Embedded-Cluster Calculations in a Numerical Atomic Orbital Density-Functional Theory Framework

Daniel Berger

Chair for Theoretical Chemistry, TU München

30th of July 2014

Embedding - a hierarchical approach

Solvation Models

Density embedding

QM/MM

- o Polarization of solvent $\rightarrow {\rm G}_{\rm solv}$
- o Frozen density embedding [1]

o Embedding in $V[\rho^{emb}]$

o coupling QM cluster with force fields

o for solids/crystals:

Embedded clusters

T.A. Wesolowski and A. Warshel J. Phys. Chem. 97, 8050-8053 (1993)

Embedded clusters

<u>Seamless</u> coupling between quantum mechanics (QM) and molecular mechanics (MM)

- QM: explicit electrons, accurate, expensive, ...
- MM: classical (no explicit electrons), cheap, polarizable <u>force field</u>, pseudopotentials ...

Outline

- 1. Motivation, Issues with PBC
- 2. Ingredients
 - Recovering the potential of infinite ionic background
 - Transition between QM and MM (pseudopotentials)
 - Polarization response from MM region (force fields)
- 3. Photocatalytic water splitting with TiO_2
- 4. Stability of Surface Defects

Motivation

Corner, kink or step sites can offer <u>interesting chemistry</u>!

But, how to choose a supercell for that?

Motivation

Photocatalysis at nanostructured surfaces carrier-driven redox chemistry

Challenges:

- bond making and breaking
- hybrid functionals
- not necessarily long-range periodicity
- charged systems

Issues with PBC

o nonperiodicities: large supercells to avoid finite size effects

- o net charges are problematic
- o large number of basis functions

 \rightarrow potentially prohibitive memory demand

The Ingredients

Free TiO_2 -cluster

Free TiO_2 -cluster + point charges

Recovering the electrostatics of the <u>infinite</u> ionic background:

- 1. Supercell $\xrightarrow{\text{Ewald's method}}$ potential
- 2. Create finite field of point charges (+4/-2)
- 3. Add point charges with fitted charges (blue)

Cluster region boundary

 $\rho_{\rm el}$ overlapping with singular $V_{\rm PC}(r) = \frac{Q}{r}$

- o only PC⁺ are "troublemakers" o spurious charge leakage
- o wrong scattering/dangling bonds

Cluster region boundary

 $\rho_{\rm el}$ overlapping with singular $V_{\rm PC}(r) = \frac{Q}{r}$

o only PC⁺ are "troublemakers" o spurious charge leakage

o wrong scattering/dangling bonds

Replace PC^+ by pseudopotential

effective potential for core and core electrons

Kleinman-Bylander Pseudopotentials

Accurate pseudopotentials:

o construct from ab-initio (FHI98PP [1])

o different potential for every l-state

o correct scattering behaviour

$$\hat{\mathrm{V}}^{\mathrm{PP}} = \sum_{\mathrm{lm}} |\mathrm{Y}_{\mathrm{lm}}\rangle \mathrm{V}_{\mathrm{l}}(r) \langle \mathrm{Y}_{\mathrm{lm}}|$$

M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67-98 (1999)
L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425-1428 (1982)

Kleinman-Bylander Pseudopotentials

Accurate pseudopotentials:

o construct from ab-initio (FHI98PP [1]) o different potential for every l-state o correct scattering behaviour

Separation [2] : $V_{loc} \& \delta V_l = V_l - V_{loc}$ o long-range and short-range part

$$\hat{V}^{\rm KB}=\hat{V}_{\rm loc}\delta(r-r')+\sum_{lm}|\chi^{\rm KB}_{lm}\rangle E^{\rm KB}_{l}\langle\chi^{\rm KB}_{lm}|$$

M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67-98 (1999)
L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425-1428 (1982)

