons: Harmonic vibrations in solids

To determine the vibrations in a solid, we approximate the potential energy surface for the nuclei
by performing a Taylor expansion of the total energy E around the equilibrium positions R0:
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The linear term vanishes, since no forces F = −∇E are acting on the system in equilibrium R0.

Assessing the Hessian ΦIJ = ∂2E
∂RI ∂RJ

involves some additional complications: In contrast to
the forces F, which only depend on the density, the Hessian ΦIJ also depends on its derivative
with respect to the nuclear coordinates, i.e., on its response to nuclear displacements. One can
either use Density Functional Perturbation Theory (DFPT) [1] to compute the response or one
can circumvent this problem by performing the second order derivative numerically by finite
differences
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as we will do in this tutorial. The definition in Eq. (2) is helpful to realize that the Hessian
describes a coupling between different atoms, i.e., how the force acting on an atom RJ changes
if we displace atom RI , as you have already learned in tutorial 1. However, an additional
complexity arises in the case of periodic boundary conditions, since beside the atoms in the unit
cell RJ we also need to account for the periodic images RJ′ . Accordingly, the Hessian is in
principle a matrix of infinite size. In non-ionic crystals, however, the interaction between two
atoms I and J quickly decays with their distance RIJ , so that we can compute the Hessian from
finite supercells, the size convergence of which must be accurately inspected (cf. Exercise 2).

Once the real-space representation of the Hessian is computed, we can determine the dynamical
matrix by adding up the contributions from all periodic images J ′ in the mass-scaled Fourier
transform of the Hessian:

DIJ(q) =
∑
J′

ei(q·RJJ′ )
√
MIMJ

ΦIJ′ . (3)

In reciprocal space [2], this dynamical matrix determines the equation of motion for such a
periodic array of harmonic atoms for each reciprocal vector q:

D(q) [ν(q)] = ω2(q) [ν(q)] . (4)

The eigenvalues ω2(q) (and eigenvectors ν(q)) of the dynamical matrix D(q) completely describe
the dynamics of the system (in the harmonic approximation), which is nothing else than a
superposition of harmonic oscillators, one for each mode, i.e., for each eigenvalue ωs.

The respective density of states
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is a very useful quantity, since it allows to determine any integrals (the integrand of which only
depends on ω) by a simple integration over a one-dimensional variable ω rather than a three-
dimensional variable q. This is much easier to handle both in numerical and in analytical models.
For instance, we can compute the associated thermodynamic potential1, i.e., the (harmonic)
Helmholtz free energy

F ha(T, V ) =
∫
dω g(ω)

(
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2 + kB T ln
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)))
. (6)

In turn, this allows [2] to calculate the heat capacity at constant volume

CV = −T
(
∂2F ha(T, V )

∂T 2

)
V

. (7)

To compute these quantities, we will employ the program package phonopy [3] and its FHI-
aims interface phonopy-FHI-aims . Please note that phonopy makes extensive use of symmetry
analysis [4], which allows to reduce numerical noise and to speed up the calculations considerably.

1 Given that the Bose-Einstein distribution is used for the derivation of the harmonic free energy in this case, we
get the correct quantum-mechanical result including zero-point effects by this means.
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WARNING:
In the following exercises, the computational settings, in particular the reciprocal
space grid (tag k_grid), the basis set, and supercells, have been chosen to allow a

rapid computation of the exercises in the limited time and within the CPU resources
available during the tutorial session. In a “real” production calculation, the reciprocal
space grid, the basis set, and the supercells would all have to be converged with much

more care, but the qualitative trends hold already with the present settings

As usual, you can find all data and scripts required for this tutorial in the directory:

/usr/local/gss2014/hands-on-2014-tutorials/tutorial_6/skeleton

Please copy this directory to your home directory first.

Exercise 1: Using phonopy-FHI-aims

• Learn how to perform phonopy-FHI-aims / FHI-aims phonon calculations.

