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A short introduction
Now that you have learned how to run basic DFT calculations for molecular and periodic
systems, we will now show you how you can calculate intermolecular interactions with
FHI-aims and what different options you have.

Both previous tutorials employed gradient-corrected or hybrid exchange–correlation
functionals. These might work very well for covalent, ionic and metallic bonds and to
some degree even for intermolecular interactions, but they certainly miss van der Waals
interactions. These are often relatively weak but always attractive, purely quantum
forces which exist between every two (or more) fragments of matter and thus become
important for large and realistic systems.
There are many methods which treat van der Waals interactions within DFT. The

simplest approach is to divide the molecular system into atomic fragments and employ
a pairwise approximation. This leads to expressions of the form

∑
i<j

f(Rij)C6,ij

R6
ij

(1)
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where the sum runs over pairs of atoms i, j, R is the distance between said atoms and
C6 is a coefficient describing the strength of the interaction. f is a so-called damping
function which is an empirical entity preventing R−6 from diverging and ensuring a
smooth coupling of the van der Waals energy to the DFT energy.
In the simplest variant, tabulated empirical C6 coefficients for individual atoms are

used and f has a simple analytical form (DFT-Dn series [1, 2]). In a more elaborated
scheme, the C6[n] coefficients are functionals of the electron density n and thus take
into account the local chemical environment (Tkatchenko–Scheffler [3]). In a yet more
complex scheme, the C6 coefficients may be derived from the Kohn–Sham orbitals
(Becke–Johnson [4]).

A related, but alternative approach to van der Waals interactions is the use of
non-local density functionals of the form∫∫

n(r1)Φ[n](r1, r2)n(r2)dr1dr2 (2)

where Φ is the so-called non-local kernel. That is also the quantity which distinguishes
different non-local functionals. The two most widely adopted families are vdW-DF [5]
and Vydrov–van Voorhis [6].
The non-local functionals share with the pairwise method that they are essentially

two-body, or additive for long distances. But this is known to be not valid for van
der Waals interactions. There are again several ways how to go beyond pairwise
approximations. The simplest approach is to extend the pairwise methods by adding
three-body and higher-body terms. This goes in the spirit of adding higher-order terms
in perturbation theory. A more satisfactory approach which had been gaining popularity
recently is the random-phase approximation (RPA) used on top of a DFT calculation.
It is general, all-purpose but it’s major disadvantage is a higher computational cost. A
way around this is to use RPA with approximate response functions, which is a strategy
of the Many-Body Dispersion method. (“dispersion” is an alternative name for van der
Waals interactions more common in the chemical community.)

None of the methods mentioned above are exact and in this tutorial, we will limit
ourselves to the Tkatchenko–Scheffler (TS) method [3] and the Many-Body Dispersion
(MBD) [7, 8] method as representatives of the pairwise and many-body classes. They are
both implemented in FHI-aims and well established. The TS method was already briefly
described. The idea of MBD is to approximate response of atoms to electromagnetic
field (input for RPA) by harmonic dipole oscillators which can then be solved exactly.
The integral quantity in this model is the dynamic polarizability α(ω) which is related
to C6 of the TS method by the formula,

C6,ij = 3
π

∫ ∞
0

αi(iω)αj(iω)dω (3)
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If you are interested, you can find more details in Appendix A.
Finally, mind that both TS and MBD methods have some shortcomings. Apart

from the self-evident absence of many-body effects in the pairwise TS method, both
methods can suffer from the fact that they are formulated in terms of atoms. Hence in
systems where the partitioning into atoms is problematic, such as in metals (delocalized
electrons) or ionic systems (charge transfer), these methods might give inaccurate or
even qualitatively wrong results. The obvious remedy might be to turn at least partly
from atoms to electron density (cf. non-local functionals), and this branch of unification
is under development.

