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Why statistical sampling?

Thermodynamic ensemble properties:

Partition
Function Hamiltonian
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Why statistical sampling?

Ensemble averages:
possibility of directly sampling via Metropolis Monte Carlo algorithms
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Why statistical sampling?

Ergodic assumption/hypothesis : ensemble averages equal to time averages:
possibility of sampling via time evokution of the system (Molecular Dynamics)

T
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Molecular dynamics: the basic idea

1. Assign initial R (position) and p (momenta)

2. Evolve (numerically) Newton's equations of
motion for a finite time increment
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Molecular dynamics and thermodynamic ensembles

Microcanonical (NVE) ensemble: Number of particles, Volume, and
total Energy are conserved
Natural ensemble for MD (the Hamiltonian is conserved)

Canonical (NVT): Number of particles, Volume, and Temperature are
conserved

System in contact with a heat bath (discussed in few slides)

Isothermic-Isobaric ensemble (NPT): Number of particles, Pressure,
and Temperature are conserved

“Computer experiment”: equilibrate system and measure



Numerical integration

This is an N-body problem, which can only be solved numerically (except in
very special cases) at least in principle.

One (always) starts from a Taylor expansion:

1 1
z(t+ At) = x(t) + #(t) At + 55{:(1;)&2 + o (t)At? + ...

Naive implementation: truncation of Taylor expansion

1
x(t + At) = x(t) + () At + 5:‘1‘:(15)&2

Wrong!

The naive “forward Euler” algorithm

* is not time reversible

* does not conserve volume in phase space
e suffers from energy drift

Better approach: “Verlet” algorithm



Verlet algorithm

Verlet algorithm
compute position in next and previous time steps

x(t + At) = z(t) + 2(t) At + éjﬁ?(i)AtQ + é‘:ir‘(t)&tf* + ;4'513'(15)&*54...

x(t— At) = x(t) — a(t)At + ;i‘r(t)AtQ — é'ir'(t)AtS — Qlil':ﬁ'(t)mé‘...

x(t + At) + z(t — At) = 22(t) + () At* + O(At)...

Or x(t+ At) = 22(t) — z(t — At) + &(t)At?

Verlet algorithm:

— is time reversible

— does conserve volume in phase space, i.e., it is “symplectic”
(conservation of “action element” dp A dg)

— does not suffer from energy drift

...but is it a good algorithm?

i.e. does it predict the time evolution of the system correctly???



Molecular chaos

Dynamics of “well-behaved” classical many-body system is chaotic.
Consequence: Trajectories that differ very slightly in their initial
conditions diverge exponentially (“Lyapunov instability”)



r(t) = [™N(0), p™(0); 1]
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Why should anyone believe in Molecular Dynamics simulations ???



Why should anyone believe in Molecular Dynamics simulations ???

Answers:

1. Good MD algorithms (e.g. Verlet) can also be considered as good

(NVE!) Monte Carlo algorithm - they therefore yield reliable STATIC
properties (“Hybrid Monte Carlo”)

2. What is the point of simulating dynamics, if we cannot trust the
resulting time-evolution???

3. All is well (probably), because of... The Shadow Theorem.



Shadow trajectory

Shadow theorem (hypothesis)

* For any realistic many-body system, the shadow theorem is merely a
hypothesis.

e It basically states that good algorithms generate numerical trajectories
that are “close to” a REAL trajectory of the many-body system.

* Question: Does the Verlet algorithm indeed generate “shadow”
trajectories? -

* In practice, it follows an Hamiltonian, depending on the timestep, f]‘f(}:i_ At)
which is close to the real Hamiltonian H(x), in the sense that for At — ()

H (x, At) converges to H(x)

e Take a different look at the problem.
— Do not discretize NEWTON's equation of motion...
— ...but discretize the ACTION



Shadow trajectory

Lagrangian Classical mechanics
* Newton:
F(x,t) =mzx
* Lagrange (variational formulation of classical mechanics):

— Consider a system that is at a point ro at time 0 and at point r; at
time t, then the system follows a trajectory r(t) such that:

S =rdt[i<:—u]

tp

1S an extremum.



Reminder: Lagrangian formulation

L(i,r) = K(#) = U(r) = —— = U(r)
oL ok oL _ oU _
or  or 7 or  or
B OL(r, 1) . OL(r,r)
P="5 D=5




Shadow trajectory

Lagrangian

For example, if we use Cartesian coordinates:

N o

Lrt) =Y —mi2 —=U(ry,ro,...
(r(t)) ?z; 2m T (ri,re,...7TN)
Consider the “true” path R(t), with R(0)=r( and R(t) =r..
Now, consider a path close to the true path:

r(t") = R(t") + or(t)

Then the action S is an extremum if

oS

() =0 for all ¢

What does this mean?



