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Background
This section gives the physical and mathematical background again (with equations)
that you heard at the start of the tutorial. You can read it, of course, but you may
want to just skip ahead to “The present tutorial” and begin immediately with the actual
exercises.

Multiscale modeling
First-principles simulations are powerful tools, but even in the best of cases, their
reach is limited today to perhaps a few thousand atoms in a molecule or periodic
supercell. Likewise, the time scales accessible by direct molecular dynamics to track
atomic motion, rare events (like diffusion jump) or even the “simple” path of a system
from a non-equilibrium conformation to its equilibrium order are typically outside the
direct reach of the method.
Assuming the Born-Oppenheimer approximation (static nuclei) and also assuming

that the electrons are more or less in their ground state, we know that at least the
energy landscape which underlies most materials properties can be written as a simple
function of the nuclear coordinates {RI} (for I=1,...,M atoms):

E ≡ Egs
BO(R1, . . . ,RM ) (1)

Of course, implicitly each nuclear position RI is additionally associated with a specific
element type, given by the atomic number ZI .
Wouldn’t it be good if Egs

BO(R1, . . . ,RM ) were smooth? Of course we know that
this is sometimes not the case, but still, for many cases, Egs

BO is a simple function of
3M nuclear coordinates. This function determines the ground state order, dynamics,
statistical mechanics, and thermodynamics of any system at reasonable temperatures.
If we could precompute this entire function in a closed, parameterized form, we could
later extract the entire statistical mechanics, dynamics etc. of the system in a much
faster way than by solving the Kohn-Sham equations.
Likewise, we know that at some scale, and for some problems, even the exact underly-

ing atomic structure itself becomes irrelevant. For instance, an engineer does not need
to know where the atoms in a bridge are to know how much the bridge will bend under
the weight of a truck. Knowledge of the elastic properties of the supporting beams,
together with the material they are made of, is sufficient—as long as the response of
the material to elastic deformations is known. We can still calculate the microscopic
parameters of a continuum model if we know the general form Egs

BO(R1, . . . ,RM ) well
enough.
In this fashion, if we had a set of workable physical models at all length and time

scales, we could compute the microscopic parameters of the larger scale model from
the next scale down, and thus be done with a first-principles model of the world as a
whole.
Obviously, in this general form, a simple enough, generic parameterization

Egs
BO(R1, . . . ,RM ) remains a pipe dream to this day, and most likely will always re-

main so. However, if we restrict our ambitions to a more specific set of systems where
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we know certain properties in advance, we can still proceed and build an appropriate
“multiscale” hierarchy of models at different length and time scales. An example of
the first step of such a multiscale model is what this tutorial is about.

Binary alloys: Configurational energetics on a lattice
A classic example of a multiscale model is the cluster expansion method. In many
materials, particularly (but not only) many metal alloys, there are distinct phases that
differ only by the arrangement of individual elements on a lattice, but the underlying
spatial lattice (bcc, fcc, etc.) remains in principle the same for several of these phases.
(For a cartoon example, skip ahead to Fig. 5. Each of the structures shown in the
figure is merely a different configuration on a square lattice.)
If the underlying lattice is known, we know the actual positions (R1, . . . ,RM ) in

principle, we just don’t know which kind of atom sits on each site—we don’t know
the configuration. E becomes a simple function of the occupation of these sites by the
different elements (the configuration),

Egs
BO(R1, . . . ,RM )→ Econf(Z1, . . . , ZM ) . (2)

In the particularly simple case of a binary alloy with only two element types, A and
B, we do not even need to record the occupation of each site by different Z. Instead,
we can further reduce the problem to spin-like variables σI , where σI=+1 if site I is
occupied by element A, and σI = −1 if site I is occupied by element B. (Peek ahead
to Fig. 4 for a picture.) You will note that we have now also (implicitly) thrown
out any local lattice relaxations due to different occupations σ ≡ (σ1, . . . , σM ) of the
lattice, any temperature dependence of the internal energy E, and perhaps similar
details. However, as long as there is a unique correspondence between the sites of a
hypothetical, fixed lattice and the actual relaxed structure of a given configuration (or
the average of thermal positions), then a unique correspondence

E ≡ E(σ1, . . . , σM ) (3)

still exists. We will come back to this issue below.

The nearest-neighbor Ising model
The problem of different occupations of a fixed lattice is, of course, an old one, most
famously addressed by Ising for the case of a spin system with nearest-neighbor pair
interaction energies J2,1, where the “2” denotes a pair of lattice sites (as opposed to
a single site, triple, quadruple, etc., of sites) and the “1” denotes the shortest type of
pair of lattice sites (as opposed to the second shortest, third shortest, etc.). In that
case, we can write:

E(σ1, . . . , σM ) = EIsing(σ1, . . . , σM ) = J0 + J1
∑

I

σI + J2,1

M∑
I=1

D2,1∑
σI1σI2 . (4)
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where the double-sum for D2,1 is over the degenerate states of σI and will be ex-
plained in more detail later.

In this case, J0 is a kind of average energy of the entire lattice (a constant offset).
The sums in the pair term drop to zero if the number of like and unlike neighbors is
the same on average across the entire lattice (like in Fig 4), and becomes maximal
(minimal) when the number of like (unlike) pairs becomes maximal on average across
the entire lattice. The term involving only single sites only counts the overall number
of atoms A and B on the lattice, accounting for possibly different total energies of
atom types A and B.
Obviously, there are only three parameters in Eq. (4): J0, J1, and J2,1. If this

equation were an exact description of a real alloy system, we could determine these
parameters completely by computing the first-principles total energies of only three
arbitrary configurations on a lattice. For example: (i) the lattice occupied by pure
A; (ii) the lattice occupied by pure B; and (iii) one arbitrary “mixed” configuration
σfit (composition AxB1−x, 0< x <1) with both elements present on the lattice. The
energies of all other structures would then follow from the simple sum in Eq. (4).
This simple model would already define a multiscale model. Unfortunately, there is

no reason for Eq. (4) to be exact in real life. So, the real first-principles energy of any
configuration other than σfit would not be predicted exactly, but with some unknown
error.

