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Introduction

With this tutorial, we aim at introducing you to state-of-the-art techniques for sampling
the potential energy surface of a system at constant energy (microcanonical ensemble)
and at constant temperature (canonical ensemble). The technique we adopt is molecular
dynamics (MD), that can be thought as old as modern physics itself, since we will prop-
agate in time a system of particles, given initial positions and momenta, by numerically
integrate Newton’s equations of motion for the system.
Indeed the original formulation of Newton’s second law is [1]: “Lex II: Mutationem motus
proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa
imprimitur.”, in modern English, “Law II: The change of momentum of a body is propor-
tional to the impulse impressed on the body, and happens along the straight line on which
that impulse is impressed.” In symbols:∫

∆t
Fdt = ∆p (1)

Where the vector F is the force acting on a body, p is its momentum, ∆t is the time along
which the force is applied. The whole l.h.s. expression is called impulse.
All the necessary theoretical tools for understanding this tutorial are given in the lec-
ture of Luca Ghiringhelli and Mariana Rossi about molecular dynamics and path integral
molecular dynamics.
The kind of MD we are interested in is Born-Oppenheimer MD, where nuclei are treated
as classical particles and the forces between them are evaluated by solving the (ground-
state) electronic structure problem for a given number of electrons and the nuclei at given
positions. In this tutorial, the electronic structure problem is solved via Density Functional
Theory. The tutorial contains two exercises plus one optional exercise; all of them adopts
as guinea-pig the gas-phase (isolated) H5O+

2 , which some of you may recognize as the
Zundel (cat)ion. This system is one of the (protonated) water clusters that are thought
to be the “building blocks” of liquid water. [2].
The first and introductory exercise poses the problem of choosing the right settings for
obtaining a stable and reliable molecular dynamics trajectory.
The second exercise lures you into the core of the matter, i.e. the choice of a thermostat for
simulating the canonical ensemble, i.e., the contact between your system of interest and a
thermal reservoir. Many traditional thermostats are implemented in FHI-aims, but for this
tutorial we focus on the most successful traditional one, the Nosé-Hoover thermostat, and
two modern and increasingly famous ones, the stochastic velocity-rescaling and the colored-
noise thermostats. The latter opens the possibility for accurate inclusion of quantum
statistics for nuclei, whereas the usual MD machinery treat them as classical particles.
The third (optional) exercise shows you how to evaluate the Infra-Red spectrum of your
molecule / complex after a (long) MD trajectory.

All the useful files for this tutorial (together with solutions) are located in:
$HANDSON/tutorial_4

All the scripts for this tutorial are located, as usual, in:
$HANDSON/hands-on-2014-tutorials/tutorial_4/scripts
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The microcanonical ensemble

Exercise 1: setting the time step
In this first exercise, we will investigate the effects of the time step size for the integration of
the equations of motion in a microcanonical molecular dynamics simulation. For a better
illustration, we will not only consider the H5O+

2 cluster, but also its heavier, deuterated
counterpart D5O+

2
1. In order to speed up the exercise, each group will simulate either

H5O+
2 or D5O+

2 .
Geometry files, containing both H5O+

2 and D5O+
2 are already provided in the folder

exercise_1. (all files for exercise x are located in the folder named exercise_x ).
In order to substitute hydrogen with deuterium, all you have to do is to put deuterium’s
mass in the control.in you are going to use:
mass 2.014102
Furthermore the species label should be changed such that in the geometry.in file the
same label is appearing. In this case, the species label could be D, already matching the
provided geometry.in:
species D.
The suggested choice of the molecule will be made clear (announced) by the tutors at
hand.
You will notice that this file also contains velocities assigned to each atom, so that the
Molecular Dynamics run will not use a random initialization. These velocities come from
a previous equilibration of the molecule at ∼300K. You will see how such a thermalization
is done in Exercise 2.
Instructions
• Copy the geometry file corresponding to the molecule you will calculate to geometry.in.
• First, build an input file for FHI-aims using the LDA (pw-lda) functional, no spin
polarization (spin none), and appending the “light” standards for the species (O
and D or H depending on your geometry.in, D species default can be found in this
exercise’s folder). Please, take few moments to understand the differences between
the hydrogen and the deuterium species default. Please refer to the manual for the
exact syntax of these flags.
Do not add any flags that we do not mention! They are not needed and might hinder
the performance of the calculation.
• Start a 0.15 ps MD run in the microcanonical ensemble, using a 0.0005 ps (∆t =