[Estimated total CPU time: < 10 sec]

In directory exercise_1, you will find the geometry for the primitive silicon fcc unit cell
(geometry.in) and the control file. In addition to the usual control tags, which you are certainly
comfortable with by now, control.in contains a series of tags that are related to the phonon
calculation (and thus start with phonon):

• Supercell:
The tag phonon supercell (x, y, z) allows to specify the supercell size that shall be used
for the calculation. In this first exercise, we use the settings phonon supercell 1 1 1 and
thus perform all calculation in the unit cell specified in geometry.in.

• Displacement ε:
The tag phonon displacement ε allows to specify the displacement ε used for the finite
difference in Eq. (2): On the one hand, too large values of ε make the numerical derivative
inaccurate; on the other hand, too small values of ε can amplify any residual numerical
noise2. The default value of 0.01 Å typically works well for solids.

Now, let’s perform the harmonic phonon calculation:

(A) Run phonopy-FHI-aims to construct the supercell:
Run phonopy-FHI-aims by typing

phonopy-FHI-aims

in the terminal (Make sure to be in the correct directory, i.e., exercise_1). In this step,
phonopy-FHI-aims analyzes the system’s symmetry and generates all ε-displaced geometries
required to determine the Hessian ΦIJ via Eq. (2). For this purpose, phonopy-FHI-aims has

2 The numerical noise can be reduced and virtually eliminated at a given ε by choosing tighter convergence criteria
for the forces: the smaller the value of ε, however, the tighter (and the more expensive) the required convergence
criteria.
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created a directory phonopy-FHI-aims-displacement-01 that contains the necessary files,
i.e., an exact copy of control.in and new geometry.in file. Please compare the original
geometry.in with the one in phonopy-FHI-aims-displacement-01: Can you spot the
displacement?

Please note that a unit cell containing NA atoms (= 2 in your case) would in principle
require 3NA different displacements and derivatives for the computation of the Hessian
with the dimension 9N2

A. Due to the high symmetry of silicon, phonopy-FHI-aims is able to
reduce the number of required displacements to one. In systems with lower symmetries, this
is no longer the case and more than one displacement and subdirectory will be generated.

(B) Run FHI-aims to calculate the forces:
Now, make sure to have changed into the directory phonopy-FHI-aims-displacement-01

and run FHI-aims in the usual fashion, but redirect the output according to:

mpirun -np 4 aims.x | tee phonopy-FHI-aims-displacement-01.out

In this step, we are calculating the ab initio forces FJ acting on the atoms in the ε-displaced
geometry that are required for the numerical derivative in Eq. (2).

(C) Run phonopy-FHI-aims again to evaluate the calculation:
Change into the parent directory (exercise_1) and run phonopy-FHI-aims again by typing

cd ..

phonopy-FHI-aims

in the terminal.

Congratulations, you have just performed your first phonon calculation! Among other use-
ful information, the final output of phonopy-FHI-aims contains the phonon frequencies at the
Γ point:

# phonon frequencies at Gamma:

# | 1: 0.00000 cm^-1

# | 2: 0.00000 cm^-1

# | 3: 0.00001 cm^-1

# | 4: 524.22323 cm^-1

# | 5: 524.22323 cm^-1

# | 6: 524.22323 cm^-1

Why do the first three frequencies vanish?

Exercise 2: Supercell Size Convergence

• Perform phonon calculations in different supercells and inspect their conver-
gence with respect to the supercell size.

• Learn how to calculate vibrational free energies and heat capacities.

[Estimated total CPU time: < 10 min]

As mentioned in the introduction (see Sec. A), a bulk system does not only consist of the
NA atoms in the primitive unit cell, but of an in principle infinite number of periodic replicas. In
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non-ionic crystals, however, the interaction between two atoms I and J quickly decays with their
distance RIJ , so that we can compute the Hessian from finite supercells, the size convergence of
which must be accurately inspected. Such a periodic problem is best represented in reciprocal
space by using the dynamical matrix DIJ(q) defined in Eq. (3): As a consequence, we do not
only get 3NA phonon frequencies, but 3NA phonon bands ω(q). For increasing supercell sizes,
more and more reciprocal space points q are assessed exactly, so that an accurate interpolation
of ω(q) becomes possible.