The generalized Ising model (“Cluster Expansion”)
While a nearest-neighbor Ising model will never be exact in practice, it is sometimes
useful. When it isn’t accurate enough, a less severely truncated model with a few more
interactions may be useful. We call this model a cluster expansion because it includes
different interaction types (“clusters”) such as multiple pair interactions, triplet and
quadruplet interactions and so forth.
There is a general proof that says one can always map the configurational energies

E(σ) of all possible configurations σ—if that model includes all possible types of clus-
ters (also called “figures”) f that can be found among the lattice sites: all inequivalent
pairs, triples, quadruplets, quintuplets, etc., up to (unfortunately) the M -body inter-
action which includes the entire lattice. (So the untruncated expansion is not useful in
a practical sense. How to truncate the expansion becomes an important consideration
in practice.)
As we will be interested in periodic lattices, we will from now on denote by E(σ)

the energy of a given configuration per lattice site (rather than the total energy), and
we will generalize Eq. (4) in the following way:

E(σ) = ECE(σ) =
∑

f

Jf Πf (σ) (5)

This, in a nutshell, is the defining equation of a cluster expansion on a lattice.
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• Jf denotes the “effective interaction strength” (an energy term) associated with
a particular combination of lattice sites, f . (Finding these unknown coefficients
in our expansion is the primary object of this tutorial.)

• The sum runs over all possible inequivalent “types” of lattice site combinations
(figures) f—for example, nearest-neighbor pairs, second-nearest neighbor pairs,
a nearest-neighbor triplet, etc. Examples of simple “inequivalent” figures on a
square lattice are shown in Figure 4.

• Finally, Πf (σ): These are the spin-products (like σIσJ in Eq. 4) averaged over
the entire lattice. They are different for each given configuration σ. They can
be calculated in the following manner:

Π̄cluster(configuration) = 1
number of
vertices

· 1
size of
unit cell

· 1
degeneracy

∑
unit
cell

∑
unique
cluster

orientations

(product of spinsin the cluster )

(6)
Examples of how the products are found using various clusters (on a 2 dimensional
lattice), for different Dk.n can be found in Figures 1 and 2. If we write the above
relations more rigorously it takes the more common form:

Π̄k,n(σ) = 1
k
· 1
M
· 1
Dk,n

M∑
I=1

Dk,n∑
σI1σI2 · · · σIk

(7)

Remember that M is the number of atomic sites in the unit cell. The k factor here is
the number of vertices in the cluster and the n is the type of the lattice sites covered
by the cluster. (Previously we had not accounted for any double counting of lattice
sites, incidentally; a factor 1/k is therefore included in our new definition of Jk,n).
Note that we have introduced another normalizing factor Dk,n that is the “geometric
degeneracy” factor of the cluster. This number represents the number of clusters of this
type that are equivalent under rotational/reflectional symmetries of the lattice. (This
is similar to the 1/k mentioned two sentences earlier but arises because of rotational
symmetry rather than translational symmetry). These normalizing factors keep the
values of the Π̄’s between −1 and +1. The bar over the Π reminds us that the quantity
is an average over lattice sites and rotated/translated clusters on each of those sites.
The interesting thing about Eq. (5) is that it is exact in the sense that there are

exactly as many possible configurations σ as there are possible figures f , on any given
lattice. (In other words, there are as many basis functions in our expansion as there
are possible configurations.) As long as we do not limit the sum over figures in any
way, we have an exact expression.
In practice, we will benefit from the intuitive idea that interactions are negligible

beyond a certain distance, and therefore the relevant figures in the sum must be
limited. We should thus get a very accurate approximation to the true E(σ) for any
configuration σ even when truncating the sum to only a few relevant figures. The aim
of a good cluster expansion code is to find the relevant figures in a robust way.
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A final note: While it is intuitive that a sum over figures should be restricted, this
need not always be true. A large number of tiny long-range interactions can conceivably
still sum up to large terms: for example, if the lattice as a whole contracts or expands
differently for different configurations. Truncating infinite sums is something that
should be done only after careful testing.
That said, the test case used for the present exercise – Ni-Al alloys – will turn out

to be benign, at least in the range that is of interest here.

Figure 1: An illustration of all the unique orientations of a cluster containing two vertices.
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Figure 2: An illustration of all the unique orientations of a cluster containing three vertices.
The cluster must enclose the lattice point being considered, which in our case is the
one in the center. The rows in the first column are translations of the upper left
cluster. For a given row, the columns are 90◦ rotations. When calculating Π̄, this
process is repeated for every lattice point and every possible cluster.
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The Present Tutorial
In this tutorial, we will investigate how to parameterize, from first principles, a cluster
expansion model for a given binary alloy.
The alloy of choice is fcc Ni-Al, a classic system for which configurational energetics

actually matter in practice. For very Ni-rich Ni-Al alloys, a mixture of the ordered
Ni3Al phase and a disordered Ni-rich solid solution phase occur on the same under-
lying lattice. The regions of the ordered Ni3Al phase block lattice defects (primarily
dislocations) from propagating and thus inhibit plastic deformation, making the alloy
much stronger.
We will here investigate the basic ideas of a cluster expansion, using Ni-Al on a

square lattice, a two-dimensional case (the actual ordering plane in Ni3Al). In fact, all
of the methodology is the direct equivalent of a surface cluster expansion, for example
an Al-rich layer (Al segregates to the surface) on top of a Ni-rich bulk alloy [1].