0.5 fs) time step (flags MD_run and MD_time_step respectively), with the following
“accurate” self-consistency convergence criteria:

sc_accuracy_rho 1E-5

sc_accuracy_eev 1E-4

sc_accuracy_etot 1E-6

sc_accuracy_forces 5E-4

If you are curious, after finishing these exercises you may want to play with these
criteria and see how the outcome is affected.

1The deuterium atom has one proton and one neutron in its nucleus, thus about twice as heavy as
hydrogen.
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In order to start the run type:
mpirun -np 4 $HANDSON/bin/aims.ipi.x > out &

– Please note that the executable is different from the one used in the other
tutorials. This is actually needed only for running exercise 3, while all the
other exercises could be run also with the usual executable, aims.x.

– The & puts the run in the background, so that the output file is created,
but the terminal is free for other use.

– If you anyway would like to have a dynamic view of what happens in your
output, after starting the simulation you can type:
tail -f out

– ATTENTION: do not start another FHI-aims run simultaneously.
That would slow down BOTH calculations considerably.

• When it is done, use the “aims_MD_eval.pl” script to analyze your run by typing
in the terminal:
perl aims_MD_eval.pl “FHI-aims-output-file” > “script-output-file”

• Plot the total energy (fifth column of the script output file) vs. the simulation time
(first column of the script output file) with xmgrace 2. For a short guide on how
to plot files with multiple columns via xmgrace, see the Appendix to this tutorial.
How would you describe what you see? Was this somewhat predictable?
• Increase the time step (∆t) of the MD simulation to 0.001 ps. Run FHI-aims (total
of 0.15 ps) and keep the output.
• Increase the time step to 0.003 ps and run the simulation again, redirecting the
output to another file.
• Together with the plot for ∆t = 0.0005 ps, plot the total energy vs. simulation time
in xmgrace for ∆t = 0.001 ps and ∆t = 0.003 ps.
How do the energy fluctuations develop? Do you notice something strange happening
for the ∆t = 0.003 ps run?

From the practical point of view, a larger time step is desirable, since it allows to assess
longer trajectories in shorter computational times. Notice, however, that the ∆t = 0.003 ps
simulation diverges for H5O+

2 . In fact, the molecule dissociates. You can inspect the
dynamics of the molecule by running
create_xyz_movie.pl “FHI-aims-output-file” > “script-output-file”.xyz

on your output and opening it in VMD (or Jmol, or Molden, whichever you prefer). The
reason for the dissociation is that the integrator is unable to deal with these “big” time
steps. This integrator uses a simple Verlet algorithm [5], where the error in the trajectory
goes with ∆t4. If you are simulating D5O+

2 , the ∆t = 0.003 ps simulation does not diverge,
although the energy fluctuations become very large. You can also look at the dynamics of
this molecule in VMD.
Although such large energy fluctuations would be already not accurate enough for a pro-
duction run with this molecule, the fact that it does not explode illustrates an important

2If you are more confortable with, e.g., gnuplot, please feel free to use it instead!
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point: the largest ∆t that can be used in a particular integration algorithm depends on
the highest vibrational frequency of the system. Since the D atoms, being heavier, have a
larger vibrational period (do you understand why this is obvious?), the used ∆t can also
be larger.
Timing: ∼30 minutes total
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The canonical ensemble