Exercises
We have prepared nine small problems divided in three parts which we hope will
illustrate various aspects of van der Waals interactions. The first part deals with a
benzene dimer which has been one of the widely studied van der Waals systems. The
relevant FHI-aims keywords and output are introduced and we will dig a bit more
into the inner workings of the methods. The second part introduces van der Waals
interactions in periodic systems, still taking advantage of the benzene molecule. The
third part dabs lightly into a more recent topic, showcasing some calculations with
graphene.
All the files related to this tutorial can be found in

$HANDSON/hands-on-2014-tutorials/tutorial_3

It is organized as follows. In doc, you can find this text (tutorial3.pdf) and also
the part of FHI-aims documentation related to MBD (doc-aims-mbd.pdf). problems
contains individual directory for each problem. In each of them except for the first one,
you can find Python script run.py to run the relevant calculations and extract.py
to gather and analyze results. These scripts were prepared beforehand as most of our
problems comprise a series of individual FHI-aims calculations. During the tutorial, we
will modify some of these scripts and other files. Finally, utilities contains scripts
used by run.py and extract.py. Namely, run_aims.sh automatically creates RUN.[n]
directory, copies input files in it, adds basis set information (add_species.py) and runs
FHI-aims. geom.py defines classes Atom, Molecule and Crystal which will enables us
easy creation and manipulation of. . . atoms, molecules and crystals. parse_aims.py can
be used to parse FHI-aims output and load it into Python and finally pretty_table.py
serves for printing pretty tables.
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1 A study of benzene dimer
The benzene dimer has served as a test case for van der Waals methods since the
1980s and it took over two decades to finally resolve its potential energy surface (PES).
Particularly challenging is the description of almost degenerate T-shaped (T) and
parallel-displaced (PD) structures.

Problem 1: Single benzene molecule
Task Find Hirshfeld volume and charge of car-
bon and hydrogen in a benzene molecule. Com-
pare C6 coefficients calculated from fully screened
and short-range screened polarizability. Plot dy-
namic polarizabilities along the principal axes of
the polarizability tensor. Check that the molec-
ular C6 coefficient in FHI-aims is correct.
The core control.in file which we will use

looks like

xc pbe
sc_accuracy_rho 1e-5
sc_accuracy_etot 1e-6

That is we use a standard PBE functional and
reasonable SCF convergence criteria. So go ahead, and create this file. To start with
van der Waals, add a line consisting of only one keyword

vdw_correction_hirshfeld

This activates the evaluation of the TS method.
Next, we create the geometry file for a benzene molecule. We will do it by first

creating a −CH element and then rotating it five times by 60◦. We can do that easily
in Octave, an open-source clone of MATLAB.1 So start it with

$ octave

and enter the following commands

> rCC = 1.397
> rCH = 1.084
> CH = [rCC 0 0; rCC+rCH 0 0] # sets a 2-by-3 matrix
> rot = [cosd(60) sind(60) 0; -sind(60) cosd(60) 0; 0 0 1]

1With a little bit of careful programming, one can write programs that run both in Octave and
MATLAB.
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> benzene = CH;
> for i = 1:5
> CH = CH*rot; # matrix multiplication of CH and rot
> benzene = [benzene; CH]; # appends rows of CH to rows of benzene
> end
> disp(benzene) # short for display

This will display the xyz coordinates for a benzene molecule where the C and H atoms
are alternating. Exit from Octave (Ctrl+D) and save it to some file. We have to convert
it into the FHI-aims’s geometry.in which has the format of

atom [x] [y] [z] [element]

Feel free to do it as you wish or use the following awk script,

$ awk '{print "atom",$0,(i++%2==0)?"C":"H"}' [file]

You can check the validity of the generated file by viewing it in jmol.
Finally, append the basis set information to the control file, for example with

$ cat $HANDSON/aimsfiles/species_defaults/light/*_{C,H}_* >> control.in

You can run FHI-aims now with

$ mpirun -n 4 [aims executable] > aims.out

After the calculation is finished (a couple of seconds), you can find the output of
FHI-aims in aims.out. The TS method is run after the SCF cycle is converged as is
typical for van der Waals methods. So either search for “Hirshfeld analysis” or skip
close the end of the file.

Evaluating non-empirical van der Waals correction (Tkatchenko/Scheffler 2009).
Performing Hirshfeld analysis of fragment charges and moments.
----------------------------------------------------------------------
| Atom 1: C

Let us pause here for a moment and say a tiny bit more about the TS method. We
already mentioned that the C6 are calculated from the electron density and for it to
be possible, the density has to be first divided between individual atoms. This can be
done in many ways and what we use is the so-called Hirshfeld partitioning (details in
Appendix A). Once having “atomic densities”, all sorts of quantities can be calculated.
Note the Hirshfeld charge (partial charge) showing the flow of electrons from hydrogen
to carbon. A more important quantity for us is the Hirshfeld volume, because the core
idea of the TS method is to obtain C6 in Eq. (1) as

Ceff
6 = C free

6

(
VHirshfeld
Vfree

)2
(4)
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where Ceff
6 is the effective atomic C6 in a molecule and C free

6 is C6 of a free atom. You
can see that in the case of a benzene molecule, atomic C6 will be smaller than their
free-atom counterparts. Lower in the output, you can find total energy and its various
components. Having a single molecule though, we are not really interested in the van
der Waals energy yet.
In the next step, replace vdw_correction_hirshfeld in the control file with

many_body_dispersion

This activates the MBD method. Note that only one of these keywords should be used
at the same time. Run FHI-aims again and check the output.

