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I. THE HARMONIC CRYSTAL
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THE HARMONIC APPROXIMATION

 Determine Hessian aka the Harmonic Force Constants Φij:
• from Density-Functional Perturbation Theory

S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) &
S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001).

• from Finite Differences
K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) &
K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).
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phonopy-FHI-aims
A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).



THE FINITE DIFFERENCE APPROACH 
K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). 

A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).
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Example: Diamond Si (2 atoms in the basis):

Hessian has 36 entries:
⇒ 6 displacements d required
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Example: Diamond Si (2 atoms in the basis):

Space Group Analysis

Hessian has 5 unique, non-zero entries:
⇒ Only 1 displacement d required



(a) Edit your file control.in so that it contains the following lines
phonon displacement    0.01

(b) Run phonopy-FHI-aims by typing 
phonopy-FHI-aims

(c) Change into the directory phonopy-FHI-aims-displacement-01
      and run FHI-aims:

cd phonopy-FHI-aims-displacement-01 
mpirun -np 4 aims.x > phonopy-FHI-aims-displacement-01.out

(d) Change into parent directory and run phonopy-FHI-aims again
cd ..
phonopy-FHI-aims



THE HARMONIC APPROXIMATION
...in Molecules:

Tuesday July 22:
  ⇒ Björn Lange,  Nuts and Bolts of DFT II

  ⇒ O. Hofmann & L. Nemec, Tutorial 1

N ... Number of atoms
⇓

Degrees of Freedom: 3N
Dimension of Hessian: 9N2

BUT:
N ➝ ∞

...in Crystalline Solids:

N ... Number of atoms
⇓

Degrees of Freedom: 3N
Dimension of Hessian: 9N2



PERIODIC BOUNDARY CONDITIONS 

cf. Christian Ratsch, “Electronic Structure Theory for Periodic Systems: The Concepts”, Tuesday July 22

Unit Cell with 
Np atomsPeriodic Images Periodic Images

Lattice vector:

Real 
Space: 

Hessian Φij 

with i,j ➝ ∞

E0
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Reciprocal 
Space: 

Dynamical 
Matrix Di’j’(q) 
with i’,j’  ≤ Np

VIBRATIONS IN A CRYSTAL 101
 K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). 

Real 
Space: 

Hessian Φij 

with i,j ➝ ∞

Fourier Transform can be truncated since 
Φij = 0 for large |Rj0 - Rj’0|

 Hessian Φij 

with finite number 
of non-zero entries
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known for the whole 
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D(q) [⌫(q)] = !2(q) [⌫(q)]

VIBRATIONS IN A CRYSTAL 101
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

also see Björn Lange,  Nuts and Bolts of DFT II, Tuesday July 22

Equation of Motion becomes an Eigenvalue Problem:

Dynamical matrix:

Analytical Solution in Real Space: 
       Superposition of Harmonic Oscillations

Rj(t) = R0
j +Re

 
X

s

Asp
Mi

ei(q·(R
0
j�R0

j0 )�!s(q)t) · [⌫s(q)]j0

!



Eigenvalue problem:
D(q) [⌫(q)] = !2(q) [⌫(q)]

Di0j0(q) =
X

j

ei(q·(Rj�Rj0 ))
p
Mi0Mj0

�i0j

Dynamical matrix:

VIBRATIONS IN A CRYSTAL 101
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

Björn Lange,  Nuts and Bolts of DFT II, Tuesday July 22

� X

!

q



VIBRATIONS IN A CRYSTAL 101
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

Björn Lange,  Nuts and Bolts of DFT II, Tuesday July 22

Eigenvalue problem:
D(q) [⌫(q)] = !2(q) [⌫(q)]

� X

!

q

Di0j0(q) =
X

j

ei(q·(Rj�Rj0 ))
p
Mi0Mj0

�i0j

Dynamical matrix:
=1

"

" " " "



VIBRATIONS IN A CRYSTAL 101
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VIBRATIONS IN A CRYSTAL 101
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

Björn Lange,  Nuts and Bolts of DFT II, Tuesday July 22

� X
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q

For Np atoms in the unit cell there are:

3 Acoustic modes:

- Atoms in unit cell in-phase
- Acoustic modes vanish at "
- Strong (typically linear) dispersion close to  "

(3Np - 3) Optical modes:

- Atoms in unit cell out-of-phase
- ω > 0 at "#(and everywhere else)
- Weak dispersion



CONVERGING THE SUPERCELL
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 phonon displacement 0.01
 phonon supercell    2  2  2
 
 k_grid              2  2  2
 

 phonon displacement 0.01 
 phonon supercell    1  1  1
 
 k_grid              4  4  4
 

Fourier Transform can be 
truncated since Φij = 0 
for large Rij0=|Rj0 - Rj’0|
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 phonon displacement 0.01 
 phonon supercell    1  1  1
 
 k_grid              4  4  4
 

Fourier Transform can be 
truncated since Φij = 0 
for large Rij0=|Rj0 - Rj’0|

To achieve convergence, it is essential to have 
a consistent description of the electronic 

structure for all supercell sizes:
#atoms • #k-points ≈ constant



CONVERGING THE SUPERCELL
Fourier Transform can be 

truncated since Φij = 0 
for large Rij0=|Rj0 - Rj’0|
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Oblique Cell:
Not all Cartesian directions 

are treated consistently!