Shadow trajectory

Discretized action

t1
8 = f dLL (1)
t

0'
tmax
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For a one dimensional system this becomes
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Shadow trajectory

Minimize the action
Now do the standard thing: Find the extremum for small variations in the
path, i.e. for small variations in all xi.

8Sd’isc

B, —{} lgeall 3

This will generate a
discretized trajectory that
starts at time ty at Xp, and
ends at time t at X..

“true” trajectory



Shadow trajectory

I8 10 Z lmmﬂ . U(m-)At]

dﬂ?? N 8&?3 1 DAL
At?
Litl1l — 2:1’3?; —a 1 T WF(IL‘Z)

* which is the Verlet algorithm!

e The Verlet algorithm generates a trajectory that satisfies the boundary
conditions of a REAL trajectory — both at the beginning and at the
endpoint.

e Hence, if we are interested in statistical information about the
dynamics (e.g. time-correlation functions, transport coefficients, power
spectra...)

...then a “good” MD algorithm (e.g. Verlet) is fine.



First principle Molecular Dynamics

Forces come from an ab initio potential V
(via Hellmann-Feynman theorem, including Pulay terms, etc. )

Possible flavors in the ground state:
Born-Oppenheimer MD
Car-Parrinello MD

Including excited states:
Ehrenfest MD
Surface hopping MD

Time scales: hundreds of picoseconds to nanoseconds for
hundred of atoms



First principle MD in practice: Car Parrinello approach

Extended Lagrangian: add (fictitious) degrees of freedom for the
electrons in the Lagrangian and solve coupled equations of motion

Lagrange multipliers

L = [Z M/R] @/dﬂ@ r,it) n cf) /drqb (r,t)¢;(r,t) — z;;]
Fictitious Kohn-Sham
electron mass orbitals
. . 16V(p,0™: R
MiR; = =91V (66" R) i = =5 G S ke
t j

Electrons “follow” nuclei: avoids self-consistent calculation at
every time step

Adiabatic separation: fictitious mass of the electrons need to be
very (but not too..) small => small time step



(First principle) MD: beyond the basics

Simulating conditions that are experimentally accessible:
Control temperature and/or pressure, number of
particles, other external fields

Including quantum nature of the nuclei
(see Mariana Rossi's talk on Friday)

Enhanced sampling of potential energy surfaces



Sampling the canonical ensemble: thermostats

The basic idea: coupling the system to a heath bath (acts as a
thermostat)

Interesting because:
Experimental sets up are usually at constant temperature
Favors better modeling of conformational changes

Energy is
conserved

Energy is
not conserved




Sampling the canonical ensemble: thermostats

Probability distribution of the kinetic energy:
P(Eyin) o< exp(—Ekin/kpT)

[ I [ I
Maxwell-Boltzmann-Distribution

kinetic
T < <l | energy: p*/2M
: - v
sl ~ INEkp

[ - !

# of particles

| | I |
Kinetic Energy (a.u.)




Stochastic thermostat: Andersen

e Every particle has a fixed probability to
collide with the Andersen demon

* After collision the particle is give a new \

Velocity / / /
8" | e @8

| co-pm

P0)-|

2am

e The probabilities to collide are P(r
[;v)=vexp|—vi
uncorrelated (Poisson distribution) ( "V) xp[ ]

e Downside: momentum not conserved.
Fixed by Lowe-Andersen (2006)



Deterministic thermostat: Noseé Hoover

S.Nosé, J.Chem. Phys. 81,511 (1984) & W. G. Hoover, Phys. Rev.A 31, 1695 (1985).
Extended Lagrangian approach, leading to extended
Hamiltonian (conserved):

Original system Fictitious Oscillator
e Momenta are damped by a fictitious oscillatorp; = F; — Egp I

® Known possible ergodicity problem: system may be stuck in a subset of the
phase space

Possible solution: Nosé-Hoover chains: attach a second fictitious oscillator to
the first, then a third to the second, and so on. The effect is of randomizing

the action of the heath bath Martyna, Klein, Tuckerman, J. Chem. Phys. 97,2635 (1992)



Stochastic velocity rescaling thermostat

G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126,014101 (2007).