Exercise 2: Testing thermostats
Most “real-life” experiments cannot be done in a situation where the energy is explicitly
kept constant, but where other quantities like the average temperature or pressure are
maintained instead. As you may know, an ensemble where the temperature is kept con-
stant is the a canonical ensemble. In order to simulate this ensemble, the system has to
be coupled to a heat bath. From a statistical mechanics point of view, the average kinetic
energy in the canonical ensemble follows the equipartition theorem, which says that it
is equally distributed on the various degrees of freedom of the system. Therefore, the
momenta p = mv follow the Maxwell-Boltzmann (MB) distribution:

P (|p|) =
(

β

2πm

)3/2
exp

(
−β|p|2/(2m)

)
. (2)

The instantaneous temperature T̄ is given by the relation T̄ = 2〈K〉
3kB

=
∑N

i
|pi|2/mi

3NkB
, where

〈K〉 is the average kinetic energy of the system, mi is the mass of atom i and N is the
number of atoms. This means that the temperature is not constant but can (and should)
fluctuate around the average value. The theoretical standard deviation is σ2 = 2T 2

3N .
Here we apply three schemes which simulate a thermostat in MD. Below is a short summary
of the thermostats we will use in this tutorial:

1. Extended Lagrangian approach: the Nosé-Hoover thermostat [5, 6].
Equations of motion derived from the Lagrangian of the system conserve the total
energy of the system. One can write an extended Lagrangian, by adding fictitious
degrees of freedom, such that the overall total energy is conserved but the atomic
subsystem can span ensembles other than microcanonical. With the Nosé-Hoover
Lagrangian, the atomic subsystem samples the canonical ensemble. The equations
of motion of the Nose-Hoover thermostat are:

ṙi = pi/mi (3)

ṗi = −
∂U

(
rN
)

∂ri
− Πpi

Q
(4)

η̇ = Π
Q

(5)

Π̇ =
(∑

i

p2
i

mi
− g

β

)
(6)

where g is the number of degrees of freedom of the system, U is the potential energy,
Q the “thermostat mass”, and pi and mi the momenta and masses of the ith particle
of the system, respectively. The conjugated momentum Π of the extra coordinate η
acts as a fluctuating drag parameter to the atomic subsystem. The conserved energy
associated to the equations of motion is:

E =
∑
i

p2
i

2mi
+ U

(
rN
)

+ 1
2

Π2

Q
+ g

η

β
(7)
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2. Stochastic velocity-rescaling thermostat (Bussi-Donadio-Parrinello)[7].
In this algorithm, a deviation of the instantaneous kinetic energy is corrected in the
following way:

dK =
[
K −K(t)

] dt
τ

+ 2
√
K(t)K
Nfτ

ξ(t) (8)

where K is the target kinetic energy, K(t) = p2(t)/2m is the instantaneous kinetic
energy, τ is the relaxation time of the thermostat, Nf is the number of degrees of
freedom, and ξ is a white noise term (the derivative of a Wiener process 3) that
obeys 〈ξ(t)ξ(t′)〉 = δ(t− t′).
In practice the trajectory is first propagated for one time step with e.g. a velocity-
verlet integrator and the new velocities are calculated as usual. Then, the new
kinetic energy K is evaluated and the velocities are rescaled by a factor α such that:

α2 = e−∆t/τ + K

NfK

(
1− e−∆t/τ

)R2
1 +

Nf∑
i=2

R2
i


+ 2e−∆t/2τ

√
K

NfK

(
1− e−∆t/τ )R1

where the Ri’s are independent random numbers from a Gaussian distribution with
unitary variance4.

For this thermostat a conserved pseudo-Hamiltonian H̃(t) can be defined:

H̃(t) = H(t)−
∫ t

0

(
K −K(t′)

) dt′
τ
− 2

∫ t

0

√
K(t′)K
Nfτ

ξ(t′)

where H(t) is the total energy of the atomic system.
The Bussi-Donadio-Parrinello thermostat yields the correct distribution of K, does
not have ergodicity problems, does not perturb the dynamics, and its accuracy and
efficiency is rather independent of τ .