Contents
These are the problems we will practice for the next few hours in this session:

• Problem I: Getting a feel for the cluster expansion basis—calculating correlations

• Problem II: A 2D cluster expansion fit by hand

• Problem III: A simple fit with actual Ni-Al data (two-dimensional example)
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1 Problem I: Correlations by hand
Consider a one-dimensional lattice. Figure 3 shows all possible symmetrically-distinct
configurations with a periodicity (unit cell) of 4. For the clusters shown in the figure
calculate the correlations (Π̄) for each structure. Represent “gray” (blue) atom with
+1 and a “white” with −1. Note that the “empty cluster” always has value 1 (by
definition).
Remember that the correlations are averaged over each site in the unit cell (using

periodic boundary conditions when a vertex exceeds the unit cell). Also remember
that the correlations are normalized (by the number of sites in the unit cell) so that
they are always between −1 and +1. As you construct the Π matrix remember that
each column of the matrix represents a cluster and each row represents a structure, or
configuration, as shown in the figure below. The answers are given at the back of this
tutorial. If your answers don’t agree with the anwers in the back, ask the instructor
(or your neighbor) for help.

-1 -1 -1 -1

-1 -1 -1 +1

-1 -1 +1 +1

-1 +1 -1 +1

-1 +1 +1 +1

+1 +1 +1 +1

Figure 3: Left: All symmetrically-distinct binary configurations (with periodicity n = 4) for
a one-dimensional lattice. Right: Six distinct clusters to use in the first problem.
Note that the top cluster, the so-called “empty cluster,” will always have value 1.
Like x0 = 1 in an expansion in powers of x, this term of the cluster expansion is
just a constant.
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-1

+1 +1 +1

+1 +1+1

+1 +1 +1

+1 +1+1

+1 +1 +1

+1 +1+1

-1 -1-1

-1 -1

-1 -1-1

-1 -1 -1

-1 -1-1

-1 -1 -1

Figure 4: The c(2×2) structure and the Π’s for the empty cluster, Π0 (always 1); on-site clus-
ter, Π1 (sum over all sites); nearest-neighbor pair, Π2; and smallest triplet cluster,
Π3.

Figure 5: Four simple binary structures on a square lattice. The matrix on the right is the Π
matrix with the 3rd row filled out with the answers we found in figure 4.
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2D CE by hand
For this next exercise, we first consider only four structures (see Fig. 5). In this
example, we use two hypothetical elements “white” and “blue” that form alloys on
a two-dimensional square lattice. The energies for the structures we use here are
completely fictional.

1. pure blue, E = −0.01 eV/atom (upper left)

2. pure white, E = −0.02 eV/atom (lower right)

3. a so-called c(2× 2) arrangement, E = −.065 eV/atom, (lower left).

4. a square 4-atom cell, E = −.05 eV/atom (upper right)

1.1 Average lattice occupations (the “Π’s”, also called
“correlations”)

Task: Following the same procedure outlined in the introduction to this tutorial,
calculate the Π’s for each of the three remaining structures in Fig. 5. The c(2 × 2)
structure for which we calculated the Π’s together (during the introductory remarks)
is shown in Fig. 4. The Π’s we computed in the example are shown in the figure as the
third row in a “Π matrix”. Fill out the rest of the matrix. Π0 is always 1. The other
three columns will be for the on-site cluster, the pair cluster, and the triplet cluster,
respectively.
After you have filled out the matrix, double check your results with the answer

shown in the Appendix

1.2 Finding the effective interactions (the “J ’s”)
Conceptually, finding the J ’s in Eq. 5 is a simple linear algebra problem. For each
configuration σ we have an equation with a unique value of E, unique values for the
Π’s, and unknown coefficients J . This system of linear equations form a simple matrix
inversion problem. Given the energies for the four structures in the example, and
having computed the Π matrix, we can find the J ’s by inversion:


E1
E2
E3
E4

 =


Π(0)

1 Π(0)
2 Π(0)

3 Π(0)
4

Π(1)
1 Π(1)

2 Π(1)
3 Π(1)

4
Π(2)

1 Π(2)
2 Π(2)

3 Π(2)
4

Π(3)
1 Π(3)

2 Π(3)
3 Π(3)

4




J0
J1
J2
J3

 (8)

⇓
J0
J1
J2
J3

 =


Π(0)

1 Π(0)
2 Π(0)

3 Π(0)
4

Π(1)
1 Π(1)

2 Π(1)
3 Π(1)

4
Π(2)

1 Π(2)
2 Π(2)

3 Π(2)
4

Π(3)
1 Π(3)

2 Π(3)
3 Π(3)

4


−1 

E1
E2
E3
E4

 (9)
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Figure 6: A new structure to use in predicting with your cluster expansion.

Task: Using the E’s given above for each structure, invert the Π matrix that you
found and use it to find the J ’s. You could invert the matrix by hand (but who would?!)
or you can use a ready-made tool. For example, use the built-in tool in the following
link. http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/
fourD/index.htm

1.3 Predictions and refining the fit
Task: Now that you have a set of J ’s, you can use them to predict the energy of a
structure that wasn’t used in the input set. Calculate the Π’s (for the same clusters
as before) for the structure shown in Fig. 6. Use your Π-vector for this structure with
your J ’s and compute the energy of this structure. You may want to check your answer
in the appendix.

