HANDS－ロN TUTロRIAL WロRKSHロP，JULY $29^{\text {Th }} 2014$

TUTORIAL 6：

Phonons，LATTICE EXPANSION，AND BAND－GAP RENORMALIZATION

Christian Carbogno \＆Manuel Schöttler

Fritz－Haber－Institut
der Max－Planck－Gesellschaft，Berlin

Work Group on Statistical Physics， Institut für Physik，Universität Rostock

I.THE HARMONIC CRYSTAL

THE HARMONIC APPROXIMATION

Static Equilibrium Energy

THE HARMONIC APPROXIMATION

The total energy \mathbf{E} is a
3N-dimensional surface:

$$
E=V\left(\mathbf{R}_{1}, \mathbf{R}_{2}, \cdots, \mathbf{R}_{N}\right)
$$

Approximate by Taylor Expansion around the Static Equilibrium $\mathrm{R}_{\mathrm{i}}{ }^{0}$
$E\left(\left\{\mathbf{R}_{0}+\Delta \mathbf{R}\right\}\right) \approx E\left(\left\{\mathbf{R}_{0}\right\}\right)+\sum_{i} \frac{\partial E}{\partial \mathbf{R}^{2}} \frac{\mathbf{R}_{0}}{} \Delta \mathbf{R}_{i}+\cdots$
Forces vanish at $\mathbf{R}_{\mathbf{0}}$

THE HARMONIC APPROXIMATION

The total energy \mathbf{E} is a 3N-dimensional surface:

$$
E=V\left(\mathbf{R}_{1}, \mathbf{R}_{2}, \cdots, \mathbf{R}_{N}\right)
$$

Approximate by Taylor Expansion around the Static Equilibrium $\mathrm{R}_{\mathrm{i}}{ }^{0}$
$E\left(\left\{\mathbf{R}_{0}+\Delta \mathbf{R}\right\}\right) \approx E\left(\left\{\mathbf{R}_{0}\right\}\right)+\left.\sum_{i} \frac{\partial E}{\partial \mathbf{R}_{i}}\right|_{\mathbf{R}_{0}} \Delta \mathbf{R}_{i}+\left.\frac{1}{2} \sum_{i, j} \frac{\partial^{2} E}{\partial \mathbf{R}_{i} \partial \mathbf{R}_{j}}\right|_{\mathbf{R}_{0}} \Delta \mathbf{R}_{i} \Delta \mathbf{R}_{j}$
Hessian Φ_{ij}

THE HARMONIC APPROXIMATION

The total energy \mathbf{E} is a 3N-dimensional surface:

$$
E=V\left(\mathbf{R}_{1}, \mathbf{R}_{2}, \cdots, \mathbf{R}_{N}\right)
$$

WARNING:

Harmonic Approximation is only valid for small displacements from $\boldsymbol{R}^{\mathbf{0}}$!
$E\left(\left\{\mathbf{R}_{0}+\Delta \mathbf{R}\right\}\right) \approx E\left(\left\{\mathbf{R}_{0}\right\}\right)+\left.\sum_{i} \frac{\partial E}{\partial \mathbf{R}_{i}}\right|_{\mathbf{R}_{0}} \Delta \mathbf{R}_{i}+\left.\frac{1}{2} \sum_{i, j} \frac{\partial^{2} E}{\partial \mathbf{R}_{i} \partial \mathbf{R}_{j}}\right|_{\mathbf{R}_{0}} \Delta \mathbf{R}_{i} \Delta \mathbf{R}_{j}$

THE HARMONIC APPROXIMATION

Determine Hessian aka the Harmonic Force Constants Φ_{ij} :

- from Density-Functional Perturbation Theory S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, I86। (I987) \& S. Baroni, et al., Rev. Mod. Phys. 73, 5 I 5 (200I).
- from Finite Differences
K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) \&
K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (I 997).

THE HARMONIC APPROXIMATION

Static Equilibrium Energy from DFT

Hessian Φ_{ij}

Determine Hessian aka the Harmonic Force Constants Φ_{ij} :

phonopy-FHI-aims

A. Togo, F. Oba, and I.Tanaka, Phys. Rev. B 78, I 34 I 06 (2008).

- from Finite Differences
K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (I 982) \&
K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (I 997).