To output the band structure in all of the exercises below, the control.in file now contains
a section

phonon band 0 0 0 0.00 0.25 0.25 100 Gamma Delta

phonon band 0.00 0.25 0.25 0 0.5 0.5 100 Delta X

phonon band 0 0.5 0.5 0.25 0.50 0.75 100 X W

phonon band 0.25 0.50 0.75 0.375 0.375 0.75 100 W K

phonon band 0.375 0.375 0.75 0 0 0 100 K Gamma

phonon band 0 0 0 0.25 0.25 0.25 100 Gamma Lambda

phonon band 0.25 0.25 0.25 0.5 0.5 0.5 100 Lambda L

that defines which paths in the Brillouin zone shall be computed and plotted. The naming
conventions for reciprocal space that you have encountered in tutorial 2 are also used in this
case, in spite of the fact that we are now investigating the band structure of phonons (and not
of electrons!). Also, the syntax is closely related to the output band tag for the electronic band
structure that was introduced in Tutorial II. In a nutshell, the line

phonon band 0 0 0 0.00 0.25 0.25 100 Gamma Delta

requests the output of ω(q) on 100 linearly interpolated points along the path leading from
q = (0, 0, 0) to (0, 0.25, 0.25). Γ and ∆ will be used to label the initial and final point of the
path, respectively. Similarly,

phonon dos 0 800 800 3 45

requests the calculation of the phonon density of states g(ω) defined in Eq. (5): An evenly spaced
grid of 45× 45× 45 q-points will be used to sample the reciprocal space; g(ω) itself will be given
on 800 evenly spaced points between 0 and 800 cm−1, whereby a Gaussian smoothing kernel
with a width of 3 cm−1 will be applied. Accordingly, the tag

phonon free_energy 0 1010 1010 45

requests the computation of the harmonic free energy F ha(T, V ) defined in Eq. (6): Again, an
evenly spaced grid of 45×45×45 q-points will be used to sample the reciprocal space; F ha(T, V )
itself will be given on 1010 evenly spaced points between 0 and 1010 K. Finally, the tag

phonon hessian TDI

requests that the Hessian of the system shall be written to disk.

(Ex. 2.A) Phonons in a 2× 2× 2 supercell:
Please change into the directory exercise_2/A_V_times_8. Here, you will find a file geom-
etry.in that contains the geometry of silicon in its primitive unit cell and a file control.in
that already includes all the output tags discussed above. To request a calculation in a
2× 2× 2 supercell, please make sure that the control.in file features the line:

phonon supercell 2 2 2
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Please note that phonopy-FHI-aims generates these supercells on its own and spares you
the trouble to generate such geometries by hand. Still, it is your responsibility to adapt
the number of k-points in reciprocal space used for the electrons to match the enlarged
supercell. This step is essential to get consistent results! In our case of a 2×2×2 supercell,
only half the k-points are needed in each direction to achieve the exact same reciprocal
space sampling as in the unit cell, for which we used 4 × 4 × 4 k-points in exercise 1.
Therefore make sure that the control.in file features the line:

k_grid 2 2 2

Now, you can just run your phonon calculation with the three-step-procedure that you
have learned in exercise 1:

(1) Execute phonopy-FHI-aims

(2) Type

cd phonopy-FHI-aims-displacement-01

mpirun -np 4 aims.x | tee phonopy-FHI-aims-displacement-01.out

cd ..

(3) Execute phonopy-FHI-aims

This will generate a series of files

phonopy-FHI-aims-band_structure.dat phonopy-FHI-aims-band_structure.pdf

phonopy-FHI-aims-dos.dat phonopy-FHI-aims-dos.pdf

phonopy-FHI-aims-free_energy.dat phonopy-FHI-aims-free_energy.pdf

containing the band structure, the density of states, and the free energy (including the
heat capacities and the individual contributions to the free energy F = U − TS). For your
convenience, plots in the pdf format of the respective data are generated automatically as
well.