2 Problem II: Using the cluster expansion code
2.1 Simple fits with UNCLE
We will now do exactly the same problem as in problem I, except that we will use
the “universal cluster expansion code” (UNCLE) [2] to do the bookkeeping, matrix
inversion, and other computations. UNCLE is a general-purpose tool to perform
cluster expansion fits, make predictions, and do many kinds of “physics” output tasks
for configurational problems. Similar codes include the Alloy Theoretic Automated
Toolkit, ATAT [3], and the CLUPAN code [4].
To run a simple fit like the one we just did by hand (problem I), you will need 4

input files for UNCLE:
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1. lat.in defines the underlying lattice of all the configurations (sometimes called
the parent lattice)

2. structures.in lists the input structures (i.e., configurations) and the corre-
sponding energies used in the fitting (in other words, the E vector and the struc-
tures that yield the Π matrix, like in problem I). For our first example using
UNCLE this file will contain the structural information of the four structures
for which we computed the correlations by hand.

3. CEfitting.in parameters for the fitting

4. clusters.out contains the clusters (i.e., figures) to be used in the expansion
The entries in the input files are relatively self-explanatory. Extensive comments

have been added before each entry so that you do not have to use UNCLE as a black
box if you don’t want to. The input files are free format (lines beginning with #
are comments) but the input is not keyword-based—the inputs have to be given in a
particular order.
Each of the 4 input files you need to run a simple fit can be found in the problem_I_and_II

directory inside of the prepared_input directory in the master tutorial directory
($HANDSON/hands-on-tutorial/tutorial_8/prepared_input/). Each one has an ex-
tension .set1. Copy them to a working directory but without the .set1 extension.

Task: We’ll run UNCLE to perform the fit and not worry too much at the contents
of the input files for now (but they are well-commented if you are interested). We will
run UNCLE using “mode 12” which directs UNCLE to perform a fit.

uncle.x 12

to do a simple fit. Much of the information UNCLE reads in is echoed to the screen.
There will be about 3 screenfuls of output. Ignore this for now, if you want. Look
first at the file PI_matrix.out. You should see that this file contains the same matrix
that you computed by hand in the first part of the activity (though the rows may
be re-ordered as UNCLE sorts the structures according to concentration).

Task: Make your terminal window as wide as possible (to avoid line wrapping) and
look at fourth column of the file fittingErrors.1.out and you’ll see that UNCLE
found an exact fit (no errors beyond numerical roundoff). This file lists input energies
as well as formation enthalpies, ∆Hf (called DHf_DFT and DHf_CE in the output file).

Definition: Often, the cluster expansion equations (4) and (5) are not
applied to straight total energies (which are large values), but rather
to formation enthalpies (which tend to range from a few to a few
hundred meV/atom)

∆Hf (σ) = Etot(σ)− xEtot(pure A)− (1− x)Etot(pure B) . (10)

AxB1−x denotes the overall composition of a particular configuration
σ. Obviously, the formation enthalpy of the end points (pure A and
pure B, respectively) is zero by definition.
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Figure 7: Convex hull of first
principles enthalpies for
Ag-Pd. The red (small)
+’s are the formation
enthalpies for different
configurations. The
straight-line segments
form the convex hull for
all the enthalpies. The
configurations marked
with a labelled + are
configurations that are
thermodynamically
stable (at T = 0K).
The smooth line is the
energy of a completely
random configuration,
as predicted by the
cluster expansion.

The first two columns of the file (after the structure numbers column) are the con-
centrations of “white” and “blue”. The column labeled E_DFT contains the input en-
ergies. (DFT is an acronym for Density Functional Theory—it is synonymous with
“first principles” or “ab initio”.) The next column contains the fitting errors, that is,
the differences between the DFT input energies and the CE fitted values (practically
zero here). The column labeled E_CE contains the energies predicted by the cluster
expansion. The next two columns contain the DFT and CE formation enthalpies.
The file called J.1.summary.out lists the J values from the fit. The J values shown

in this file will be the same as the ones you calculated by hand.

In a more general case, it would be nice to know what the chosen figures actually
look like. To find out, open the longer file J.1.out . Look at the file and see whether
you can figure out which interaction value (which J) pertains to which actual figure
by drawing the vertices. In this 2D case, the clusters lie in the y-z plane (so ignore
their x-coordinates.)
Another interesting outcome from a cluster expansion are the formation enthalpies

as a function of composition x (0≤ x ≤1). Figure 7 shows an example from a cluster
expansion for Ag-Pd. Plotting the enthalpies versus concentration, one can immedi-
ately see whether the alloy is ordering (some ∆Hf < 0) or phase separating, like “oil
and water” (all ∆Hf > 0). For ordering alloys, the convex hull construction (blue
line) identifies those structures (blue crosses) that are thermodynamically stable at
T = 0K. These structures are the ones between which one can draw straight line seg-
ments (in order of increasing x), such that no structure lies below the resulting line
(the “convex hull”) connecting x=0 and x=1.
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Figure 8: All possible binary configurations for unit cells of 4 atoms/cell or less.

You can plot the convex hull of the input structures using xmgrace as you did
in all the other tutorials, or you can use our gnuplot scripts to generate pdf fig-
ure files: gnuplot gsl_plot.gp. (The script gsl_plot.gp is in the input directory,
prepared_input/problem_I_and_II. This creates a file called gsl.pdf. You can use
acroread or evince to view pdf files.) In this simple case, all of the structures are
on the convex hull. You can also plot the fitted values and the input values (gnuplot
script errors_plot.gp) but doing so isn’t informative in this case because the errors
are zero. (We’ll do this in coming problems where it makes more sense.)