E FINITE DIFFERENCE APPROACH

 K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). A. Togo, F. Oba, and I.Tanaka, Phys. Rev. B 78, I 34106 (2008).Finite differences using normalized displacements d:

$$
\Phi_{i j}=\left.\frac{\partial^{2} E}{\partial \mathbf{R}_{i} \partial \mathbf{R}_{j}}\right|_{\mathbf{R}^{0}}=-\left.\frac{\partial}{\partial \mathbf{R}_{i}} \mathbf{F}_{j}\right|_{\mathbf{R}^{0}} \approx-\frac{\mathbf{F}_{j}\left(\mathbf{R}_{i}^{0}+\varepsilon \mathbf{d}_{i}\right)}{\varepsilon}
$$

Example: Diamond Si (2 atoms in the basis):

$\Phi_{11}^{x x}$	$\Phi_{11}^{x y}$				
1	$\Phi_{11}^{y_{14}^{4 y}}$	$\Phi_{11}^{y_{1}^{3} \Sigma}$	$\Phi_{1}^{1 u^{12}}$	Φ_{12}^{13}	${ }_{12}{ }_{1}^{12}$
Φ_{1}^{2}	Φ^{214}	Φ_{112}^{122}	Φ_{12}^{22}	${ }_{\substack{12 \\ 123}}$	${ }_{\text {¢ }}^{\text {ctiz }}$
	$\Phi_{21}^{2 x}$	${ }_{\text {d }}^{\Phi_{21}^{\text {xi }}}$	${ }_{\Phi}^{\Phi_{22}^{\text {mi }}}$	${ }_{\text {d }}^{\text {d }}$	

Hessian has 36 entries:
$\Rightarrow 6$ displacements \mathbf{d} required

THE FINITE DIFFERENCE APPROACH

K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (I997).
A. Togo, F. Oba, and I.Tanaka, Phys. Rev. B 78, I 34106 (2008).

Finite differences using normalized displacements \mathbf{d} :

$$
\Phi_{i j}=\left.\frac{\partial^{2} E}{\partial \mathbf{R}_{i} \partial \mathbf{R}_{j}}\right|_{\mathbf{R}^{0}}=-\left.\frac{\partial}{\partial \mathbf{R}_{i}} \mathbf{F}_{j}\right|_{\mathbf{R}^{0}} \approx-\frac{\mathbf{F}_{j}\left(\mathbf{R}_{i}^{0}+\varepsilon \mathbf{d}_{i}\right)}{\varepsilon}
$$

Example: Diamond Si (2 atoms in the basis):

Hessian has $\mathbf{5}$ unique, non-zero entries:
\Rightarrow Only I displacement d required
(a) Edit your file control.in so that it contains the following lines phonon displacement 0.01
(b) Run phonopy-FHI-aims by typing
phonopy-FHI-aims
(c) Change into the directory phonopy-FHI-aims-displacement-0 I and run FHI-aims:
cd phonopy-FHI-aims-displacement-01
mpirun -np 4 aims. x > phonopy-FHI-aims-displacement-01.out
(d) Change into parent directory and run phonopy-FHI-aims again cd ..
phonopy-FHI-aims

THE HARMONIC APPROXIMATION

...in Molecules:

N ... Number of atoms \Downarrow
Degrees of Freedom: 3N Dimension of Hessian: $9 \mathrm{~N}^{2}$

...in Crystalline Solids:

N ... Number of atoms \Downarrow
Degrees of Freedom: 3N
Dimension of Hessian: $9 \mathrm{~N}^{2}$

Tuesday July 22:
\Rightarrow Björn Lange, Nuts and Bolts of DFT II
\Rightarrow O. Hofmann \& L. Nemec, Tutorial I

BUT:

$N \rightarrow \infty$

PERIODIC BOUNDARY CONDITIONS

cf. Christian Ratsch, "Electronic Structure Theory for Periodic Systems:The Concepts", Tuesday July 22

Periodic Images
N_{p} atoms
Periodic Images

Lattice vector: E_{0}

Real Space: Hessian $\Phi_{i j}$ with $i, j \rightarrow \infty$

Fourier Transform

$$
D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q} \cdot\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
$$

Reciprocal Space:
Dynamical Matrix $D_{i j}(q)$ with $i^{\prime}, j \leq N_{p}$

VIBRATIONS IN A CRYSTAL IOI

K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (I997).