For plotting, we recommend to use xmgrace. You can import the data from the files via
the drop-down menus (Data→Import→ASCII). Make sure to choose:

Load as NXY for phonopy-FHI-aims-band_structure.dat

Load as Single Set for phonopy-FHI-aims-dos.dat

Load as Block Data for phonopy-FHI-aims-free_energy.dat

In the latter case, a pop-up window appears that asks you which columns to use for the
plot, given that phonopy-FHI-aims-free_energy.dat contains the temperature (col. 1),
the free energy F ha (col. 2), the internal energy U (col. 3), the heat capacity CV (col. 4),
and the respective entropy TS (col. 5).

All these quantities look very smooth and well behaved, because we have used Fourier
interpolation [4] to assess frequencies ω(q) at q-points that are not commensurate with our
finite supercell. You can investigate the importance of these effects by reducing the number
of q-points used for the computation of the density of states and free energies, e.g., from
45 to 20 and 10. After editing the file control.in you can just rerun phonopy-FHI-aims
(step 3) above, you do not need to calculate the forces again.

Eventually, you can have a look at the file phonopy-FHI-aims-force_constants.dat, in
which phonopy-FHI-aims has saved the computed Hessian in ASCII format. We will use
these files again in exercise 5, so do not delete them.
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(Ex. 2.B & 2.C) Achieving Supercell Converge:
The directory B_V_times_4 and C_V_times_32 again contain a set of control.in and
geometry.in files. In these two cases, you do not need to edit them - but you might still
have a look at them. In both cases, the supercell specifications have a different format:

phonon supercell -1 1 1 1 -1 1 1 1 -1 # in B_V_times_4/control.in

phonon supercell -2 2 2 2 -2 2 2 2 -2 # in C_V_times_32/control.in

Can you guess what is going on here? Tip: The solution becomes easier if you write the
supercell definition as −1 1 1

1 −1 1
1 1 −1


and if you remember that the unit cell vectors of the fcc structure are: 0 a/2 a/2

a/2 0 a/2
a/2 a/2 0


While thinking about it, you can already start the calculations. For both B_V_times_4

and C_V_times_32, you must not edit the input files. Just run the phonon calculations
following the three-step-procedure that you have already mastered in the previous exercises.

Compare the band structure, the density of states, the free energy and the heat capacity
for the various supercell size. Please note that the directory

/usr/local/gss2014/hands-on-2014-tutorials/tutorial_6/reference/exercise_2

also contains a directory D_V_times_256, in which you can find the band structure, density
of states, free energy, and heat capacity for a supercell containing 512 atoms. Have we
reached convergence?

Exercise 3: Lattice Expansion in the Quasi-Harmonic Approximation

• Perform phonon calculations in supercells with different volumes

• Learn how to use the harmonic vibrational free energy to determine the lattice
expansion

[Estimated total CPU time: < 20 min]

In this exercise, we will inspect how the thermal motion of the atoms at finite temperatures can
lead to an expansion (or even a contraction) of the lattice. For an ideal harmonic system, which
is fully determined by the dynamical matrix DIJ(q) defined in Eq. (3), the Hamiltonian [cf. Eq. 1]
does not depend on the volume. This also implies that the harmonic Hamiltonian is independent
of the lattice parameters, and as a consequence of this, the lattice expansion coefficient