2.2 Ground State Searches
Task: Now that you have a list of J ’s, you can use them to make a prediction, just as
before, for other structures. Consider all possible binary superstructures of a square
lattice up to 4 atoms/cell. A picture of this is shown in Fig. 8. We can predict the
energy for each one of these structures using UNCLE (thankfully, UNCLE will com-
pute all the Π̄’s). Copy the groundstatesearch.in.set1 file from the input directory
(remove the .set1 extension as before). The groundstatesearch.in specifies the set
of unit cells for which the predictions are made, sizes 1–4.

Type: uncle.x 21
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to run a ground state search for all cell sizes from 1 to 4 (“mode 21”). UNCLE
generates a list of structures (struct_enum.out) and then computes the energy and
formation enthalpy for each one, listed in the file gss.out. The 3-atom/cell structure
you predicted in the first part of the activity (shown in Fig. 6) is number 5 in the
enumerated list (top row, last entry in Fig. 8). Look in gss.out to find the energy of
structure number 5 and compare it to what you got by hand.
Plot the complete results of the ground state search using the gss_plot.gp script

in the input directory prepared_input/problems_I_and_II. The plot file is called
gss.pdf. You will find that there are some structures that are predicted to have
formation enthalpies lower than our input structures. These new structures are more
stable than our original input structures, and this is the kind of thing we look for in
these models. In practice, we would calculate the energies of these predictions with
our DFT code and verify our predictions. . . but since this is just a toy problem, let’s
go on to the next part of the exercise.

3 Problem III: Ni-Al on a square lattice
We will now substitute the made-up example of the previous section with real energies
computed using first principles (DFT). We begin by treating Ni-Al on a square lattice,
as a free-standing thin film. While this example is still somewhat artificial (hard
to build an airplane out of free-standing Ni-Al thin film superalloys), it suffices to
demonstrate many simple principles that will benefit us in three dimensions. This
example is, however, a little more useful than that. In Ni-Al alloys, Al tends to
segregate to the outermost plane of the crystal. A surface cluster expansion of an Al-
rich surface plane on a Ni-rich alloy underneath would follow the exact same formalism,
and in fact, such behavior has been observed [1].
If we had time, we could use FHI-aims, vasp, QuantumEspresso, or some other

first principles code, to go through the exercise of calculating the formation enthalpies
for this exercise ourselves. All kinds of considerations arise related to the convergence
of our computed formation enthalpy: basis set convergence (i.e., energy cutoff), k-point
density, choice of pseudopotential, etc. That kind of exercise is instructive but outside
of our scope today. So I have the first-principles formation enthalpies, computed with
FHI-aims for the 4 configurations of Problem III for you. (The original 2011 version
of this tutorial included a section about calculating enthalpies with FHI-aims. That
part is now included as an appendix at the end of this tutorial so that you can try the
calculations yourself if you want to.)
With these formation enthalpies of four structures (Fig. 5) for the 2D Ni-Al system.

We can use the results to create the same simple cluster expansion (except with “real”
enthalpies), just as in Problem II, and explore the results.
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Structure Total energy [eV/atom] ∆HDFT [eV/atom]
Ni −41495.7023 0.0
Al −6588.3014 0.0

c-(2×2)-NiAl −24042.8048 −0.8030
p-(2×2)-Ni3Al −32769.2366 −0.3845

3.1 Cluster expansion
Task: Repeat the cluster expansion (UNCLE’s mode 12) using only the four struc-
tures of Fig. 5. You can merely alter the input file (structures.in) that we used
before. Just replace the energies from the made up case of Problem II with the new
enthalpies I gave you just above. (What was blue should become Ni, white should
become Al.) Remember, the J ’s are in the J.1.summary.out file and the fitting errors
are listed in fittingErrors.1.out (but, as before, there are no errors because we
have 4 input structures and 4 clusters so there is an exactly-invertible solution).
What interaction values (J ’s) do you get for each interaction type?

3.2 First predictions
Task: Use the UNCLE code to predict the formation enthalpies of some additional
structures. To do this, just run UNCLE again in mode 21 (./uncle.x 21) to do a
ground state search. (The file groundstatesearch.in controls how many structures
are included in the search.) If you are running your calculation in the same directory
as before, you will see that UNCLE won’t overwrite an old gss.out file; note how it
complained. Just delete the file and run again.
Plot the “convex hull and ground state search”: Plot the results (gnuplot gss_plot.gp).

(Rename the file gss.out so that you can refer to it later.) Are there “new” ground
state structure candidates (outside the four that we know in DFT)?

3.3 Extending the expansion
Let us add four additional DFT input structures to the expansion, both to verify the
accuracy of the results so far, and to extend the input database. We will focus on the
three-atom structures in Fig. 8, numbers 5, 6, 7, 8 in the gss.out list.
Where are these structures in the ground state search plot?
Note: Ideally, you would compute the DFT-LDA enthalpies of formation of these

four structures, which are called (in surface science notation):

• p(3×1), Ni2Al and NiAl2, nos. 5 and 7

• c(3×3)diag, Ni2Al and NiAl2 , nos. 6 and 8

but we don’t have time for that today. So I’ve already done it for you and put the
enthalpies and structures in a structures.in_8 file for you.
(Look in the prepared_input/problem_III/section_3_4/ directory.)
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(The appendix includes some discussion of calculating these enthalpies yourself if
you were inclined to try.)

DFT-LDA results: Relaxed structures

Number Structure Energy [eV] ∆HDFT [eV/atom]
5 p-(3×1)-NiAl2 −18224.4614 −0.359
6 c-(3×3)diag-NiAl2 −18224.7630 −0.6613
7 p-(3×1)-Ni2Al −29860.2041 −0.302
8 c-(3×3)diag-Ni2Al −29860.4178 −0.5158

3.4 New ground state predictions?
Task: Update the UNCLE input files to use these 8 input structures and refit (using
more than just 4 clusters as in the previous exercises), and do a new ground state
search.
First, add the 4 additional structures to the structures.in file. (The format for the

structures.in file should be obvious, but there is a template in the input directory
called structures.in_8 that you can copy over if you are too lazy to edit it yourself.)
Next, you will run a new fit using a larger cluster pool, but first we need to talk about
more sophisticated fitting methods.