3. Nuclear quantum effects: the colored noise thermostat.
The colored noise thermostat is an extension of a Langevin thermostat; indeed
it is also called Generalized Langevin Equation (GLE) thermostat. The classical
Langevin thermostat is expressed through the following differential equation for the
momentum (here in one dimension, without loss of generality):

ṗ(t) = −γp(t) +
√

2mγTξ(t) (9)

where γ is a (friction) parameter and ξ(t) is a stochastic variable distribute as a
Gaussian white noise as above.
The Langevin thermostat is constructed via a Markovian (i.e. memoryless) stochastic
differential equation. Its extension, which leads to the colored noise thermostat, is
constructed via introducing auxiliary degrees of freedom s to the dynamics. These
extra degrees of freedom model a Markovian process in higher dimensions, but give

3An example of a Wiener process W (t) is the Brownian motion (you might have heard about it...). W (t)
has the following characteristics: ξ(0) = 0; W (t) is continuous; the increments are independent and
W (t2) −W (t1) is a Gaussian with average 0 and σ = t2 − t1.

4Note that
∑Nf

i=2 R
2
i can be drawn directly from a suitable Gamma distribution
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rise to non-Markovian dynamics when the fictitious degrees of freedom are integrated
out. The equations of motion are:

ṙ = p/m (10)(
ṗ
ṡ

)
=

(
−V ′(R)

0

)
−Ap

(
p
s

)
+ Bp

(
ξ
)
, (11)

where ξ is an array of uncorrelated Gaussian noises, V ′(R) is the gradient of the
potential and the Ap and Bp are matrices that obey the relation

ApCp + CpAT
p = BpBT

p , (12)

where Cp is the covariance matrix defined as Cp = 〈(p, s)T (p, s)〉. By integrating
out the s degrees of freedom, one gets dynamics of a non-Markovian process in the
physical variables, with the EOM given by

ṙ = p/m (13)

ṗ = −∂V
∂r
−
∫ t

−∞
Q(t− τ)p(τ) + ζ(t), (14)

where ζ(t) is a correlated noise and Q(t − τ) is a frequency dependent memory
kernel which depends on Ap. The fluctuation-dissipation theorem (and canonical
sampling) is obeyed if 〈ζ(t)ζ(0)〉 = kBTQ(t). However, the FDT can be broken and
one can enforce quantum statistic to some selected degrees of freedom (note: FDT
is equivalent to equipartition, thus breaking FDT implies breaking equipartition).
This is the way we will apply the thermostat in this exercise.
In the same spirit as the stochastic velocity rescaling thermostat, the colored noise
thermostat, defines a conserved pseudo-Hamiltonian:

H̃ = H −
∑
i

∆Ki (15)

where ∆Ki is the change in kinetic energy due to the action of the thermostat at
the i-th time-step, and the sum is extended over the past trajectory.

Instructions

• Use the control.in (tight convergence settings) and geometry.in for H5O+
2 / D5O+

2
that are in Exercise 2 folder. You will only have to change the MD related flags, as
explained below.
• You should use a time step of 0.001 ps and we will be simulating all systems at
300K. The keywords you should use are shown below. The general syntax of the
thermostat flags is:
<MD command> <time> <thermostat name> <temperature> <parameter>

You should provide an educated guess for the value of each thermostat’s parameter,
following the explanations given above and the hints below. If you have time, try to
play with these thermostat parameters afterwards.
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1. Nosé-Hoover
MD_run 1.0 NVT_nose-hoover 300 Q

Hint: It can be shown (and is actually a fun exercise) that the optimal mass
for the Nosé-Hoover thermostat is Q = 3NkBT/ω2, as shown in Ref. [9]. Con-
sidering H5O+

2 (D5O+
2 ) has vibrational modes between roughly 100 and 4000

cm−1 (70 and 3000) cm−1, which mass would you choose for the thermostat?
More straightforwardly, the flag MD_thermostat_units cm^-1 can be used to
input the thermostat mass directly in cm−1.
(A control file control.nose-hoover_programmed.in with a reasonable value
of Q is provided in exercise_2/solution/)

2. Bussi-Donadio-Parrinello (BDP)
MD_run 1.0 NVT_parrinello 300 τ

Hint: Use τ (the unit is ps) equal to ≈ 20–50 time steps. Unless τ is too small
with respect to the time step (1–5 time steps), the actual value of τ does not
affect the performance of this thermostat; with a milder coupling, one observes
a slower response to the imposed change of temperature, though.