By Eq. 3, we need to know the dynamic polarizability to calculate C6. This happens
automatically in FHI-aims, but being a key quantity in the van der Waals theory, you
can find the dynamic polarizability listed in the output,

| Many-Body Dispersion (MBD@rsSCS) energy
| Dynamic molecular polarizability alpha(iw) (bohr^3)
| ----------------------------------------------------------------------------------
| omega(Ha) alpha_iso alpha_xx alpha_yy alpha_zz
| 0.000000 0.674230E+02 0.363629E+02 0.829508E+02 0.829554E+02
| 0.039290 0.670600E+02 0.361629E+02 0.825062E+02 0.825108E+02

Dynamic polarizability describes the response of a molecule in a similar same way as
static polarizability does, but for an oscillating electric field,

p(ω) = α(ω)E(ω)

where ω is the frequency, E is the generating field, p is the induced dipole moment
and α is the dynamic polarizability which is in general a tensor. As light is just an
oscillating electric field from the point of view of many processes, the knowledge of
dynamic polarizability is enough to calculate many interesting matter–light interaction
properties. On the other hand, van der Waals energy can be viewed as coming from
fluctuations of these dipoles, which can be described by the same molecular polarizability.
These two phenomena, inducing and fluctuating of the electric dipole in matter can be
nicely connected by the so-called fluctuation-dissipation theorem.

In the output, the isotropic and principal components of α(ω) are listed. In case of the
benzene molecule oriented as we have it, the principal axes coincide with the Cartesian
axes. What does “rsSCS” in MBD@rsSCS mean? After constructing the model atomic
dipole oscillators and before solving the Hamiltonian for them, there is one additional
step, called screening. This adjusts the atomic polarizabilities such that the influence
of neighboring atoms is taken into account. Furthermore, the polarizabilities need to
be screened only for the short-range part of the Coulomb potential (see Appendix A
for details). “rsSCS” thus stands for “range-separated self-consistent screening”. The
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reason for this labeling is that there are also other flavors of MBD, briefly mentioned
below.
Right under that, there is
| Molecular C6 coefficient : 1963.12847354 hartree bohr^6
| ----------------------------------------------------------------------
| Partitioned C6 (hartree bohr^6) | alpha (bohr^3) of atom in molecule
| ----------------------------------------------------------------------
| ATOM 1 C 35.452249 9.852572
| ATOM 2 H 2.047265 2.345397

which states the total molecular C6 coefficients and partitioned C6 and polarizabilities.
“Paritioned” here does not mean actual partitioning of the molecular C6 coefficient, but
rather rescaling of free atom values using information from the Hirshfeld partitioning
(see Appendix A for details).

Underneath, you can find the total and van der Waals energy,
Total energy components:

[...]
| MBD@rsSCS energy : -0.00789257 Ha -0.21476777 eV

[...]
| Total energy : -232.03427706 Ha -6313.97393032 eV

There are two similar sections above for MBD@SCS and MBD@TS. These are
older versions which have problems in some situations for some materials, whereas
MBD@rsSCS is currently the most up-to-date version and we will be using just that
in what follows.2 The info about energies for the two older MBD versions deserves a
couple of comments,

| Pairwise TS energy : -0.002520321 Ha -0.068581415 eV
| Pairwise TS+SCS energy : -0.002755232 Ha -0.074973687 eV
| MBD@SCS energy : -0.011341600 Ha -0.308620633 eV
| Total energy + TS energy : -232.028904843 Ha -6313.827744810 eV
| Total energy + TS+SCS energy : -232.029139755 Ha -6313.834137082 eV
| Total energy + MBD@SCS energy : -232.037726123 Ha -6314.067784027 eV

The TS here is exactly the same as we would got with vdw_correction_hirshfeld
so from now, we will use just the many_body_dispersion keyword. TS+SCS is the
TS method evaluated with the C6 coefficients obtained from the (fully) screened
polarizabilities. Finally, what is meant by total energy here is the bare DFT energy
(PBE in our case) before the final MBD@rsSCS correction.