α(T ) = 1
a

(
∂a

∂T

)
p

(8)

vanishes [2]. To correctly assess the lattice expansion, it is thus essential to account for an-
harmonic effects. In this exercise, we will use the quasi-harmonic approximation [5] for this
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purpose: This requires us to inspect how the phonons, i.e., the vibrational band structures and
the associated free energies, change with the volume of the crystal. In a nutshell, we will thus
repeat the exact same kind of calculations performed in exercise 2.C – but now for different
lattice constants. For your convenience, we have provided a script that prepares the required
geometry.in and control.in files and runs phonopy-FHI-aims and FHI-aims for you. Since
these calculations will last roughly 20 minutes, start them first before reading on. For that
purpose, please change into the directory exercise_3 and execute the provided bash script:

cd exercise_3

bash A_run_phonons_for_different_lattice_constants.bash

In Tutorial II, you already learned how to determine the lattice constant of a crystal by finding
the minimum of the total energy EDFT(V ) by using the Birch-Murnaghan Equation-of-State.
There is a caveat, though: In the canonical ensemble, the relevant thermodynamic potential that
needs to be minimized is the free energy F (T, V ) and not the total energy EDFT(V ). The free
energy of a solid is given by the DFT total energy (per unit cell) and the vibrational free energy,
which is also calculated per unit cell:

F (T, V ) = EDFT(V ) + F ha(T, V ) (9)

At this point, we have already calculated the energetics of phonons at a given lattice constant.
However, Eq. (6) that defines F ha(T, V ) has no explicit dependence on the volume V . To account
for the volume dependence, we now calculate the free energy for a series of lattice constants, so
that we can pointwise evaluate and then minimize Eq. (9) using the Birch-Murnaghan Equation-
of-States. This is exactly what the script

A_run_phonons_for_different_lattice_constants.bash

does: For each lattice constant a, e.g., a = 2.6316, it creates a directory a2.6316 that contains:

• One calculation of EDFT in a2.6316/static

• One calculation of F ha(T ) in a2.6316/phonon

While the calculations are still running, have a look at the file ZPE.dat

# a E_DFT F_ha(T=0K)

2.631643 -15747.91092779 0.13315002

2.658773 -15747.97243102 0.12989168

2.685903 -15748.00735300 0.12640390

2.713034 -15748.01849601 0.12296804

2.740164 -15748.00830708 0.11943352

2.767294 -15747.97907170 0.11582336

2.794425 -15747.93313269 0.11246649

that contains EDFT(a) and F ha(a, T = 0K). The vibrational free energy does not vanish at
0K due to the quantum mechanical zero point motion of the atoms. Due to this zero point
free energy (ZPE), even at 0K the real lattice constant does not correspond to a minimum
of EDFT. You can investigate this effect by creating one file Static.dat that contains the
static energy EDFT(a) in col. 2 as function of a (col. 1) and a second file Static_and_ZPE.dat

that contains the full free energy F (a, T = 0K) = EDFT(a) + F ha(a, T = 0K) in col. 2 as
function of a (col. 1). Try to fit Static.dat and Static_and_ZPE.dat with the Birch-Murnaghan
Equation-of-State using

python murn.py -l 0.25 -p FILENAME
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in which FILENAME denotes the filename in which you have stored EDFT(a) and F (a, T = 0K),
respectively. What effects do you observe? Can you explain the trend? By now, some of the
calculations should already be finished, so you can also inspect how the vibrational band structure
and the free energies (e.g. at 300K) change with volume. You should find that, in general, the
bands appear to be at lower frequencies for higher lattice constant. Can you explain why? From
this picture, one can setup a simple qualitative model for the free energy as well: Are the trends
consistent with your model?

When all calculations are finished, we can now evaluate the calculations: In principle, this
requires to construct and to fit F (T, V ) with the Birch-Murnaghan Equation-of-State as we have
done above for each temperature of interest. To facilitate this tedious task, we provide a script
that does the job for you: Please type

bash B_evaluate_alpha.bash

First, have a look at the equilibrium lattice constant and bulk modulus computed with and
without ZPE. Do the results match your own fits?