Real
Space:
Hessian $\Phi_{i j}$
with $i, j \rightarrow \infty$

Fourier Transform

$$
D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q} \cdot\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
$$

Reciprocal Space: Dynamical Matrix $D_{i j}(q)$ with $i^{\prime},{ }^{\prime} \leq N_{p}$

Fourier Transform can be truncated since $\Phi_{i j}=0$ for large $\left|\mathrm{R}_{\mathrm{j}}{ }^{0}-\mathrm{R}_{\mathrm{j}}{ }^{0}\right|$

Hessian $\Phi_{i j}$ with finite number of non-zero entries

Dynamical Matrix $D_{i j}(q)$ known for the whole reciprocal space

VIBRATIONS IN A CRYSTAL IO

e.g. N.W Ashcroft and N. D. Mermin, "Solid State Physics" (1976) also see Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22

Dynamical matrix:

$$
D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q} \cdot\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
$$

Equation of Motion becomes an Eigenvalue Problem:

$$
\mathbf{D}(\mathbf{q})[\nu(\mathbf{q})]=\omega^{2}(\mathbf{q})[\nu(\mathbf{q})]
$$

Analytical Solution in Real Space:
Superposition of Harmonic Oscillations

$$
\mathbf{R}_{j}(t)=\mathbf{R}_{j}^{0}+\mathfrak{R e}\left(\sum_{s} \frac{A_{s}}{\sqrt{M_{i}}} e^{i\left(\mathbf{q} \cdot\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)-\omega_{s}(\mathbf{q}) t\right)} \cdot\left[\nu_{s}(\mathbf{q})\right]_{j^{\prime}}\right)
$$

VIBRATIONS IN A CRYSTAL IOI
e.g. N.W Ashcroft and N. D. Mermin, "Solid State Physics" (I976) Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22

Dynamical matrix:

$$
\begin{aligned}
& D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q} \cdot\left(\mathbf{R}_{j}-\mathbf{R}_{j^{\prime}}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j} .
\end{aligned}
$$

Eigenvalue problem:

$$
\mathbf{D}(\mathbf{q})[\nu(\mathbf{q})]=\omega^{2}(\mathbf{q})[\nu(\mathbf{q})]
$$

VIBRATIONS IN A CRYSTAL IOI
e.g. N.W Ashcroft and N. D. Mermin, "Solid State Physics" (I976) Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22

VIBRATIONS IN A CRYSTAL IOI
e.g. N.W Ashcroft and N. D. Mermin, "Solid State Physics" (1976) Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22

Dynamical matrix:

$$
\begin{aligned}
& \text { al matrix: } \\
& D_{i^{\prime} j^{\prime}}(X)=\sum_{j} \frac{e^{i\left(\mathbf{q} \cdot\left(\mathbf{R}_{j}-\mathbf{R}_{j^{\prime}}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
\end{aligned}
$$

Eigenvalue problem:

$$
\mathbf{D}(X)[\nu(X)]=\omega^{2}(X)[\nu(X)]
$$

VIBRATIONS IN A CRYSTAL IOI

e.g. N.W Ashcroft and N. D. Mermin, "Solid State Physics" (1976) Björn Lange, Nuts and Bolts of DFT II, Tuesday July 22

For N_{p} atoms in the unit cell there are:

3 Acoustic modes:

- Atoms in unit cell in-phase
- Acoustic modes vanish at $\boldsymbol{\Gamma}$
- Strong (typically linear) dispersion close to $\boldsymbol{\Gamma}$

$\left(3 N_{p}-3\right)$ Optical modes:

- Atoms in unit cell out-of-phase
- $\boldsymbol{\omega}>0$ at $\boldsymbol{\Gamma}$ (and everywhere else)
- Weak dispersion