Up to this point we have been doing fitting by exact inversion. We could continue
that approach by adding four more clusters to our clusters.out file. In general,
exact inversion is not a reliable strategy. Exactly-inverted solutions typically have
poor predictive capability. In practice (for decades) cluster expansion has not been
done this way. Instead, the fitting has been done for an over-determined problem.
That is, the number of input structures is larger than the number of clusters used
in the fitting. The fitting is then done to minimize the root-mean-square error via
singular value decomposition or similiar techniques. Generally, this leads to much
more reliable predictions because the models are constrained by the “extra” data.
The drawback of such an approach (and it is a significant drawback) is that the

number of clusters used in the fitting must be only a fraction of the number of input
structures (which are typically calculated via DFT). This is a common challenge in
many fitting problems, not just the cluster expansion. The shortcoming is obvious—
only a few clusters can be included, but it is difficult to know which clusters to use
because there are so many clusters, even of short range, that could be included. Dis-
crete optimization and genetic algorithms have been used to more fully explore the
combinatorial cluster space but the former is time-consuming (maybe requiring mil-
lions or billions of cpu hours) and the latter requires hand-tuning of the parameters
(mutation rate, gene length, population size, etc.) and may still run for days or even
a week.
The genetic algorithm approach is included in UNCLE (and was state-of-the-art
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until early 2013), so you are welcome to try it, but it has been superseded by a
compressive-sensing-based approach which allows us to solve an under-determined
problem where the number of clusters considered to build our model is far greater
than the number of input structures used. No details on compressive sensing will be
given here, just an example of using uncle to make a fit with it.

In order to do a fit using compressive sensing, you need the following additional files.

1. structures.holdout (Just make a copy of the structures.in_8 in the problem_III/section_3_4/
directory. For this exercise, the two files are identical.)

2. CS.in (Just copy from CS.in_8)

3. A new clusters.out file that has a lot more clusters included. uncle can
generate cluster lists (mode 10), but there is already copy (clusters.out_8)of
a clusters file with 50 clusters (10 each of pairs, triplets, 4-vertex, and 5-vertex
clusters)

Then just run mode 15 (uncle.x 15). Even though you have 50 basis functions
(clusters) to fit to and only 8 data points, the BCS will find a fit. Look at the
J.1.summary.out.
Use the new J ’s that you found to do a ground state search (GSS). Increase the max-

imum size of structures included in the GSS from 4 to 8 (remove the struct_enum.out
and edit the groundstatesearch.in file). Plot the output of the GSS (run ./uncle.x 21
and use the gnuplot script gss_plot.gp). Does the CE predict any new ground states?
(It doesn’t require much more cpu time to do a GSS for structures up to cell sizes of 12,
16, or 20. Try that too if you want. Just edit the first line in groundstatesearch.in
after removing gss.out and struct_enum.out.)

4 Problem IV: Compare your results to DFT-LDA
You will see in your GSS plot that the CE of problem III, with more terms, predicts
new ground states on both sides of 50%. At 25%, there is one structure that is below
the original tie line by just a little bit. The following somewhat arcane unixism will
list all the structures at that concentration in the order of their formation enthalpies.
grep "0.25000␣␣0.75000" gss.out | sort -k 8.
(Take care to include *2* spaces between the two columns.) Note that at the bottom
of the list (low energy structures) there may be some that are degenerate.
We could next compute the enthalpies of the structures that appeared below the

original convex hull, by direct DFT, and see how well your model predicted them. If
you have time, you are welcome to do so—or, you may even want to try out predicted
structures for larger unit cells. In the interest of time for the present tutorial, we have
precomputed the formation enthalpies for the 19 structures in Fig. 8. Let’s make a
new fit using all 19 structures as input and then compare the new fit to the predictions
of the preceding problem. How much will the model be improved?
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Task: We’ll answer the question by doing a groundstate search using a model con-
structed from a larger data set (19 structures) that has more paramaters. So first we
need to fit to a larger data set. Use structures.in_19 in the prepared_input/problem_IV
directory that contains all 19 of the structures from Fig. 8 and the relaxed enthalpies
from the table below. Fit again (mode 15, you’ll need a structures.holdout file—
just use a copy of structures.in_19). If you want to see the errors, run mode 13
to create a fitted_energies.out then plot the errors. If you do you’ll notice that
the crosses and the squares don’t line up anymore. The crosses show the DFT calcu-
lated formation enthalpies while the squares show the formation enthalpies predicted
by the cluster expansion (gnuplot errors_plot.gp). Once you have the better fit,
repeat the groundstate search (mode 21). Compare to the case when you only used 8
structures to construct the fit.