2MBD@SCS is done with polarizabilities screened with the full Coulomb potential (no range-separation)
and MBD@TE with polarizabilities without any screening. In MBD@SCS, the long-range screening
is effectively double-counted, first in the actual screening, second in solving the coupled Hamiltonian.
This is taken care of in MBD@rsSCS
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Let us turn back to the dynamic polarizability. First isolate the listing of the
polarizability (under omega(Ha)) and save it in omega.txt. To get rid of the leading
pipe symbols in the polarizability output, you can use

$ sed -i 's/|//g' omega.txt

Then start Octave again and use the following commands to display the graph of
dynamic polarizabilities.

> load omega.txt
> alpha = omega(:, 2:5);
> omega = omega(:, 1);
> plot(omega, alpha(:, 2:3));
> title("dynamic polarizablity")
> xlabel("frequency (a.u.)")
> ylabel("polarizability (a.u.)")
> legend("alpha_{xx}", "alpha_{yy}")

Notice three things. First, the polarizability decreases with frequency as the electrons
are not able to respond fast enough to rapid electromagnetic oscillations. Second,
there is a large difference between the out-of-plane (alpha_xx) and in-plane (alpha_yy)
polarization.3 This would not be the case without the polarizability screening. Third,
at higher frequencies, the anisotropy disappears. This is because the screening ceases
to be effective.
The last thing to do is to calculate the molecular C6 coefficient from the dynamic

polarizability using Eq. (3), where
∫

dω →
∑

iwi. The integration weights are not listed
in the output, but they can be found in the source code of FHI-aims. You can can the
molecular C6 coefficient in Octave with (the same session as for the plotting)

> load int_weight.txt # load integration weight
> C6 = 3/pi*sum(alpha(:, 1).^2.*int_weight)
> # .^ and .* stand for elementwise operations

Compare the result with the output from FHI-aims.

Problem 2: Stacked interaction
Task For the stacked configuration of benzene dimer, find the total energy minimum
along the intermolecular distance. Compare the predictions of PBE, PBE+TS and
PBE+MBD with a reference method.

3The axis labels do not correspond here to the Cartesian axes, because they are derived as the
principal axes of the polarizability tensor, independently of the actual geometry.
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The interaction curve of two molecules A and
B is

Eint(r) = E(AB, |AB| = r)− E(A)− E(B)

where Eint(r) is the interaction energy of
molecules at a distance r and E are total en-
ergies of the specified systems. In the case of a
benzene dimer, A = B, so we will need to run
FHI-aims for a single benzene molecule and then
for a series of benzene dimers at different separa-
tions. To save time and not to bore you, we will
provide Python scripts for running and analysis
beginning with this exercise. But before we use
the scripts, let us briefly walk you through them.
The control file in this exercise is identical to the one we ended up with in the last

exercise, but without the basis set information. This will be added by the script run.py,
so take a look at it. The script first loads some modules and parses command-line
arguments. In the next step, it builds a benzene molecule in the same manner as you
did in the previous exercise, just using Python and the geom module.

rCC, rCH = 1.397, 1.084 # set C-C and C-H distances
CH = geom.Molecule([geom.Atom("C", (rCC, 0, 0)),

geom.Atom("H", (rCC+rCH, 0, 0))]) # create a -CH fragment
benzene = geom.Molecule() # initiate an empty molecule
for angle in np.arange(0, 360, 60): # for each angle in {0, 60,.. 300}

benzene.atoms.extend(CH.rotate("z", angle, center=(0, 0, 0)).atoms)
# rotate the -CH fragment and add it to the benzene molecule

The it loops over different benzene–benzene distances (0 for a single benzene molecule),

for dist in [0, 3.2, 3.4, 3.6, 3.8, 4, 4.4, 4.8, 5.6]:
if dist == 0:

m = benzene
else:

m = benzene.join(benzene.shift((0, 0, dist)))
# run AIMS for a geometry specified by m...

A directory is created for each of them, the geometry is printed into a file,

with open("geometry.in", "w") as f:
print >>f, benzene.to_str("aims") # convert to AIMS format
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and finally if the --dry option was not given, FHI-aims is run using a light basis set
on a number of processors given as an argument to run.py. The run_aims.sh script
takes care of the rest. So do it!