3. Colored noise thermostat

MD_run 1.0 GLE_thermostat 300 n
The parameters for this thermostat are quite
complex. Here n refers only to the number
of fictitious degrees of freedom. Choose
n =6 in the line above. We will here use this
thermostat to approximate nuclear quantum
effects (we will not simulate a canonical
ensemble), so that the matrices A and C
(Eq. 11) will have to be given as an input.
They can be generated at
https://epfl-cosmo.github.io/gle4md/,
in the section INPUT .
Choose the parameters in the website like it
is shown in the picture .

• While waiting for the simulations to complete, you are challenged to demonstrate
Eq. 2 and calculate what would be temperature corresponding to a zero point energy
(h̄ω/2) for a frequency ω1 = 3000 cm−1 and for ω2 = 100 cm−1. Also show which
frequency ω corresponds to a temperature of 300K.
• Calculate the instantaneous temperature of each atomic species for each thermostat

you tried by using the following script:
python get_temperatures.py ‘output name’ O H

where ‘O’ and ‘H’ define the oxygen and hydrogen species. How do the different
thermostats work in each case? Do the thermostats couple efficiently to the sys-
tem? Can you understand the result for the quantum thermostat? (Hint: different
vibrational frequencies involve different atoms and give rise to different zero point
energies)
• After running the script “aims_MD_eval.pl” on the output, plot total energy (col-
umn 5) vs time step (column 1). Did you expect such a behavior? Now use the
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script “aims_NH-BDP.pl” (works analogously to “aims_MD_eval.pl”) to extract
the respective conserved quantity from the trajectory and plot it (sixth column) vs.
the time steps (first column). What do you observe?
• The script “get_rdf_h5o2.py” writes the radial distribution function g(r), decom-

posed into OH, OO, and HH pairs. Run the script on each output by typing:
python get_rdf_h5o2.py ‘output name’

It will output three files, starting with ‘rdf_oo’, ‘rdf_oh’ and ‘rdf_hh’. The first col-
umn is the distance (in Ångstroms) and the second column the count. Plot these files
for each thermostat you used and compare the results for each g(r). In the next ex-
ercise we will calculate the same data with path integral molecular dynamics, so that
we can compare! For which g(r) of you see the larger differences between the classi-
cal and “quantum thermostat" distribution? Compare the g(r) of H5O+

2 and D5O+
2

(the results for the cluster that you have not run are in exercise_2/solutions/).
Could you predict the differences? Can you understand them?
• In the folder exercise_2/solutions/ we provide the output files for 20ps long

simulations (all three cases). You can compare with the simulations you have done.

Time estimation: ∼1h30m
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Exercise 3: Path integral molecular dynamics and the i-PI code
In the previous exercise we already simulated nuclear quantum effects in an approximate
way by using the “quantum thermostat” based on the generalized Langevin equations
(GLE). Here we will use path integral molecular dynamics (PIMD) in the NVT ensemble
in order to look at the same quantities as we did in Exercise 2 for H5O+

