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Geometry of Data I: 
Low-dimensional “Models”



U : orthogonal D ⇥D

⌃: diagonal D ⇥ n
Diagonal entries �1 � �2 � · · · � 0

are called singular values.

V : orthogonal n⇥ n

Principal Component Analysis

system of

coordinates

for points

system of

coordinates

for features

1901, K. Pearson

Represent data as a matrix X 2 RD⇥n
, one sample per column.

If data lies on a k-dimensional hyperplane, compute the Singular

Value Decomposition X = U⌃V T
: then only k singular values are

nonzero, and the first k columns of U span the desired hyperplane.



Beyond PCA

Data on low-
dimensional plane 
(Pearson, 1901)

Data on multiple low-
dimensional planes

Data on low-dimensional 
curved structure



Geometry of Data II: 
Simple models for M.D.



The dynamics of a small peptide (12 atoms with H-atoms removed) in a bath of

water molecules, is approximated by a Langevin system of stochastic equations

ẋ = �rU(x) + ẇ

The set of configurations is a point cloud in R12⇥3
.
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Molecular Dynamics Data



Molecular Dynamics & F-P. equation
R.R.Coifman, I.G.Kevrekidis, S.Lafon,  
MM, B.Nadler, Multiscale Model. Simul.

the full details.

For a system with N atoms, with a given potential energy function E(x), at constant

temperature T , and in the limit of high friction, the Fokker-Planck equation governs the

temporal evolution of the probability distribution p(x, t) at any configuration x ∈ R3N of

the system:

∂p

∂t
= −

3N
∑

i

∂

∂xi

(

1

β

∂

∂xi
+

∂E

∂xi

)

p = −HFPp, (1)

where β = 1/(kBT ), kB is Boltzmann’s constant, and t is the time variable. Under

rather general conditions, the operator HFP, which acts on an infinite-dimensional space

of probability distributions, has a discrete eigenspectrum of non-negative eigenvalues λi,

with λ0 = 0 < λ1 ≤ λ2 ≤ . . . , and corresponding eigenfunctions φi(x). Formally (and

rigorously in an appropriate metric that depends on various assumptions about HFP), the

general solution of the Fokker-Planck equation is:

p(x, t) = φ0(x) +
∞

∑

i=1

ciφi(x)e−λit (2)

where the coefficients ci are determined by the initial distribution p(x, t = 0). The eigen-

function φ0(x) is the Boltzmann distribution, approached by any initial distribution when

t ≫ 1/λ1.

For systems with one (or a few) slow process(es) dominating the dynamics (such as the

crossing of a free energy barrier), the eigenspectrum will present a gap; i.e. λk+1 ≫ λk

for some k, and the evolution of the probability distribution toward equilibrium may be

approximated as the first k terms of the general solution,

p(x, t) = φ0(x) +
k

∑

i=1

ciφi(x)e−λit, (3)

at least at time scales t ≫ 1/λk+1. In these situations it has been shown that φi(x)/φ0(x),

which are eigenfunctions of the backward Fokker-Planck operator,28 serve as collective coor-

dinates in the sense that their time evolution is approximately Markovian and independent

of the remaining degrees of freedom. These are the diffusion coordinates, and the diffusion

map is the nonlinear mapping from the space of molecular configurations to the diffusion

coordinate space.

An efficient numerical method to approximate these first few eigenfunctions and associ-

ated eigenvalues using samples of the equilibrium distribution has been recently proposed.23
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Fokker-Planck equation & eigenfunctions

The dual system of eigenfunctions, which we pick as reaction coordinates, is

 j(x) = �j(x)/�0(x) .

With these normalizations,

d

(t)
(x, y) = ||pt(x, ·)� pt(y, ·)||L2

=

sX

j

e

��jt| j(x)�  j(y)|2

�
 

Under suitable conditions, HFP has discrete spectrum 0 = �0 < �1  . . .�k ⌧
�k+1  . . . , and fundamental solution with eigen-expansion

pt(x, y) = �0(x) +

+1X

j=1

 j(y)�j(x)e
��jt

.