Combining concepts from velocity rescaling (fast thermostat)
with concepts from stochastic thermostats (accurate!)

The target temperature follows a stochastic differential equation:

Temperature White noise
rescaling

® Very successful thermostat, weakly dependent on relaxation time t

® A conserved pseudo-Hamiltonian is defined

Bussi, Parrinello, Phys. Rev. E 75,056707 (2007)



Vanilla MD: what can it be useful for

— Average structure / static properties at finite temperature

— Vibrations (IR, Raman spectroscopy)
see Mariana Rossi's talk on Friday

— NMR spectroscopy

— Transport properties

— For realistic processes, phase transitions: enhanced sampling



Extending the scale

Potential Free.ener Free-energy
energy > metho dgy » surface
surface (T,{qi})

PES can be from:

- Ab initio

- Classical force field
- Toy models

Why free energy? Nature at equilibrium minimizes free-energy, not energy
- (extended) phase equilibria (u, = g = ... )

- relative population of competing structures (nanoscale) P(A) o« e P&

- rate of processes (via Transition State Theory)



Free energy, one quantity, many definitions

* Fundamental statistical mechanics < thermodynamics link

F=—kgThZ 1

BF =—InZ 2= NTan

[ maqe-mero

Classical statistics (for nuclei):

1
= TR /d@e—ﬁU(@)

h

7 —
\/QkaBT




Free energy, one quantity, many definitions

Thermodynamics
F=FE-TS

if we can calculate E and write analytically on approximation for S for our
system, we use this expression. Example: ab initio atomistic thermodynamics.

Thermodynamic Integration

g (;ﬂF) = (E)NvT

or similar derivatives that yield measurable quantities (in a computer
simulation): one can estimate the free energy by integrating such relations.
This is the class of the so called thermodynamic-integration methods.




Free energy, one quantity, many definitions

 Probabilistic interpretation of free energy

dQi(U(Q) — E)

P(E) = p(E)dE — " %e—ﬁEHnQ(E)
1 /d@e—w(@) dE
ASN NI &7 e—B(E-TS) — 2 ,~BF(E)
7 Z




Statistical mechanics: free energy as a probabilistic concept

What is energy? A mapping from 3N coordinates into one scalar R*Y — R

Let's introduce:
d R33N 5 R sothat:

Po(€) = % [ e PV @D 5(8(QF) - €)dG = de 22

Formal definition of a free energy:

‘i’ : F@.(f) — —k‘BTIIlZ(I,(g) P@(f) = % — %6—51‘_’&:(5)



Statistical mechanics, quantities derived from Z

Average energy:

-_-HEH

(E): E{:E”_‘Pﬂ P, == 7 Enpn:
Bl Zafae 55 | olmz)  O(BF)

B Z - Z | 98| 9B
Heat capacity:

(B 1 OFE __ L gy _ g2
Noy =l = - 7 (E% = (B))

- 1 0 (En Enﬂ_’gE“) _ oF

 kpT? 88 Z kpT?

1 [(TpBae ) T, Ele o
kpT? VA Z



Ensemble averages on discrete machines

- [dQA(Q)e P QY [4dQA(Q)e U@
- fd@e—ﬁU(@) 7

(A)

If canonical and ergodic sampling is
performed



The problem of free energy sampling

B fd@A(@)e_ﬁU(@) 1 i
(4) = = D An

—BU
[ dQe—BU(Q) —
But:
BF = = 111 Z
1
B —BU(Q)
/ = A3N NI / dQe One cannot converge such a quantity!

VN ) i
... but one cannot measure it, either

Zideal gas — A3SN N |




Theoretical free-energy evaluation: the zoo

- Analytic: ab initio atomistic thermodynamics

- Canonical sampling: thermodynamic integration

- Canonical sampling: thermodynamic perturbation

- Generalized sampling: biased sampling / biased dynamics

- Unbiased (canonical) sampling — re-weighting techniques

- Evaluation: ‘ Parallel I or ‘ >>> Serial <<< I




Free energy: “physical’-path thermodynamic integration

How are free energies measured
experimentally?

oOF

oo =P
O(BF) _
08 . y
F(V)=F(VW) —I—/ dV (—P)
Vo

Vo — 00 :ideal gas

1“’!} ¥ | ¥ T ;

Parallel (over densities)

00 02 04 06 08 10



Free energy: “unphysical”’-path thermodynamic integration

Let us assume a mixed potential: U = (1 — \)Ugy + AU,
F\(N,V,T) = C — kpT / drN o= BN Uo +AU)
OF\(N,V,T)  [drN(Us — Up)e PlI=NVo+ATL)
O [ drNe—B((1=2)Uo+AU1)
= (U1 — Ug)

1
F(N,V.,T) = Fy(N,V,T) —I—/ dA\(Uy — Up) A
0

N

How to choose the reference?