2 and D5O+
2 . As

was discussed in the lecture, PIMD is classical molecular dynamics in an extended space:
Each quantum particle is mapped onto a ring polymer of classical particles, which consists
of n repetitions of the original system connected by harmonic springs. This method thus
increases the cost of the calculation by n. Since the harmonic forces of the springs are
easily and analytically evaluated, the method is also trivially parallelizable.
Here we will use the i-PI [10] program in order to manage the calculation of the several
replicas of the system, that will, in turn, be simulated by FHI-aims. The i-PI program
works through a client-server architecture, where i-PI is the server that provides the evo-
lution of the equations of motion that sample the desired ensemble, and the ab initio code
(in this case FHI-aims) is the client that provides the calculation of interatomic forces.
i-PI uses internet or unix sockets, that allow the replicas of the system to be simulated all
in the same machine, in different nodes of one machine, or in different machines, as long
as all the calculations can communicate with the server.
The quantum properties of the system converge with the number of beads. Typically the
number of beads needed is of the order of h̄ωmax/kBT , where T is the temperature being
simulated and ωmax is the maximum frequency of vibration of the system.
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Figure 1: Convergence of the average virial estimator for kinetic energy 〈Kcv〉 and average potential
energy 〈V 〉 for the H5O+

2 molecule at 300K with path integral molecular dynamics.

One should always check the convergence of a property of interest before doing a PIMD
calculation, but there will be no time for this in this exercise. Instead, in Figure 1 the
average potential energy 〈V 〉 and the average virial estimator for the kinetic energy 〈Kcv〉
are given for H5O+

2 at 300K with LDA (like in the previous exercises). The expressions
for these quantities in the PIMD formalism for a system of n beads and N particles are
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〈V 〉 = 1
n

n∑
i=1
〈V (q1

i , ...,qNi )〉 (16)

〈Kcv〉 = 3NkBT
2 + 1

2n

N∑
j=1

n∑
i=1
〈(qji − q̄j) · ∇V (q1

i , ...,qNi )〉 (17)

where q̄ = 1/n
∑
i qi is the position of the centroid. In Fig. 1, one sees that up to

64 beads (64 replicas of the system) are necessary to fully converge the quantities. This
would be prohibitive for the use with first principles potential energy surfaces. One way to
reduce the number of beads necessary to converge static (average) properties is to attach
properly tuned thermostats based on the generalized langevin equation to the beads of
the ring polymer, as proposed in Ref. [11]. This is what is shown in red in Fig. 1, where
one achieves convergence already with 8 replicas. Due to the computational resources
available, we will only be able to perform calculations with 4 beads.

• Server: An example of an input file for i-PI can be found inside the exercise_3/
folder, called input.xml. It is an xml file, which is quite intuitive to learn. The
input is not complete. Please take your time to understand the keywords that are
there and consult the i-PI manual found in $HANDSON/doc/manual.pdf.
Besides setting the number of beads (4), there are two other fields that should be
completed in the file: The field address about the socket communication and the
field of the thermostat.

1. We will be using UNIX domain sockets here, since we will be running both
server and client in the same machine. Just write in the <address> field a
string of your choice, e.g. ipam-2014-h5o2 . In the input there is a commented
block with an example of how it would look if we would use internet sockets
communicating with the local host. If using in different machines or nodes, one
would have to give a proper IP address at the "address” field.

2. The thermostat parameters can be found in
https://epfl-cosmo.github.io/gle4md/.
Choose the parameters in the website like it
is shown in the picture and paste it into the
relevant section of the i-PI input file.

More detailed instructions about the input file can be found in manual of i-PI, in
Sec. 5.1.2.
• Client: The keyword to add to the control.in file that is in the exercise_3 folder
of FHI-aims is
use_pimd_wrapper hostaddress portnumber
where hostaddress should be substituted by the address (IP or name) of the server
and portnumber by the number of the port with which it should communicate.
Since we are using UNIX domain sockets, one can just put a dummy number on the
portnumber field. In the hostaddress field write, for example, UNIX:ipam-2014-h5o2,
i.e., the only constrain is that the string after the colon matches the address field
in the i-PI input file.
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• Launch the server by typing:
python $HANDSON/ipi/i-pi input.xml > out &

• Launch four instances of FHI-aims by typing:
for i in {1..4}; do ($HANDSON/bin/aims.ipi.x > aims${i}.out &) ; done

• When the simulation is done, run the script “get_rdf_h5o2_PI.py" to compute the
radial distribution function g(r) in the directory where the output files are, by typing:
python get_rdf_h5o2_PI.py piglet-h5o2 4

where the first field is the prefix of the position files of all the beads and the second
field is the number of beads.
• Compare the g(r) obtained here with the one from the previous exercises. For which

species do you see most differences between the classical and the quantum case? Can
you explain these results? (The simulation here may take a long time, but you can
look at the rdf’s while the simulation is running.)
• While the simulation is running take your time to read the introduction of the i-PI
manual, which explains in detail the architecture of the code and its capabilities.