Diffusion Distance at time t



Diffusions maps for MD
R.R. Coifman, I.G. Kevrekidis, S. Lafon, MM, B. Nadler

ẋ = �rU(x) +

r
2

�

ẇ , x 2 R3N

@p
@t = Lp = 1

��p+r · (prU) = �HFPp HFP'j = �j'j H⇤
FP j = �j j

Theorem: The optimal k-dimensional approximation of p(x, t|y) that mini-

mizes the mean squared norm of the approximation error

minEy{||p(x, t|y)� pk(x, t|y)||2L2(⌦,w)}

where averaging is over all initial points y sampled according to the equilibrium

density '0(y), is given by by the truncated sum

pk(x, t|y) =
k�1X

j=0

e

��jt
 j(y)'j(x).

This is simply an SVD approximation w.r.t. the di↵usion kernel.

Empirical approximations, given samples distributed according to '0, can be

obtained by suitably modifying di↵usion maps (with guarantees).

How do we compute/learn the above?



Random walks on graphs and data
We may construct weighted graphs from data: given

. Data X = {x
i

}n
i=1 ⇢ RD

.

. Local similarities via a kernel function W (x

i

, x

j

) � 0.

Simplest example: W

�

(x

i

, x

j

) = e

�||xi�xj ||2/�
.

Given a weighted graph (G,E,W ): vertices represent data points,

edges connect xi, xj with weight Wij := W (xi, xj), when positive

(or above a threshold). Let Dii =
P

j Wij and

P = D

�1
W, Pij = prob. of jumping xi ! xj

Let 1 = �0 � �1 � . . . and 'i the eigenval.’s and eigenvec.’s of P ,

i.e. P'i = �i'i. We consider the map

G 3 x 7! ('1(x), . . . ,'m(x)) 2 Rm

R. Coifman, S. Lafon, MM, B. Nadler



Random walks on graphs and data
Given a weighted graph (G,E,W ): vertices represent data points,

edges connect xi, xj with weight Wij := W (xi, xj), when positive

(or above a threshold). Let Dii =
P

j Wij and

P = D

�1
W, Pij = prob. of jumping xi ! xj

Let 1 = �0 � �1 � . . . and 'i the eigenval.’s and eigenvec.’s of P ,

i.e. P'i = �i'i. We consider the map

G 3 x 7! ('1(x), . . . ,'m(x)) 2 Rm

R. Coifman, S. Lafon, MM, B. Nadler, Y. Kevrekidis



Clustering, diffusion distances
Joint with R. Coifman and S. Lafon

In some cases the geodesic distance dG may not capture geometric information of

interest. For example here dG(A,B) ⇠ dG(B,C). The di↵usion distance is sensitive

to connectivity between clusters.

A

Robustness with respect to nonlinear deformations

Mauro Maggioni Multiscale Analysis on graphs via Diffusion

A

B

C

Shortest paths have 
comparable length



Original space

Flexibility + robustness

x 7! (�2(x),�3(x))

Every point is connected to its 5 
nearest neighbors, obtaining a graph.

Spectral Clustering in one slide 
Robustness with respect to nonlinear deformations

Mauro Maggioni Multiscale Analysis on graphs via Diffusion

A

B

C

hLf, fi =
X

x

X

y⇠x

W (x, y)

 
f(x)p
d

x

� f(y)p
d

y

!2

Diffusion space

Robustness with respect to nonlinear deformations

Mauro Maggioni Multiscale Analysis on graphs via Diffusion

�2 = 0 is a good cut!

A

B

C



R36

Joint with C. Clementi, M. Rohrdanz, W. Zheng

The dynamics of a small peptide (12 atoms with H-atoms removed) in a bath of

water molecules, is approximated by a Langevin system of stochastic equations

ẋ = �rU(x) + ẇ

The set of configurations is a point cloud in R12⇥3
.