$ ./run.py 4

After a short time, you can start the analysis by checking the generated geometries
in RUN.1/*/RUN.1/geometry.in with jmol. The results can be evaluated with the
extract.py script. First, it gathers the data,

results = []
for rundir in glob.glob("*"): # for all directories

# get distance from a dir name
dist, = re.match(r"([\d\.]+)", rundir).groups()
dist = float(dist) # convert from string to float
output = os.path.join(rundir, "RUN.1", "aims.out") # AIMS output file
with open(output) as f: # read and parse the output

results.append((dist, parse_aims.AIMS_output(f).results))
results = sorted(results) # sort by distance

Next, it calculates the interaction energies for all methods we want,
methods = ["DFT energy", "Total energy + TS energy", "Total energy + MBD@rsSCS energy"]
energies = {method: [] for method in methods}
for dist, data in results:

if dist == 0: # if monomer, save the data in a special variable
momoner = {method: data["Energies"][method] for method in methods}

else:
for method in methods: # calculate interaction energy for each method

energies[method].append(data["Energies"][method]-2*momoner[method])

And finally it plots the results, together with a reference coupled cluster (CCSD(T))
value,

for method in methods:
plt.plot(dists, energies[method]) # plot each method

plt.plot([3.87], [-1.71], "o") # add a point for CCSD(T) value
plt.legend(methods + ["CCSD(T)"], numpoints=1) # make legend

You can find the generated figure in plot.pdf You can see that while PBE gives
no binding at all, both van der Waals methods predict interaction. And while TS
overbinds by roughly by 1 kcal/mol, MBD gives very accurate energy. This should not
be surprising, given how big the many-body effects are regarding the polarizability of a
benzene molecule (Problem 1). On the other hand, we used only a light basis set, so
you should check the converged PBE+MBD energy using tight setting.
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Problem 3: Investigation of the benzene dimer PES
Task Calculate energies of 10 given stationary points on the benzene dimer potential
energy surface (PES). Compare different methods.
The stationary point geometries are given in bz-dimer.geoms.txt as labeled xyz

files

M1
24

C 1.205074 -0.695750 0.000000
# ...
H -2.140382 -0.474604 3.488382
-----------------------------------------------------------
M2
24
# ...

and we can extract them easily with

geoms = {}
with open("bz-dimer.geoms.txt") as f:

geom_strings = re.split(r"\n-+\n", f.read()) # split on --- lines
for s in geom_strings:

label, xyz = s.split("\n", 1) # split first line with a label
# parse xyz geometry
geoms[label.strip()] = geom.Molecule().from_str(xyz, fmt="xyz")

After running FHI-aims for the geometries with run.py, we can read the benchmark
energies in bz-dimer.energies.csv with

benchmark = {}
with open("bz-dimer.energies.csv") as f:

csvreader = csv.DictReader(f)
for row in csvreader:

benchmark[row["label"]] = float(row["energy"])

The rest of extract.py is then simply calculating the interaction energies as in Problem
2 and constructing a prettytable table and printing it. You can see which geometries
correspond to which labels by using jmol.
You can again see that PBE severely underbinds, while PBE+TS overbinds. But

rather than this general trend, a more stringent test is available here. The hardest
problem in describing the benzene dimer PES is the comparison of T-shaped (T)
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and parallel-displaced (PD) structures (see [9] for pictures). They should be almost
degenerate (< 0.1 kcal/mol), but you can see that PBE+MBD gets this correctly.

2 An investigation of periodic benzene systems
In this part, we will be still busy with the benzene molecule, but this time in infinitely
extended arrangements, namely a benzene crystal and various benzene chains.

Problem 4: Benzene crystal
Task Calculate lattice energy of the benzene crystal using different van der Waals
methods and compare with the experimental value [10]. Test convergence of the MBD
energy with the MBD supercell size.

Periodic calculations of van der Waals energy do not differ too much from non-periodic
in FHI-aims. As with ordinary DFT calculations, we have to add the information about
k-point sampling to control.in. We use a template for the control file, with a line

{k_grid:}

to be replaced from within run.py. A second thing is the specification of the so called
MBD supercell. Currently, the MBD energy in a periodic cell is calculated by replicating
the unit cell, evaluating MBD for this supercell and averaging over all the replicas
(details in Appendix A). Naturally, the energy should be converged with the supercell
size. We can modify its size by specifying

mbd_supercell_cutoff 15.

which means that only unit cell replica within 15Å from the origin are used. The
default is 25Å and we are using a lower value to shorten the running time.