Case study: phase diagram of pure carbon

Road map:

e Calculation of change of Helmholtz free energy from chosen

reference state to a particular (Tp) point, for each involved phase

(what about overlooked phases?), by means of thermodynamics
integration.

 Search for of all coexistence points at a given T between all pairs of
phases, via integration of equations of state P(p) and evaluation of
crossing points (alternative: common tangent construction).

* Prolongation of coexistence line by Gibbs-Duhem integration



Case study: phase diagram of pure carbon

Considered phases: diamond, graphite, and liquid(s)

F"E - Frﬁf_l_AF['ef—}E"

A=1
dU
— me+f d1<’*>

1
—~ FrEf-F]{; dA(U"ef— U'I‘)l




Case study: phase diagram of pure carbon

Considered phases: diamond, graphite, and liquid(s)

GRAFHITE CIAMOND

F"E - Frﬂf_I_AF['Ef—*’I" . )
A=1
dU
— e f da<'*> :
A=0 8)- "5 B

1
- FrEf-Fj{; dA(U"ef— U’E)

Ao )



Case study: A-ensemble sampling and integration

0 | | | |
= _&| Lennard - Jones fluid -
Jﬂ\ -
. ‘ Parallel (over 1) I »
& E
A 3
S -0 ~ -
B i
o Liquid =
= _15 - T —
D __________________ ’_/
V ....... P___.—h/ i
Graphite ren T
% LCBOPI™ _,____P_.l.-_---—-"'f' : z_
<=l o e W i ) Einstein crystal
Diamond
: ‘/f.,’,l/.fil | | .
0.2 0.4 0.6 0.8 1
A

E= = S LAt = +f

A=1

A=0

105

dA

2

)i = F*f 4 [01 ar (v U'E)l

This gives the absolute Helmoltz F(Ty,Vy) for the three phases.

Here Ty = 4000K



Case study: integration of P(p) equations of state

60 | ' | ' | ' |
Liquid Diamond
50 | T i
" I i

— 40 - . —
£ Parallel (over densities) I _
E 30 I _ =
= “ Graphite
5 .,.I A
=~ 201 T ¥ il

=
|
@
@)
!

I 1 1 1
2 25 3 5
Density [103 kg/cm3]

FE*
P(p)=a+bp+cp* —» ﬁﬁ(p)=i¢+ﬁ|:€;+bln£;
p p

This gives the absolute Gibbs G(Ty, p) for the three phases

-I—b—I—C(Z,O—pE):l



Case study: equating Gibbs free energies

L ' | | ' | ' |
Difference in slopes:
. . PES: Hu _ 99 1 And then:
difference in specific 35 = 7p Gibbs.Duh
volumes - 1DDSZIUNE
) integration
= s | P TAs
= dP Ay
i — Diamond —
---------- Graphite dT T AU
24 F —- Liquid i
f_ Ah = Au + PAv
é; 1 I 1 I 1 I 1 I 1
6 8 10 12 14

Pressure [GPa]

This gives three coexistence points at Ty

o ‘ >>> Serial <<<I



Carbon phase diagram

LMG et al. PRL 2005
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Sparing CPU time: adiabatic switch

Start again from two systems:
N .2 N
=1

p;
4 AU()(I'I,...,I'N)

HOZZ Pi w5 ({1 o [R,  C HI(A):Z Ym

i=1 [

F()(T()) - — kBT() ln[f dSNi" eXp(—U()/kBT()) + 3NkBTO 1DA(TO)
V

+ 3NkpToInA(Tp)

AUy Uy
kT A kT
Fo(T)  F(Ty, ) 3 Ty T
— + _NkB In— T
T Ty 2 T 7 = 29



Sparing CPU time: adiabatic switch

Fo(T F(Ty, A 3 T

o) _ Fi(To )+—Nk31n—0

T Ty 2 T
time ?!? reversible?

y Lo /

AFq (A(f),A(O)) = L dl‘lz U()(l‘l(lJ) ..... I'N(ZJ)) = W(t)