�

 

Example: Molecular Dynamics Data

�



Molecular Dynamics data for alanine 

FIG. 2: Top: Free energy of alanine dipeptide as a function of the first and second diffusion

coordinates. Bottom: Free energy profile along the first diffusion coordinate. The

Kramers rate along 1stDC is shown in Table I.
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Slowest mode

Other slow modes

rate =
✓Z

barrier

e

�F (x)

D(x)
dx

Z

well
e

��F (x0)
dx

0
◆�1

G. Hummer, 2005

Given only trajectory data, we construct 
an empirical approximation to the 
generator of the Fokker-Planck, and 
compute its eigenvalues/vectors to obtain a 
low-dimensional embedding and reaction 
coordinates.
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M. Rohrdanz, W. Zheng, MM, C. Clementi, JCP

Reduced model with 
reasonably good rates



Diffusion coord.’s - empirical coord.’s

FIG. 3: Comparison of 1stDC with empirical coordinates Φ and Ψ. Top: Free energy

(kcal/mol) as a function of dihedral angles Φ and Ψ; displayed to show the locations of

the free energy minima in Φ-Ψ space. Bottom: Raw molecular configuration data

plotted according to Φ and Ψ, and colored according to 1stDC . The smooth color

change between the pairs of minima C5–P∥ and αR–αP shows that 1stDC corresponds

to a transition between these pairs, and that 1stDC correlates well with Ψ. Analogous

figures for 2ndDC and 3rdDC are available in the Supplementary Material.

25

S 6: Alanine dipeptide correlation of 2ndDC and 3rdDC with dihe-

dral angles. Raw molecular configuration data points plotted as a function
of the dihedral angles Φ and Ψ. On the left, the coloring is according to the
2ndDC; on the right, the coloring is according to the 3rdDC, as indicated on
the corresponding colorscale. These plots provide another representation of
what is already clear from the free energy graphs: the 2ndDC separates the
P∥ minimum from the C5 minimum, and the 3rdDC separates the αP and
αR minima from one another.

9

We may plot the diffusion coordinates as functions of the 
physical observables given by the angles and notice they 
are essentially in one-to-one correspondence, with the 
diffusion coordinates emphasizing energy barriers 
separating minima.

M. Rohrdanz, W. Zheng, MM, C. Clementi, JCP



Random walks on graphs and data
We may construct weighted graphs from data: given

. Data X = {x
i

}n
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.

. Local similarities via a kernel function W (x

i

, x

j
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) = e

�||xi�xj ||2/�
.
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edges connect xi, xj with weight Wij := W (xi, xj), when positive

(or above a threshold). Let Dii =
P
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P = D

�1
W, Pij = prob. of jumping xi ! xj

Let 1 = �0 � �1 � . . . and 'i the eigenval.’s and eigenvec.’s of P ,

i.e. P'i = �i'i. We consider the map

G 3 x 7! ('1(x), . . . ,'m(x)) 2 Rm

R. Coifman, S. Lafon, MM, B. Nadler, Y. Kevrekidis



Geometry of Data III: 
Intrinsic Dimension



M

M+ �Br(z)

z

||⌘|| ⇠ �
p

D

M

M+ �

z

Br(z)

||⌘|| ⇠ �
p

D

M+ �

z

Br(z)

M

||⌘|| ⇠ �
p

D

Model: data {xi}ni=1 is sampled from a manifold M of dimension k, embed-

ded in RD
, with k ⌧ D. We receive

˜

Xn := {xi + ⌘i}ni=1, where ⌘i ⇠i.i.d N

is D-dimensional noise (e.g. Gaussian). Objective: estimate k.

Only need number of samples linear in the intrinsic dimension, robust to noise
Turns out to be consequence of a blessing of dimensionality

Green: where data is 
Red: where noisy data is 
Blue: volume in ball



Joint with C. Clementi, M. Rohrdanz, W. Zheng

The dynamics of a small peptide (12 atoms with H-atoms removed) in a bath of

water molecules, is approximated by a Langevin system of stochastic equations

ẋ = �rU(x) + ẇ

The set of configurations is a point cloud in R12⇥3
.
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Molecular Dynamics Data



Example: Alanine dipeptide
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FIG. 4: MDS singular value spectra for configurations inside ε-balls around a configuration near

a transition region (top), and near a free energy minimum (bottom) for alanine

dipeptide. The horizontal axis is the RMSD radius of each ε-ball in Å. For the top

(bottom) panel the intrinsic dimension determined by our algorithm is 2 (8), and the

red vertical line denotes the value of the estimated local scale εi. Note the differences in

the scales of the axes between the two figures.
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MSVD near 
transition state