The structures of a benzene crystal and molecule are in benzene-crystal.aims and
benzene.xyz (you can check also crystal structures with jmol). The unit cell contains
4 benzene molecules. We can read them both with

with open("benzene.xyz") as f:
molecule = geom.Molecule.from_str(f.read(), fmt="xyz")

with open("benzene-crystal.aims") as f:
crystal = geom.Crystal.from_str(f.read(), fmt="aims")

The actual control.in can be created from the template by

with open("control.in", "w") as f:
print >>f, control.format(k_grid="k_grid 2 2 2"

if label == "crystal"
else "")
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Run the prepared run.py.
After FHI-aims is finished, get the results with extract.py. You can once again see

that PBE gives you almost no binding, PBE+TS overbinds and PBE+MBD gives a
cohesive energy of benzene crystal in very good agreement with experiment.
Try increase the value of mbd_supercell_cutoff and run again to see how well is

the energy converged. Do not forget to analyze the new results in RUN.2 with

./extract.py --dir RUN.2

Problem 5: Benzene chain
Task Calculate van der Waals energy per molecule of an infinite chain of stacked
benzene molecules depending on the benzene–benzene separation. Compare with the
binding of a benzene dimer.

A benzene chain is a 1-dimensional periodic system, but FHI-aims is capable of either
non-periodic or 3-dimensional periodic calculations. To remedy this issue, we add a
repetition in the other two dimensions too, but make the separation so large that there
will be practically no interaction between the parallel chains. The MBD routine has to
know about this by specifying

mbd_scs_vacuum_axis .true. .true. .false.

in the control file. This has the meaning that the system is actually not periodic along
the x and y axes. (The chain will go along the z axis.)

Similarly to the case of the benzene dimer, we can generate all necessary calculations
with

for dist in [0, 3.2, 3.4, 3.6, 3.8, 4., 4.2, 4.6, 5, 5.4]:
if dist == 0:

m = benzene
else:

m = geom.Crystal.from_molecule(benzene, [100, 100, dist])

where the parallel chains will be separated by 100Å.
After run.py and extract.py, you can look at the generated plot.pdf. Surprisingly,

the binding is almost the same as with the benzene dimer. This is caused by the fact
that in a 1D system, the amount of matter at a distance r is independent of r (as
opposed to ∼ r2 in a 3D crystal), while the interaction falls off quickly as r−6. The
two neighboring molecules thus constitute a vast majority of the interaction.
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Problem 6: Benzene chain reloaded *
This problem has a relatively long running time. You might consider skipping it for
now and returning to it later if you have some time left.

Task Consider the problem of tilting the molecules in a benzene chain. Find out the
dependence of the binding on the tilt angle θ.

We can extend run.py from the previous problem and add another loop over the tilt
angles. We also want to ensure that the atoms in two neighboring benzene molecules
will not get too close in the process of tilting, so we want to add a constant offset to
the separation distances for each angle.

offset = {0: 0, 30: 0.3, 60: 1.6, 90: 3}
for angle in [0, 30, 60, 90]:

for dist in [0, 3.4, 3.8, 4.4]:
if dist == 0:

if angle > 0: # run only for dist == 0 and angle == 0
continue

m = benzene
else:

dist += offset[angle]
m = geom.Crystal.from_molecule(benzene.rotate("x", angle),

[100, 100, dist])

run.py and extract.py later, you can see the curves in plot.pdf. Notice several
things. First, binding is strongest for 30◦, in agreement with the fact that the parallel-
displaced configuration of a benzene dimer binds stronger than the stacked configuration.
Second, the electrostatic component of the binding energy (PBE) is strongest for 60◦.
Third, the difference between TS and MBD is quite big for 0◦ and 30◦, but almost
vanishes for larger tilts. This illustrate the dependence of the many-body effects on the
exact geometry of the studied system.
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3 An inquiry into graphene interactions
The recent graphene boom took place after the experiments of Geim and Novoselov in
2004. In 2010, they were awarded the Noble price for their work. Graphene is being
studied from all possible angles and we will deal here with interactions of graphene
with other entities.