In case you like to get challenged by a statistical mechanics question during the waiting
time of this exercise, you may try to demonstrate that the theoretical relative standard
deviation of the temperature in the canonical ensemble is σ2

T 2 = 2
3N .
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Exercise 4 (optional): Harmonic vs. anharmonic vibrations
Vibrational spectroscopy is, nowadays, a very important tool for the characterization of
molecules. Usually, the frequencies measured experimentally are compared to theoretical
calculations in order to determine the geometry and electronic structure of the molecule.
For this purpose, the most common approach is to relax the geometry of a molecule on the
Born-Oppenheimer potential energy surface (PES) and then to perform a vibrational anal-
ysis in the the rigid-rotor/harmonic-oscillator approximation. There are a few problems
in this approach: the inability to probe all representative conformations of the molecule
and the inability to include anharmonic effects for particularly floppy vibrational modes.
Furthermore, rotations along certain axis of symmetry in the molecule cannot be consid-
ered rigid rotors. This is important for the molecule studied here, which vibrates while it
rotates and thus changes its moment of inertia.
It is possible to go beyond the harmonic approximation by “brute-force”, but calculating
the shape of the potential energy surface even for very few degrees of freedom is an
amazingly demanding task.
One can overcome some of these drawbacks by performing a Molecular Dynamics simu-
lation of the system in question. In the framework of Linear Response Theory, one can
rewrite the Fermi Golden rule by means of the Fourier transform of the dipole moment
time correlation function [12]:

I(ω) = F (ω)
∫ ∞
−∞

dt eiωt〈 ~M(t) · ~M(0)〉t0 (18)

In this formula, I(ω) is the intensity of the vibrations and F (ω) is a quantum corrector
factor which must be multiplied with the classical line shape in order to reproduce the
measured amplitudes [13, 14]. The angular brackets denote a statistical time average
for the auto-correlation of the dipole moment of the molecule. Formula 18 will give all
frequencies that are active in the IR range. Therefore, the whole IR spectrum of the
molecule can be calculated within one MD run, since one can choose various t=0 to
average the dipole auto-correlation over.
A similar relation can be found for the time average of the velocity auto correlation
function:

VDOS(ω) =
∑
i=1,N

∫ ∞
−∞

dt eiωt〈~vi(t) · ~vi(0)〉t0 (19)

In this case, N is the number of atoms in the molecule and the quantities that are computed
are all vibrational frequencies of the molecule, not only the ones active in the IR range (due
to selection rules). The advantage is that this function allows to assign the frequencies to
the displacements of the individual atoms [12].
For this exercise we will use the deuterated version of our molecule molecule, D5O+

2 , since
it allows a larger time-step and hence a longer simulation (in time). The instructions
follow:

1. Harmonic vibrations

• You should evaluate the harmonic vibrational frequencies of the molecule, in
the same way you did for H3O+ in the first practical section (Tutorial 1) of this
workshop. Fore reference, the solution is provided in:
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exercise_3/harmonic_vibs.