CONVERGING THE SUPERCELL

Fourier Transform can be truncated since $\Phi_{i j}=0$ for large $\mathrm{R}_{\mathrm{ij}}{ }^{0}=\left|\mathrm{R}_{\mathrm{j}}{ }^{0}-\mathrm{R}_{\mathrm{j}}{ }^{0}\right|$

$$
D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q} \cdot\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
$$

phonon displacement	0.01		
phonon supercell	1	1	1
k_grid	4	4	4

phonon displacement 0.01 phonon supercell 22
k_grid $2 \quad 2 \quad 2$

CONVERGING THE SUPERCELL

Fourier Transform can be truncated since $\Phi_{i j}=0$ for large $\mathrm{R}_{\mathrm{ij}}{ }^{0}=\left|\mathrm{R}_{\mathrm{j}}{ }^{0}-\mathrm{R}_{\mathrm{j}}{ }^{0}\right|$

$$
D_{i^{\prime} j^{\prime}}(\mathbf{q})=\sum_{j} \frac{e^{i\left(\mathbf{q} \cdot\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{j^{\prime}}^{0}\right)\right)}}{\sqrt{M_{i^{\prime}} M_{j^{\prime}}}} \Phi_{i^{\prime} j}
$$

phonon displacement 0.01
phonon supercell $1 \quad 1 \quad 1$
k_grid
$4 \quad 4 \quad 4$
phonon displacement 0.01 phonon supercell $2 \quad 2 \quad 2$
k_grid
$2 \quad 2 \quad 2$

To achieve convergence, it is essential to have a consistent description of the electronic structure for all supercell sizes: \#atoms • \#k-points \approx constant

CONVERGING THE SUPERCELL

Fourier Transform can be truncated since $\Phi_{i j}=0$ for large $\mathrm{R}_{\mathrm{ij}}{ }^{0}=\left|\mathrm{R}_{\mathrm{j}}{ }^{0}-\mathrm{R}_{\mathrm{j}}{ }^{0}\right|$

Oblique Cell:

Not all Cartesian directions are treated consistently!

Cubic ("spherical") Cell:
Consistent assessment of all cartesian directions!

VIBRATIONAL BAND STRUCTURE

\# control.in : Plot vibrational band structure

phonon band	0	0	0	0.00	0.25	0.25	100	Gamma	Delta
phonon band	0.00	0.25	0.25	0	0.5	0.5	100	Delta	X
phonon band	0	0.5	0.5	0.25	0.50	0.75	100	X	W
phonon band	0.25	0.50	0.75	0.375	0.375	0.75	100	W	K
phonon band	0.375	0.375	0.75	0	0	0	100	K	Gamma
phonon band	0	0	0	0.25	0.25	0.25	100	Gamma	Lambda
phonon band	0.25	0.25	0.25	0.5	0.5	0.5	100	Lambda L	

VIBRATIONAL DENSITY OF STATES

$$
g(\omega)=\sum_{s} \int \frac{d \mathbf{q}}{(2 \pi)^{3}} \delta(\omega-\omega(\mathbf{q}))=\sum_{s} \int_{\omega(\mathbf{q})=\omega} \frac{d S}{(2 \pi)^{3}} \frac{1}{|\nabla \omega(\mathbf{q})|}
$$

```
# control.in : Plot vibrational density of states
phonon dos }\quad0\quad800 800 3 45 
```


THE HARMONIC FREE ENERGY

Static Equilibrium Energy

$$
\begin{aligned}
F^{h a}(T) & =E\left(\left\{\mathbf{R}_{0}\right\}\right) \\
& +\int d \omega g(\omega) \frac{\hbar \omega}{2} \longrightarrow \text { Zero-point vibration } \\
& +\int d \omega g(\omega) k_{B} T \ln \left(1-e^{\left(-\frac{\hbar \omega}{k_{B} T}\right)}\right)
\end{aligned}
$$

Thermally induced vibrations

FREE ENERGY AND HEAT CAPACITY

\# control.in : Plot harmonic contribution to $\mathrm{F}(\mathrm{T})$ phonon free_energy $0 \quad 1010 \quad 1010 \quad 45$

THE QUASI-HARMONIC APPROXIMATION

THE HARMONIC APPROXIMATION

$$
\mathbb{H}=\sum_{i} T_{i}+\frac{1}{2} \sum_{i, j} \Phi_{i j} \Delta \mathbf{R}_{i} \Delta \mathbf{R}_{j} \quad \Rightarrow \quad \frac{\partial \mathbb{H}}{\partial V}=0
$$

Lattice expansion vanishes in the harmonic approximation.