Problem 7: Graphene and benzene
Task Calculate the interaction curve of a single benzene molecule on a graphene sheet
using PBE, PBE+TS and PBE+MBE methods. Compare with experimental value.
Graphene is a 2D-periodic material, but graphene with a single adsorbed benzene

molecule is a non-periodic infinite system. To model it within a 3D-periodic code, we
again introduce artificial periodicity. We replicate the graphene sheet in perpendicular
direction, with enough vacuum in between the parallel sheets. And instead of a single
benzene molecule, we will have its 2D-periodic lattice, with the individual molecule far
enough from each other so there is only a negligible interaction between them.
We can generate the graphene surface quite simply, by first creating the graphene

unit cell and then replicating it in the in-plane directions to create supercells to host
the individual benzene molecules.

rCC = 1.420 # C-C distance
a_uc = rCC*np.sqrt(3) # lattice constant a of the hexagonal lattice
sc_size = 5 # number of unit cell replicas in each direction
a_sc = sc_size*a_uc # lattice constant of the supercell
interlayer = 100. # vacuum thickness in between parallel graphene sheets
graphene = geom.Crystal([geom.Atom("C", (0, 0, 0)),

geom.Atom("C", (1./3, 1./3, 0))],
hexa=(a_uc, a_uc, interlayer),
coord_type="d") # fractional (direct) coordinates

graphene.set_coord_type("c") # convert to cartesian coordinates
graphene = graphene.copy_cell((sc_size, sc_size, 1)) # replicate unit cell

First definitely check the generated geometry, so that you are sure what is going on.
Then, the plot.pdf file you will get from plot.pdf shows that the PBE+TS method
compared with the experimental value overestimates the binding energy by ∼ 5 kcal
whereas PBE+MBD is in a very good agreement.

Problem 8: Graphene bilayer
Task Calculate the dependence of the binding energy of a graphene bilayer using
PBE, PBE+TS and PBE+MBD methods. Test the convergence of the MBD energy
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with the site of the MBD supercell.
With a graphene bilayer without any adsorbed molecule, we can restrict the calcula-

tion back to the bare graphene unit cell, using proper k-point sampling. The geometries
can be generated by

for dist in [0, 2.8, 3.4, 3.7, 4, 5, 7]:
if dist == 0: # graphene sheet monomer

m = graphene
else:

second_layer = graphene.copy()
for atom in second_layer.atoms:

atom.R[2] += dist # shift the second graphene sheet
m = graphene.copy()
m.atoms.extend(second_layer.atoms) # add the two sheets together

Obtain the plot.pdf figure. Here you can see a significantly different binding curve
compared to the benzene dimer, with much more slowly decaying tail. This is owing
to the dimensionality of the materials and it can be shown that in case of 2D–2D
interaction, the van der Waals interaction decays as r−4. In this case, PBE+MBD
slightly underbinds compared to the experimental value. But this might be due to
too small MBD supercell cutoff. Try running the same calculation for a series of
mbd_supercell_cutoff ∈ {10, 15, 25, 35} and see how the MBD energy converges.

Problem 9: Graphene multilayer
Task Calculate the dependence of the binding energy per graphene sheet of a slab of
multiple graphene sheets at a constant separation distance. Use PBE, PBE+TS and
PBE+MBD methods.
Building upon the previous exercise scripts, we can build the graphene multilayer

simply with

layer_sep = 3.5 # separation of graphene sheets
for n_layer in range(1, 9):

if n_layer == 1: # single layer
m = graphene.copy()
add_layer = graphene.copy() # initialize the add layer

else:
for atom in add_layer.atoms:

atom.R[2] += layer_sep
m.atoms.extend(add_layer.copy().atoms)

Run the exercise and open the plot.pdf file. The binding energies are calculated with
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kcal*(data["Energies"][method]-n*monomer[method])/n

where n is the number of the sheets.
There are several things to notice. First, PBE gives no binding at all. This serves as

an example that common GGA functionals can perform poorly even for bulk matter. In
the limit of infinite number of graphene layers, we get graphite and PBE would predict
that graphite is not a stable material. Second, the interaction converges quite slowly,
which is to be compared with the infinite benzene chain, where we argued that only
the nearest neighbors are significantly contributing. Third, mind the almost two-fold
overestimation of the binding energy by TS for the eight layers. Finally, notice when
looking at the tails, that TS converges noticeably slower than MBD, owning to the
compensation by depolarization in case of MBD.
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A Theoretical background
Here, we would like to present a brief description of the Many-Body Dispersion (MBD)
method. The procedure starts with projecting the response of valence electrons onto a
set of quantum harmonic oscillators by calculating the “volumes” for free atoms and
atoms in a molecule,