2. Calculating the anharmonic vibrations

• We will simulate at T = 300K (you may try other temperatures afterwards) A
geometry file called geometry.in.300K, which includes a thermalized geometry
is provided in the exercise’s folder.
• Copy geometry.in.300K to geometry.in

• Use the control.in file provided in this folder. There are some settings for the
integration grids that are different, so that the simulation is computationally
lighter.
• We will now run a 4ps MD simulation in the canonical ensemble with the
BDP thermostat. As has been discussed above, this specific thermostat does
not perturb strongly the dynamics of the system. The dynamic quantities are
preserved, and thus the autocorrelation functions can be reliably calculated.
Note that this is not the case for other thermostats. The “traditional” way
of performing this simulation would be to first thermalize the molecule at the
desired temperature and then start an MD run in the microcanonical ensem-
ble, where the dynamical quantities would be computed. In the case of few
degrees of freedom, though, the microcanonical sampling would be wrong, be-
cause the distribution of velocities is rather different from a Maxwell-Boltzmann
one. With increasing number of degrees of freedom (more than ≈ 50), the dis-
tribution of velocities in the microcanonical and canonical ensembles become
indistinguishable.
Your MD block should read:
MD_run 4.0 NVT_parrinello 300 0.1

MD_time_step 0.002

This run takes ∼35 minutes.
• Dipole-dipole correlation function: IR spectrum. For the analysis of

this simulation, we will use the script auto-correlate.py in order to see the
evolution of the auto correlation function and of the spectrum with the time
of the run. Besides doing this analysis at the end of the simulation, you can
do it after approximately 1ps, 2ps, and 3ps of simulation (or more often if you
want). To check interactively how far the simulation is, you may write:
grep “Updated atomic structure” “Output-File” | wc -l

which gives the number of completed time steps.
In order to run auto-correlate.py, you need to prepare an input file called
‘control.autocorr.in’. The flags are the following:

– path string
‘string’ is the name of the FHI-aims output

– choice string
‘string’ is the type of autocorrelation you want to calculate. Accepts either
’velocity’ or ’dipole’
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– sampling_interval integer
‘integer’ is an integer number that defines the sampling interval (each t = 0)
to calculate the autocorrelation. Recommended value is 1.

– cutoff_ratio float
‘float’ is a float number in the interval [0, 1] that defines the ratio of the
tail of the autocorrelation function you wish to leave out in order to make
the fourier transform. Recommended value is 0.1.

– broadening float
‘float’ is a float number in units of wavenumbers (cm−1) that defines the
broadening of the Gaussian to be convoluted with the Fourier transform.
Recommended value is 3.

An example of input file for this script is provided in the folder
exercise_3/anharmonic_vibs/. Copy also the executable “home_made_ft.x”
to the folder where you are performing this exercise. You can then run the script
by typing:
python auto-correlate.py

Three files will be generated, namely:
– autocorr.dat contains 3 columns, the first being time in ps, the second

being the autocorrelation function, and the third being the autocorrelation
function times a window function that makes it go to zero on the edges. The
window function is essential for reducing the noise in the Fourier transform.

– raw_fourier_transform.dat contains 2 columns, the first being wavenum-
bers in cm−1 and the second the intensities in arbitrary units

– convoluted_fourier_transform.dat contains 2 columns, the first being
wavenumbers in cm−1 and the second the intensities in arbitrary units
convoluted with a gaussian curve (width given in the input).

• Run first the python script with the ‘dipole’ option in the dipole-autocorr
folder. Remember to rename the outputs of the script so that they don’t get
overwritten. Visualize them in xmgrace and see how the autocorrelation func-
tion and the peaks of the Fourier transform evolve with time. What does the
“long” time (average) correlation indicate? Did you expect the curve not to go
to zero?
• Watch the movie. After extracting the xyz movie of the MD run, via the
script create_xyz_movie.pl, you may also want to visualize the trajectory,
e.g., with VMD. Checking the visualized trajectory, together with the plot of
the total(-should-be-conserved)-energy, is generally an unmatched test to see
whether something (and what, if the case) went wrong.
• Now that you have the anharmonic and the harmonic vibrational frequencies,
try to plot them on top of one another to see the differences. The outputs are
in arbitrary units, therefore you should scale one of the two spectra in order
to compare them. Higher temperatures should show more anharmonic effects,
while low temperatures should be closer to the harmonic result. Which peak
shows more anharmonicity?

Timing: xxx
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