Formation enthalpies of 19 gss structures from Fig. 8
Number Structure Energy [eV] ∆HDFT [eV/atom]

3 p-(2×1)-NiAl −24042.4372 −0.4354
4 c-(2×2)-NiAl −24042.8048 −0.8030
5 p-(3×1)-NiAl2 −18224.4614 −0.3597
6 c-(3×3)diag-NiAl2 −18224.7630 −0.6613
7 p-(3×1)-Ni2Al −29860.2041 −0.3021
8 c-(3×3)diag-Ni2Al −29860.4178 −0.5158
9 p-(4×1)-NiAl3 −15315.4550 −0.3034
10 c-(4×4)diag-NiAl3 −15315.6748 −0.5232
11 c-(4×2)-NiAl3 −15315.6215 −0.4699
12 p-(4×1)-Ni2Al2 −24042.3083 −0.3065
13 c-(4×4)diag-Ni2Al2 −24042.6735 −0.6717
14 c-(4×2)-Ni2Al2 −24042.7043 −0.7025
15 p-(4×1)-Ni3Al −32769.0547 −0.2025
16 c-(4×4)diag-Ni3Al −32769.2300 −0.3779
17 c-(4×2)-Ni3Al −32769.2437 −0.3916
18 p-(2×2)-NiAl3 −15315.5044 −0.3528
19 p-(2×2)-Ni3Al −32769.2366 −0.3845

5 Problem V: Order-disorder transitions
With the last exercise completed, we are ready to do some thermodynamics. We have
a total of 19 DFT-LDA formation enthalpies for all structures up to four atoms per
unit cell. In a “real” cluster expansion, we would have started with a few hundred
input structures (the compressed sensing formalism gives us a prescription for choosing
structures) and we would not have to iteratively refine the fit—it would be a one-shot
exercise—but our approach in the tutorial helps you see the underlying ideas.
We will use canonical Monte Carlo simulations and two different expansions: A

naive, short-ranged one, and one that represents “the best we can do” right now (not
necessarily the best we could do given much more time) with 19 input structures.

20



5.1 Nearest-Neighbor-only CE
To get some intuition for Monte Carlo, we’ll start with a simple, nearest-neighbor-pair-
only cluster expansion, created using the 19 relaxed structures from the previous exer-
cise as DFT-LDA input. Let’s also take the
clusters.out, lat.in and CEfitting.in file from the previous exercise to start with.
You can create a cluster expansion that is restricted to a single, nearest-neighbor-
interaction-only fit by editing the clusters.out file. Delete (or comment out) the
first cluster in the file (the on-site term [it has only one vertex]), so that the first cluster
listed in the file is the NN pair cluster. You need to change the number of clusters used
in the fit in CEfitting.in. The first un-commented line in the “Clusters section” is
the number of clusters that is used in the fitting (you’ve changed this already several
times). Change this to 2 (not to 1—UNCLE always includes the constant term as
well [UNCLE will set it to zero in this example, though, because there is no constant
shift when we use formation enthalpies.]).

Task: Run UNCLE with mode 12 again to create a fit. The errors will be
large. How large? (mode 13 and then gnuplot errors_plot.gp and look in the
fittingErrors.1.out file.) You can’t expect too much from a one-parameter model.
Now, do a Monte Carlo (MC) simulation by using mode 30 of UNCLE. The case

we will try is fixed-concentration at x = 50% to find the temperature where the 50:50
ground state structure becomes more stable than a disordered phase. You can find the
input file MCpar.in in the prepared_input/problem_V directory. The MC run takes
several minutes. Plot your results using the gnuplot script Tc_plot.gp. The output
you want to look out is called Tc.pdf.

5.2 “Best we can do” CE
Task: Starting from the same set of input structures, this time create a cluster ex-
pansion using the set of 50 clusters, as you did in problem IV, (mode 15). Task:
What does the expansion look like? By how much does our fitting error change?
(Make a plot—mode 13 and gnuplot errors_plot_bcs.gp.) Predict ground states
up to 12 or 16 atoms/cell (modify groundstatesearch.in) and see if things look any
different than when you only went up to 8. (Rename the generated gss.out and
struct_enum.out files.) We could reduce the fitting errors even more by adding more
input data and increasing the maximum number of clusters in the clusters.out, but
that’s beyond the scope of this problem.

Task: With your new expansion, try the Monte Carlo again and see if the ordering
transition happens at a different temperature. Because you are using more than just
a single NN interaction it will run considerably slower (in CEfitting.in change the
number of clusters used from 2 back to 10).

Task: The Monte Carlo run creates a whole bunch of files of the form MCcell#######.out,
one for each temperature step. Each file contains the data for the final configura-
tion at each temperature step. You can use these files to visualize the simulation
cells. UNCLE mode 31 will reformat the data files for plotting (you’ll need the
MCevaluation.in file from prepared_input/problem_V). Then run

21



gnuplot MCcell_plot.gp and look at the MCcell.pdf file. Edit the MCevaluation.in
file and repeat the procedure to make a plot for configurations above, below, and
right at the transition temperature. (Have a look into MCsimanneal.out to see which
MCcell#######.out corresponds to what temperature.) You could increase the cell
size to 40× 40 in MCpar.in for more interesting plots. For plotting the bigger cell, set
the pointsize in MCcell_plot.gp to 1.3.

Appendix
5.3 Answers to Problem I

Π̄ =


1 −1 1 1 −1 1
1 −0.5 0 0 0.5 −1
1 0 0 −1 0 1
1 0 −1 1 0 1
1 0.5 0 0 −0.5 −1
1 1 1 1 1 1


5.4 Answers to Problem 1.1-1.3
1.0 1.0 1.0 1.0
1.0 0.5 0.0 -0.5
1.0 0.0 -1.0 0.0
1.0 -1.0 1.0 -1.0

Π−1 =

0.250 0.000 0.500 0.250
0.000 1.000 -0.500 -0.500
0.250 0.000 -0.500 0.250
0.500 -1.000 0.500 0.000

J = {−0.04,−0.0075, 0.025, 0.0125}

Πp(3×1) = {1,−1/3, 1/3,−1/3}

Πp(3×1) × J = −0.0333 eV/atom

Crystallographic data
Experimental lattice parameters and nearest neighbor distances in simple
structures:
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• Nickel: fcc structure, a=3.524 Å. (Probably room temperature. Source:
http://www.webelements.com.)
NN distance: 2.492 Å