Second, the script also computes (and stores in T_a0_alpha.dat) the lattice constant (col. 2)
and the lattice expansion coefficient (col. 3) defined in Eq. (8), which is determined via finite
difference from a(T ). We recommend to use xmgrace to plot these two quantities as a function of
the temperature (col. 1). Remember to select Load as Block Data in the Data→Import→ASCII
dialogue to access the different columns. Do you notice something surprising? Do you have an
explanation for this behaviour?

Electron-Phonon Coupling: Band Gap Renormalization

In the previous exercises, we have used phonopy-FHI-aims to compute the (harmonic and quasi-
harmonic) vibrational properties of silicon from first principles. In turn, we will now use the
results achieved in these previous exercises to investigate how the vibrational effects influence the
electronic properties of silicon, and in particular, the temperature dependence of its electronic
band gap. To allow for qualitative insights into the role of electron-phonon coupling, we will
perform calculations that explicitly account for thermodynamic changes in the lattice (Ex. 4)
and atomic (Ex. 5) degrees of freedom along the lines of Ref. [6] and [7], respectively. As it
was the case for the harmonic phonons, such real space approaches are not the only option
available to date to account for these effects: In recent years, Density Functional Perturbation
Theory (DFPT) [1] based methods have been applied successfully for these purposes as well [8, 9].

Exercise 4: The Role of the Lattice Expansion

• Investigate how the band structure and the band gap change due to the lattice
expansion.

[Estimated total CPU time: < 2 min]

In the previous exercises, we started from electronic structure theory and then used it as a tool
to investigate the motion of the atoms in the harmonic approximation. In turn, this allowed
us to study the lattice expansion as a function of temperature. Now, we go back to electronic
structure theory and investigate how the phonons affect the electronic structure. In a first step,
we will investigate how the lattice expansion affects the electronic structure. For this purpose,
we will now perform electronic band structure calculations for geometries constructed using the
lattice constants determined in the previous exercise.
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For this purpose, please first copy the file T_a0_alpha.dat from the directory exercise_3 to
the directory exercise_4:

cp T_a0_alpha.dat ../exercise_4/

cd ../exercise_4

Here, you can also find a script (A_band_gap_at_different_volumes.bash) that generates the
required geometries from the lattice constants defined in T_a0_alpha.dat. Also, it runs the
calculations for you and determines the band gap for this lattice constant viz. temperature. For
this purpose, please execute the script in the following fashion:

bash A_band_gap_at_different_volumes.bash T_a0_alpha.dat

In the output, you will find both the lattice constant and the band gap as a function of temper-
ature:

# Computing band gap shift due to lattice expansion at different temperatures:

# T(K) a(AA) Band gap (eV)

0.000 2.717657 0.513981

50.000 2.717641 ....

Use xmgrace to plot the band gap as a function of temperature and of lattice constant. Can you
explain the observed trends? Try to have a look at the band structures stored in the various
subdirectories, e.g., in T_500.000 and T_1000.000. For this purpose, use the python script
aimsplot.py that you have learned to use in Tutorial II.

Exercise 5: The Role of the Atomic Motion

• Learn how to perform Molecular Dynamics using the harmonic approximation

• Investigate how the electronic band structure changes due to the atomic mo-
tion.

[Estimated total CPU time: < 25 min]

The lattice expansion is not the only effect that can alter the band gap: As a matter of fact, also
the atomic motion leads to (instantaneous) changes in the electronic structure. In an experiment,
which is usually performed on a time scale that is orders of magnitude larger than the period
of the typical vibration in a solid, we thus only measure the thermodynamic average of the
electronic structure. To investigate this aspect, we will perform Molecular Dynamics simulations
at different temperatures. However, we will not be able to perform ab initio MD calculations due
to the limited time and computational resources available during our tutorial session. Instead,
we will use the Hessian computed in exercise 2 to perform “harmonic MD”: Using the harmonic
energy definition introduced in Eq. (1), we can compute the forces acting on the atoms in the
harmonic approximation:

FI = −
∑

J

ΦIJ∆RJ . (10)