Fo(T@) _ Fo(T©) . W) 3 | T0) | T)=To/A1)
T(1) 7(0) To 2 BT | T0) = To/M0)




Sparing CPU time: adiabatic switch

FoT()

T (1)
_ Fo(1(0) W) 3 T@)
= 70) + T QNkBlnT((})

T(t) = To/A(1)
T(0) = To/A0)

‘ > > > Serial <<<I
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Ab initio diamond melting line

10°} Wang et al. PRL 95,

| 185701 (2005)
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Beyond equilibrium: Jarzynski theorem

Cn

Was = (Was(X0))a = Z,q(“«; V1) /dXﬁ g P atolW g (%h)

Clausius inequality:
(Was(x0))a > AF a3

Jarzynski equality (1997!)

A Z4(N,V,T)

e~ BAFaB <e—.3WA'B{KD)> /dKD o~ BHA(x0) s —BWaz(xo)



Jarzynski theorem: steered dynamics

t_ : <C’- — W, > — f d 1[.{.-’?7_ P(1[FT )E_ BW-
: :/ -.\ PaW, 3o W
A [
a8 : /
,:‘#f £ i
_;:t%;; . Inefficient because: i
’f% = X I
s y 3 -
e <lks [
D o fixed =P I'
. . f‘
Better estimated with the cumulant: S
32 L

In (™) & —BWr) + = ((WF) = (W7)%) =

‘ Parallel (over replicas) I




Summary of thermodynamic integrations

 Thermodynamic integration, from reference to state/system of interest
along “physical” or “unphysical” paths

» Construction of accurate phase diagrams
» Speeding up: adiabatic switch

 Faster, non equilibrium: Jarzynski equality



Thermodynamic perturbation

Two systems:

System O0: N, V.1, U, System 1: N, V1, U,
VN VN
- —BUo _ —pUy
Zg—AgNN!/dr € Zl_AgNN!/d'r €
Zy [ drN e BU{=Uo)—BUs

AF =p0F, — BFy=—1ln — =
ﬁ 6 i B 0 — HZ(] deNe—BUU

BAF = — ln(e_’B(Ul_Uﬂ)>g = — ln(e_ﬁ‘&U“)g

If poor overlap: sequence of systems ,BAF = — Z 111(8_6 Algyadt >a

‘ Parallel (over systems) I




Replica exchange: the concept

Energy

some ‘
coordinates

Exchange rule, ensuring canonical sampling at all temperatures:

Pea:change = min (11 eXp(_(ﬁi — /83)((]% R UJ)))

Energy (arb. units)



Replica exchange: the implementation

1000

M)
Parallel '

(over replicas,
and more)

To be tuned for efficient sampling:
number of temperatures, list of temperatures, attempted swap frequency



Replica exchange: free energy?

Temperature-weighted Histogram Analysis Method:

Pi(q) = e""ici(q)Po(q)



Replica exchange: free energy?

Temperature-weighted Histogram Analysis Method:

Sampled probability Re-weighting coefficients
? Un-biased probability at temperature S
Pi(q) = e™* C’iq{q'
@ =T

normalization q is chosen a posteriori

ci(q) = o~ (Bi=00)U(q) o —=PFiVi(q) , in case H; = Ho + Vi(q)

[terative, self consistent solution of:

5 - *™ # of observations of q in bin i
(PO(Q) _ > iz1Mi(q)
Zf:l N;ePiki ¢i(q)
< | » # of total observations in bin i

Bifi = —In (/ dg c?:(q)Po(q))

IMPORTANT: “g“is a “post-production® (collective) variable




Au % coexistence of several isomers

LR 1 2100—620 K
“i4 | 100 K PT (100 ps)
: 100 K serial (100 ps)
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Auy, relative population, coordination-based descriptor

4 bonds:
5 bonds: I 1225 o ]
2233 £ 0.6 . S
= B X
8Y)4 F
A X 3 bonds:
- 1122 1
0.2 —
O N O-O-O _,5“0’ s W A A

0 200 40 600 800 1000
Temperature [K]



Free-energy methods: accessibility via FHI-aims

Parallel tempering:
home tailored script-based implementation

Metadynamics, Umbrella Sampling, Steered Dynamics
external plug-in PLUMED
http://merlino.mi.infn.it/ ~plumed/PLUMED/Home.html

Replica-Exchange Umbrella Sampling l

home tailored script + external plug-in PLUMED _

Weighted Histogram Analysis Method
http://membrane.urmc.rochester.edu/Software/WHAM/WHAM.html
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