Cubic (“spherical”) Cell:
Consistent assessment of 

all cartesian directions!



VIBRATIONAL BAND STRUCTURE
 
 # control.in : Plot vibrational band structure
 phonon band  0     0     0     0.00  0.25  0.25  100   Gamma  Delta
 phonon band  0.00  0.25  0.25  0     0.5   0.5   100   Delta  X
 phonon band  0     0.5   0.5   0.25  0.50  0.75  100   X      W
 phonon band  0.25  0.50  0.75  0.375 0.375 0.75  100   W      K
 phonon band  0.375 0.375 0.75  0     0     0     100   K      Gamma
 phonon band  0     0     0     0.25  0.25  0.25  100   Gamma  Lambda
 phonon band  0.25  0.25  0.25  0.5   0.5   0.5   100   Lambda L
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VIBRATIONAL DENSITY OF STATES

 
 # control.in : Plot vibrational density of states
 phonon dos         0   800   800   3 45
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FREE ENERGY AND HEAT CAPACITY
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 # control.in : Plot harmonic contribution to F(T)
 phonon free_energy 0  1010  1010     45



THE QUASI-HARMONIC 
APPROXIMATION



THE HARMONIC APPROXIMATION
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Lattice expansion vanishes in the harmonic approximation.
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THE QUASI-HARMONIC APPROACH

Assess lattice expansion by explicitly accounting 
for the volume dependence of the Hessian.
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Birch-Murnaghan fit of E(a0)
cf.  L. Nemec & B. Bienik, Tutorial 2
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+Fha(0K) 
Add vibrational 

free energy for each 
individual value of a0

Repeat for 
each temperature

0K <  T1 <  T2 

+Fha(T1) 

+Fha(T2) 
a0(T)

Birch-Murnaghan fits for each individual temperature allow to 
determine temperature dependence of lattice constant a0(T). 



ELECTRON-PHONON 
COUPLING



gap of Ge (see [41] and references therein). They amount to
(at Tx6 K): isotope shift Z0.36 meV/amu, renormaliza-
tionZK53 meV. The Pässler fit to uind(T) yieldsK52 meV
for the renormalization [40], also in good agreement with
the value obtained from the isotope effect. For the direct gap
of germanium u0, a value of 0.49 meV/amu is reported in
[41]. The corresponding gap renormalization (obtained by
using the MK1/2 law) is K71 meV, whereas a value of K
60 meV is obtained by ‘eyeballing’ the linear asymptote of
u0(T) in Fig. 6.44 of [14]. An average renormalization value
of K62 meV has been calculated by LCAO techniques in
[17]. This gap exhibits a spin-orbit splitting D0 and the
corresponding isotope effect has been measured for both
components, E0 and E0CD0 [41]. Surprisingly, the effect on
the E0CD0 gap of germanium has been found to be 30%
larger than that on E0, a fact which cannot be explained on
the basis of our present understanding of the spin-orbit
interaction. Actually, the authors of [34] have recently
found [43] that the spin-orbit split component of the uind of
Si shows the same isotope effects as the main component, a
fact which suggests that the isotope effect measurements of
E0CD0 presented in [41] should be repeated.

5. Diamond

5.1. Dependence of the edge luminescence frequency on
temperature and isotopic mass

The luminescence at the indirect exciton of diamond

(which is silicon-like) is shown in Fig. 6 [46]. The curve

through the experimental points corresponds to a single
Einstein oscillator. The fitted frequency, 1080 cmK1Z
1580 K, is close to the Debye temperature (w1900 K).
This figure shows again the fact mentioned in connection

with Fig. 5: in order to obtain the asymptotic behavior of a
gap for T/N we must either have data for TOTD (not the

case in Fig. 6) or fit the available data to a reliable algebraic

expression, as has been done for Fig. 6. The thick straight
line depicts the corresponding asymptote which enables us

to estimate a gap renormalization of 370 meV, much larger
than the corresponding values for Ge and Si ðx70 meVÞ. In
order to corroborate this a priori unexpected result, data on
the corresponding isotope shift come in handy. There are

two stable carbon isotopes, 12C and 13C. In [47] we find a
derivative of the gap with respect to M equal to 14G
0.8 meV/amu which, using the MK1/2 rule, leads to the

renormalization K2!14!13ZK364 meV, in excellent
agreement with the value estimated above. A recent

semiempirical LCAO calculation results in a renormaliza-
tion of 600 meV [48], even larger than the experimental

values. The value of the exciton energy shown in Fig. 6,
5.79 eV, can be compared with ab initio calculations of the

Fig. 5. Temperature dependence of the indirect gap of silicon. The
points are experimental [36], the solid curve represents a single

Einstein oscillator fit to the experimental points. The dashed line

represents the asymptotic behavior at high temperature: its intercept

with the vertical axis allows us to estimate the bare gap and thus the
zero-point renormalization due to electron–phonon interaction.