These forces solely depend on the Hessian ΦIJ and on the displacements ∆RJ , which allows
us to perform MD simulations that are order of magnitude faster, since the electronic structure
theory information is already contained in the Hessian (approximatively for small displacements
from equilibrium). After performing the MD, we will compute the electronic band structure
for selected geometries occurring during the MD to determine the thermodynamic expectation
value of the band gap.
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In the directory exercise_5, you will find three identical subdirectories – one for each tem-
perature (300, 600, and 900 K respectively) that you should investigate:

T_300.000 T_600.000 T_900.000

In each of these directories, we will first perform the “harmonic MD” calculation. The necessary
control.in and geometry.in files are already provided, but you need to set the temperature of
the MD and the harmonic potential by yourself. The relevant portion of the control.in file is:

# Molecular Dynamics

MD_MB_init TEMPERATURE

MD_time_step 0.001

MD_clean_rotations .false.

MD_schedule

MD_segment 5.0 NVT_parrinello TEMPERATURE 0.050 # Equilibration

harmonic_potential_only FC_FILE

MD_segment 20.0 NVT_parrinello TEMPERATURE 0.050 # Sample phase space

harmonic_potential_only FC_FILE

Please replace the placeholder TEMPERATURE with the actual temperature in K you want to
simulate, e.g., 300.0 if you are in directory T_300.000. As you already know from Tutorial IV,
MD_MB_init specifies which temperature shall be used to initialize the velocities of the atoms and
MD_segment specifies which thermostat (with which settings) shall be used for that particular
trajectory segment. Additionally, we now have a new tag harmonic_potential_only, which
requests to perform the MD using the harmonic force constants provided in the file FC FILE.
We have already calculated the force constants in exercise 2, so we can just use the force constant
file generated there. For this purpose, please type:

cd T_300.000

cp ../../exercise_2/A_V_times_8/phonopy-FHI-aims-force_constants.dat fc.dat

Do not forget to replace the placeholder FC FILE in control.in with the actual filename fc.dat
before starting the calculation by typing:

mpirun -np 4 aims.x | tee aims.out

When the trajectory has finished, you can execute the bash script

bash A_band_gap_renormalization.bash aims.out

that

• Analyzes the trajectory stored in aims.out

• Extracts “snapshots” from the trajectory (i.e. geometries evenly spaced in time) and writes
them to a series of subdirectories snapshot_000i

• Performs the electronic band structure calculations in these subdirectories using the pro-
vided control.in file control.in.band_structure

After finishing, the script will output values for the average 〈·〉 and standard deviation σ of the
temperature (for the full trajectory TMD and the snapshots TSNAP, respectively) and for the
band gap EBG. Repeat these steps for all three temperatures, but do not forget to also adapt the
control.in file and to copy the fc.dat file also in the directories T_600.000 and T_900.000.

When everything is finished, create a file Temperature.dat that contains the average of
TMD (col. 1), the average of TSNAP (col. 2) and the standard deviation of TSNAP (col. 3):
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# Temperature.dat

# <T_MD> <T_SNAP> sigma(T_SNAP)

0.0 0.0 0.0

300.0 ... ...

Also, create a similar file Bandgap.dat that contains the average of TMD (col. 1), the average
of EBG (col. 2) and the standard deviation of EBG (col. 3):

# Temperature.dat

# <T_MD> <E_BG> sigma(E_BG)

0.0 0.50543 0.0

300.0 ... ...

In both cases, we have also added a line for the zero-temperature limit, since we know the
temperature and the band gap in a static calculation from the previous exercises. Now plot
these two quantities by using xmgrace. Select Load as Single Set and Data Type XYDY in
the import dialogue (Data→Import→ASCII) to plot the standard deviations σ as error bars.
What trends can you observe for the band gap? Try to fit the available data linearly us-
ing Data→Transformation→Regression and compare your results with the ones of your neigh-
bours. Do you think we are already converged with respect to the number of snapshots (Inspect
Temperature.dat!)? Do you think we are converged with respect to supercell size?
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