• Aluminium: fcc structure, a=4.0495 Å. (Probably room temperature. Source:
http://www.webelements.com .)
NN distance: 2.863 Å

• Ni3Al: L12 structure (fcc based), a=3.5642 Å. (Room temperature. Source:
Wang, Liu, Chen 2004, cited there.)
NN distance: 2.520 Å

• NiAl: B2 structure (bcc based), a=2.897 Å. (Room temperature. Source: Wang,
Liu, Chen 2004, cited there.)
NN distance: 2.509 Å
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6 Appendix
The default calculational settings for FHI-aims
• Parameters for FHI-aims control.in:

By default, for things like grid spacings, we shall use light settings, but we will still
test the convergence with respect to the number of basis functions. In a real cluster
expansion, we need converged enthalpies to get accurate interaction energies (J ’s).
Testing the basis set for the DFT calculations is standard practice, as is a test of all
other numerical parameters.
For a header of control.in, consider these settings:
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xc pw-lda
charge 0.
relativistic atomic_zora scalar
occupation_type gaussian 0.1

#
mixer pulay

n_max_pulay 10
charge_mix_param 0.2

sc_accuracy_rho 1E-4
sc_accuracy_eev 1E-2
sc_accuracy_etot 1E-6
sc_iter_limit 100

We use LDA (xc pw-lda), and “atomic ZORA” type scalar relativity. Since the
structures in question are metallic, we use a Gaussian broadening of 0.1 eV for all
calculations by default.
In the output file, we will be mostly interested in per-atom energies for this exercise

(which will then be converted into per-atom formation enthalpies). In addition, since
this is a metallic system, we will use the “T →0” (i.e. Gaussian smearing width towards
zero) extrapolated values of the total energy in the FHI-aims output file:

| Total energy (T->0) per atom : -15315.50440449 eV

Again, we only use the extrapolation for a real metallic system, for which it is intended,
not for example in the case of fractionally occupied atomic or molecular energy levels.
An initial(!) input file control.in.begin is also included in the directory

prepared_input/problem_III .
Parameters for FHI-aims geometry.in:
We begin with a simple series of calculations on a fixed lattice that neglects all

lattice relaxations. The experimental lattice parameters of fcc NiAl alloys lead to the
following nearest-neighbor distances (see appendix):

• fcc Ni: 2.492 Å

• L12 Ni3Al: 2.520 Å

• B2 NiAl: 2.509 Å

• fcc Al: 2.863 Å

Thus, the nearest-neighbor distance in the range of interest here (the Ni-rich range)
almost does not vary at all. Only in the Al rich range do we observe a significant
change. We shall therefore choose a default lattice parameter of 2.50 Å for any unre-
laxed calculations in this exercise.
To separate the individual Ni-Al-planes, we use a vacuum thickness of 40 Å for all

two-dimensional calculations by default. For FHI-aims and the example of a pure Ni
plane, this means:
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# fcc Ni, lattice parameter 2.50 AA
#

lattice_vector 2.50 0.00 0.00
lattice_vector 0.00 2.50 0.00
lattice_vector 0.00 0.00 40.00

#
atom 0.0 0.0 0.0 Ni

#

You should be able to set up all other needed structures in a similar way by extending
the given (2D) unit cell and adding the necessary atoms.

Making sure that the DFT values are converged.
We use formation enthalpies [see Eq. (10)] for our cluster expansion, and also to
test the convergence of our DFT settings. Again, for a real cluster expansion it is
essential to verify the convergence of all input energy differences to a few meV or
better, since larger uncertainties can easily alter the physical behavior of the resulting
cluster expansion for larger systems.
Each formation enthalpy must be calculated as total energy differences from three

separate first-principles calculations (pure Ni, pure Al, and the mixed structure we are
looking for).

Task: Set up control.in and geometry.in files for FHI-aims for the pure Ni, pure
Al, and c(2×2) structures found in Fig. 5. (Blue corresponds to Ni and white to Al.)

Basis set choice
Task: Begin by testing the influence of the basis set for fixed, safely converged k-space
grid 24×24×1 for each of the investigated structures.

k_grid 24 24 1

Normally (especially for a three-dimensional structure), you would want to verify the
convergence of your k-space grids explicitly, especially for metals, starting from some-
what lighter settings. In the interest of (human) time, we here prescribe a dense k-grid
for the smallest unit cell structures. Be sure to reduce the density of this grid for larger
unit cells. We will come back to the k-grid below.
Add the light species defaults for Al and Ni to control.in.
Test the following basis sets (by uncommenting the respective basis functions):

• 1: light default settings

• 2: Al: tier 1 + gd, Ni: tier 1 + dp (i.e., uncomment the next higher radial
functions in the species defaults for either element):

#
species Al

25



[...]

# "First tier" - improvements: -199.47 meV to -10.63 meV
ionic 3 d auto
ionic 3 p auto
hydro 4 f 4.7
ionic 3 s auto

# "Second tier" - improvements: -5.35 meV to -1.57 meV
hydro 5 g 7
hydro 3 d 6

# hydro 2 s 11.6
# hydro 2 p 0.9

[...]

species Ni

[...]

# "First tier" - improvements: -123.08 meV to -11.61 meV
hydro 3 p 6
hydro 4 f 9
hydro 5 g 12.4
hydro 3 d 5.2
ionic 4 s auto

# "Second tier" - improvements: -6.71 meV to -1.07 meV
ionic 4 p auto
hydro 4 d 6

# hydro 6 h 18
# hydro 4 f 9.4
# hydro 4 f 16.4
# hydro 1 s 0.75

[...]

• 3: The full tier 2

Which basis set do you find to be converged to a few meV?

6.1 4.3
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