Fig. 6. Energy of the indirect exciton of diamond versus

temperature. The points are experimental. The solid curve

represents an Einstein oscillator fit whereas the dashed line
represents the asymptotic behavior at high temperature as extracted

from the Einstein oscillator fit. The intercept of the dashed line with

the vertical axis determines the unrenormalized (bare) gap. See text.

M. Cardona / Solid State Communications 133 (2005) 3–18 9

BAND GAP RENORMALIZATION

M. Cardona, 
Solid State Comm. 133, 3 (2005).

Electronic band gaps often 
exhibit a distinct 

temperature dependence

Linear extrapolation yields the 
bare gap at 0K, i.e., the gap for 
immobile nuclei (classical limit)

Linear Extrapolation

Actual band gap at 0K differs 
from the bare gap:

⇒ Band gap renormalization 



BAND GAP TEMPERATURE DEPENDENCE

What is the physical mechanism?

Use results from 
exercise 3

Exercise 4:
Lattice

 Expansion?

Molecular 
Dynamics

Exercise 5:
Atomic 
Motion?



MOLECULAR DYNAMICS

Numerical Integration
of the equations of motion

L. Verlet, Phys. Rev. 159, 98 (1967).

cf.  Mariana Rossi & Luca Ghiringhelli,
Tutorial 4: Molecular Dynamics

MIR̈I(t) = �rRiEDFT



HARMONIC MOLECULAR DYNAMICS

MIR̈I(t) = �rRiEDFT

  
  # Molecular Dynamics
  MD_MB_init   300.000
  MD_time_step 0.001
  MD_clean_rotations .false.
  MD_schedule
  MD_segment  5.0 NVT_parrinello 300.000 0.050   # Equilibration
    harmonic_potential_only fc_constants.dat
  MD_segment 20.0 NVT_parrinello 300.000 0.050   # Sample phase space
    harmonic_potential_only fc_constants.dat

MIR̈I(t) = �
X

j

�ij�Rj

Harmonic Approximation



WARNING:
In the following exercises, the computational settings, in particular the reciprocal
space grid (tag k_grid), the basis set, and supercells, have been chosen to allow a

rapid computation of the exercises in the limited time and within the CPU resources
available during the tutorial session. In a “real” production calculation, the reciprocal
space grid, the basis set, and the supercells would all have to be converged with much

more care, but the qualitative trends hold already with the present settings

As usual, you can find all data and scripts required for this tutorial in the directory:

/usr/local/gss2014/hands-on-2014-tutorials/tutorial_6/skeleton

Please copy this directory to your home directory first.

Exercise 1: Using phonopy-FHI-aims

• Learn how to perform phonopy-FHI-aims / FHI-aims phonon calculations.

[Estimated total CPU time: < 10 sec]

In directory exercise_1, you will find the geometry for the primitive silicon fcc unit cell
(geometry.in) and the control file. In addition to the usual control tags, which you are certainly
comfortable with by now, control.in contains a series of tags that are related to the phonon
calculation (and thus start with phonon):

• Supercell:
The tag phonon supercell (x, y, z) allows to specify the supercell size that shall be used
for the calculation. In this first exercise, we use the settings phonon supercell 1 1 1 and
thus perform all calculation in the unit cell specified in geometry.in.

• Displacement Á:
The tag phonon displacement Á allows to specify the displacement Á used for the finite
di↵erence in Eq. (2): On the one hand, too large values of Á make the numerical derivative
inaccurate; on the other hand, too small values of Á can amplify any residual numerical
noise2. The default value of 0.01 Å typically works well for solids.

Now, let’s perform the harmonic phonon calculation:

(A) Run phonopy-FHI-aims to construct the supercell:

Run phonopy-FHI-aims by typing

phonopy-FHI-aims

in the terminal (Make sure to be in the correct directory, i.e., exercise_1). In this step,
phonopy-FHI-aims analyzes the system’s symmetry and generates all Á-displaced geometries
required to determine the Hessian �IJ via Eq. (2). For this purpose, phonopy-FHI-aims has

2
The numerical noise can be reduced and virtually eliminated at a given Á by choosing tighter convergence criteria

for the forces: the smaller the value of Á, however, the tighter (and the more expensive) the required convergence

criteria.

4
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Happy Computing!