KB-PPs - Interaction with QM-electrons

$$\hat{V}^{\rm KB} = \hat{V}_{\rm loc} \delta(r-r') + \sum_{\rm lm} |\chi^{\rm KB}_{\rm lm}\rangle E^{\rm KB}_{\rm l} \langle \chi^{\rm KB}_{\rm lm}|$$

$$\hat{V}^{\rm KB}_{\rm SR} |\Psi_i\rangle = \sum_{\alpha} \sum_{lm} c_{i\alpha} |\chi^{\rm KB}_{lm}\rangle E^{\rm KB}_l \langle \chi^{\rm KB}_{lm} |\varphi_\alpha\rangle \qquad \stackrel{\varphi: \text{ basis functions (NAOs)}}{c_{i\alpha}: \text{ KS coefficients}}$$

 $\langle \varphi_{\alpha}(\mathbf{r}) | \chi_{lm}^{KB}(\mathbf{r}') \rangle$: o computed efficiently using RI-L infrastructure o exploit locality (many overlaps are zero)

Free TiO_2 -cluster + point charges + PP

We can recover the band gap!

but: Fermi energies do not match!

Reason: - no polarization

MM atoms/ions: interact via 2-body potentials

MM atoms/ions: interact via 2-body potentials

MM atoms/ions: interact via 2-body potentials

Parameters: 2×3 Buckingham, spring constant, O_c-charge

Parameters: 2×3 Buckingham, spring constant, O_c-charge

How to determine those values?

Force Field Optimization

Seamless coupling between QM and MM region:

o avoid stress \rightarrow matching lattice parameters o correct polarizability \rightarrow matching dielectric constants

$$C = \sqrt{\sum_i \left(\frac{L_i^{\rm MM} - L_i^{\rm DFT}}{L_i^{\rm DFT}}\right)^2 + \sum_j \left(\frac{\varepsilon_j^{\rm MM} - \varepsilon_j^{\rm DFT}}{\varepsilon_j^{\rm DFT}}\right)^2}$$

Calculating the Polarization Response

Self-consistent polarization:

Minimizing $E_{tot} = E^{QM} + E^{MM}$ w.r.t. position of oxygen shells.

[GULP]: J. D. Gale, J. Chem. Soc., Faraday Trans. 93, 629 (1997)

Complete and seamless embedding

Very good agreement!

Oxygen Evolution Reaction on TiO_2

Oxygen Evolution Reaction on TiO_2 [1]

 $\mathrm{H_2O} + (^*) \rightarrow \mathrm{OH}^* + \mathrm{H}^+ + \mathrm{e}^-$

$$H_2O + O^* \rightarrow OOH^* + H^+ + e^-$$

Which level of theory?

[1] Á. Valdéz et al., J. Phys. Chem C 112 (2008), 9872

 $OOH^* \rightarrow O_2 + (*) + H^+ + e^-$

Oxygen Evolution Reaction on TiO_2

Essentially converged results with $\mathrm{Ti}_{17}\mathrm{O}_{34}$ cluster!

Oxygen Evolution Reaction on TiO_2

Essentially converged results with $\mathrm{Ti}_{17}\mathrm{O}_{34}$ cluster!

Surface Defects in TiO_2

Which charge state is favored?

 $G_{\rm f} \sim E_{\rm defect}[q] - E_{\rm pristine}[0] + \mu_{\rm O} + q \varepsilon_{\rm f}$

- o HSE06 (localized charges)
- o relaxation of cluster

o incorporating long-range polarization

(Preliminary	
results)	

$\Delta G_{\rm f}[{\rm eV}]$	q=0	q=1	q=2
$\mathrm{Ti}_{21}\mathrm{O}_{44}$	5.4	1.0	-2.5
$\mathrm{Ti}_{31}\mathrm{O}_{64}$	5.5	1.2	-2.6

Summary

Embedded-cluster calculations can be a useful method for o nonperidocities o charged systems

For seamless coupling between QM and MM one needs o pseudopotentials to provide correct scattering behaviour o force field parameters with matching MM properties

Thanks to: Volker Blum, Andrew Logsdail & Alexey Sokol (UCL) Harald Oberhofer & Karsten Reuter (TUM) and IGSSE for financing.

D.Berger et al., J. Chem. Phys. 141, 024105 (2014)