THE QUASI-HARMONIC APPROACH

$$
\mathbb{H}=\sum_{i} T_{i}+\frac{1}{2} \sum_{i, j} \Phi_{i j}(V) \Delta \mathbf{R}_{i} \Delta \mathbf{R}_{j} \quad \Rightarrow \quad \frac{\partial \mathbb{H}}{\partial V} \neq 0
$$

Assess lattice expansion by explicitly accounting for the volume dependence of the Hessian.

THE QUASI-HARMONIC APPROACH

Lattice constant a_{0} can be determined from
Birch-Murnaghan fit of $E\left(a_{0}\right)$ cf. L. Nemec \& B. Bienik, Tutorial 2

Add vibrational free energy for each individual value of a_{0}
lattice constant a_{0}

THE QUASI-HARMONIC APPROACH

lattice constant a_{0}

Lattice constant a_{0} can be determined from
Birch-Murnaghan fit of $E\left(a_{0}\right)$ cf. L. Nemec \& B. Bienik, Tutorial 2

Add vibrational free energy for each individual value of a_{0}

Repeat for
each temperature OK $<\mathrm{T}_{1}<\mathrm{T}_{2}$

Birch-Murnaghan fits for each individual temperature allow to determine temperature dependence of lattice constant $a_{0}(T)$.

$$
\begin{gathered}
\text { ELECTRON-PHONON } \\
\text { COUPLING }
\end{gathered}
$$

BAND GAP RENORMALIZATION

Electronic band gaps often exhibit a distinct temperature dependence Linear extrapolation yields the bare gap at OK, i.e., the gap for immobile nuclei (classical limit)

Actual band gap at OK differs from the bare gap:
\Rightarrow Band gap renormalization

BAND GAPTEMPERATURE DEPENDENCE

What is the physical mechanism?

Exercise 4:
Lattice
Expansion?

Use results from exercise 3

Exercise 5: Atomic Motion?

Molecular
Dynamics

MOLECULAR DYNAMICS

Numerical Integration of the equations of motion
L.Verlet, Phys. Rev. I 59, 98 (I967).
$M_{I} \ddot{\mathbf{R}}_{I}(t)=-\nabla_{\mathbf{R}_{i}} E_{D F T}$

cf. Mariana Rossi \& Luca Ghiringhelli, Tutorial 4: Molecular Dynamics

HARMONIC MOLECULAR DYNAMICS

$$
M_{I} \ddot{\mathbf{R}}_{I}(t)=-\nabla_{\mathbf{R}_{i} E_{D F T}} \quad M_{I} \ddot{\mathbf{R}}_{I}(t)=-\sum_{j} \Phi_{i j} \Delta \mathbf{R}_{j}
$$

Harmonic Approximation

\# Molecular Dynamics
MD_MB_init 300.000
MD_time_step 0.001
MD_clean_rotations .false.
MD_schedule
MD_segment 5.0 NVT_parrinello 300.0000 .050 \# Equilibration harmonic_potential_only fc_constants.dat
MD_segment 20.0 NVT_parrinello 300.0000 .050 \# Sample phase space harmonic_potentiā̄_only fc_constants.dat

WARNING:

In the following exercises, the computational settings, in particular the reciprocal space grid (tag k_grid), the basis set, and supercells, have been chosen to allow a rapid computation of the exercises in the limited time and within the CPU resources available during the tutorial session. In a "real" production calculation, the reciprocal space grid, the basis set, and the supercells would all have to be converged with much more care, but the qualitative trends hold already with the present settings

Hakpy Computing!

Manuel
Schöttler
Uni Rostock

Bryan
Goldsmith UCSB

Daniel
Berger
TU Munich

Björn
Lange Duke

Patrick
Rinke FHI