Vi =
∫
ni(r)|r−Ri|3dr

where Ri is the position of atom i and ni is either its free-atom electron density nfreei

or Hirshfeld density nHi ,

nHi (r) = n(r) nfreei (r)∑
j n

free
j (r)

The ratio of the free and Hirshfeld volumes captures the influence of chemical envi-
ronment on the individual atoms. To incorporate this effect in the van der Waals
interaction, the free atom reference static polarizabilities α0, C6 coefficients and van
der Waals radii RvdW are renormalized using the volume ratios,

α0,i = αfree0,i × V H
i /V

free
i

C6,i = C free
6,i × (V H

i /V
free

i )2

RvdW
i = RvdW,free

i × (V H
i /V

free
i )1/3

Then, the dynamic polarizabilities are calculated as

αi(ω) = α0,i

(
1− ω2

(ωeff
i )2

)−1

where the effective resonance frequency ωeff
i is defined as

ωeff
i = 4C6,i

3α2
0,i
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This corresponds to approximating the response of an atom with a single harmonic
oscillator.

Screening In the next step, we evaluate the screening of polarizabilities, i. e. how
response properties of the atoms are influenced by other atoms. The scalar polariz-
abilities are first recast as tensors, αi = δαi (δ for Kronecker delta) and gathered
into one 3N -by-3N matrix, where N is the number of atoms, α =

⊕
i αi. This is the

bare polarizability tensor α. Next, we want to let the atoms interact through dipole
interaction,

Tdipole = ∇⊗∇1
r

To explicitly account for the fact that we do not have point dipoles, but rather atoms
where the dipole density is spread over a finite volume, we consider the Coulomb
interaction between two Gaussian charge densities, vGG(r) = erf(r/σ)/r. Furthermore,
we want to perform the screening only with the short-range part of the Coulomb
potential. This leads to the final interaction tensor between atoms i and j of the form

TGG,sr
ij = (1− f(Rij)) ∇⊗∇erf(r/σij)

r

where σij =
√
σ2

i + σ2
j , σi =

(√
2/π × αi/3

)1/3
defines the natural width of the

interacting charge densities, f is a damping function and Rij is the distance between
the atoms. The short-range screened polarizability tensor αsr is then obtained using
the self-consistent Dyson-like equation,

αsr = α + αTGG,srαsr

where

T =

T11 . . . T1N
... . . . ...

TN1 . . . TNN


The isotropic atomic screened polarizabilities are recovered as

αsri (ω) = 1
3 Tr

∑
j

αsr
ij(ω)


RPA Finally in the last step, the MBD correlation energy is calculated from the
short-range screened polarizabilities (response functions) using the random-phase
approximation (RPA) formula,

Ec = 1
2π

∫ ∞
0

Tr[ln(1− χ0v) + χ0v]dω
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where in case of MBD, the bare response function χ0 is
⊕

i δαsri and the interaction
potential v is (“lr” for long-range)

Tlr ∼ Tlr
ij = f(Rij)∇⊗∇1

r

A significant convenience of MBD is that because of the use of dipole approximation
and other considerations, the RPA integral can be evaluated analytically by recasting
the problem as matrix diagonalization.

Periodic MBD
The MBD method could be of course made periodic using Bloch functions and k-point
sampling, but we employ a less technically demanding solution.

In the screening part, the effect of atoms from other unit cells is incorporated in the
interaction tensor T by

Tij =
∑

k

Tik, k ∈ {replicas of j, |jk| < Rcutoff}

In FHI-aims, Rcutoff can be controlled with the keyword mbd_scs_dip_cutoff.
In the RPA part, the modification is two-fold. First, the interaction tensor is modified

in the same way as for screening, just using a different keyword mbd_cfdm_dip_cutoff.
Second, the original unit cell is replicated into a supercell, the RPA integral is evaluated
for the whole supercell as if it was a molecular cluster, and the MBD energy is averaged
over all unit cells that constitute the supercell. The size of the supercell is controlled
with mbd_supercell_cutoff. Mind that you should always check the convergence of
MBD energy with all these three parameters in production periodic calculations.
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