MSVD near free 
energy minimum

Free energy in terms of 
empirical coordinates

M. Rohrdanz, W. Zheng, MM, C. Clementi, J. Chem. Phys. 2011

Low intrinsic dimension: this settles certain questions/conjectures/intuitions by 
chemical physists; counting degrees of freedom/quality of approximation by low-
dimensional representations 
!
Different local intrinsic dimensions: in different regions of state space!
!
Different local scales: quantifies intuitions about variability of entropy in state space 
!
New very robust dimension reduction techniques: Locally Scaled Diffusion Maps 
that take this information into account; novel ways of approximating these systems by 
low-dimensional representations



Random walks on graphs and data
We may construct weighted graphs from data: given
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R. Coifman, S. Lafon, MM, B. Nadler, Y. Kevrekidis



Locally Scaled Diffusion Map
. Construct the N ⇥N matrix of transition probability kernels K, as

Kij = e

� dRMSD(x
i

,x

j

)2

2✏
i

✏

j

,

for xi and xj molecular configurations, ✏i and ✏j their local scales.

. For each xi, compute

Pi =

NX

j=1

Kij ,

which is proportional to a density estimation around xi.

. Normalize the kernel as

˜

Kij = P

� 1
2

i KijP
� 1

2
j .

. Define the diagonal matrix D as Di =
PN

j=1
˜

Kij , and construct a Markov

matrix M = D

�1
˜

K,

Mij = D

�1
i

˜

Kij .

. Compute largest eigenvalues and corresponding right eigenvectors of M .

�
 

M. Rohrdanz, W. Zheng, MM, C. Clementi



Example: SH-3

e�
�

i

1st DC

2nd
 D

C

foldedun
fol
ded

Free energy in terms of 
diffusion coordinates

M. Rohrdanz, W. Zheng, MM, C. Clementi



Small polymer reversal rate
M. Rohrdanz, W. Zheng, MM, C. Clementi

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Eigenvalue number

ex
p

(−
λ

)

 

 

2.06

2.16

2.26

2.36

FIG. 2. The exponential of the negative of the FP eigenvalues λi for several different pore radii.

The presence of a spectral gap, denoted by the vertical black bar, indicates that the essential

features of the dynamics can be captured by the 1stDC.

further validates this idea.

The free energy landscape as a function of the first and second diffusion coordinates

(1stDC and 2ndDC) is shown in the top panel of Fig.3. Because of the symmetry of the

system, there are two identical free energy minima separated by a barrier at 1stDC equals

to zero. The bottom panel of Fig. 3 shows the 1-dimensional free energy along the 1stDC;

this is the free energy used in the Kramers integral along this coordinate.

To gain physical insight into the diffusion coordinates, we compare them with the z-

coordinate and radius of gyration (Rg). Fig. 4 shows the relationship between the 1stDC,

radius of gyration Rg and z-coordinate. The top panel shows that there is no overall cor-

relation between the 1stDC and Rg. However, the bottom panel shows a strong correlation

between the 1stDC and z-coordinate; indeed, the Pearson correlation coefficient between

these two coordinates is 0.96. Moreover, from the figure, the correlation looks stronger for

points inside the free energy minima, and weaker for points in the transition region. For

configurations in which |z| > 10, the Pearson correlation coefficient is larger than 0.998, and

for configurations in which |z| < 10 the Pearson correlation is 0.96.

These results show that the 1stDC and z-coordinate, while both describing transitions
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FIG. 3. Top: Free energy as a function of the first and second diffusion coordinates. Bottom:

Free energy along the first diffusion coordinate.

between the same two minima, differ in their determination of the transition region. This

difference, albeit small, results in different estimates of the free energy barrier height along

1stDC and z-coordinate, and therefore different calculated rates along these coordinates. It

is worth noticing that small difference in the location of the transition state region has a

large effect on the rate estimates; the rate determination is thus a quite stringent test on

the goodness/usefulness of the proposed reaction coordinates.

The 2ndDC corresponds to motion inside each of the free energy minima. Fig. 5 shows

the relationship between the 2ndDC, Rg, and the z-coordinate. Quite differently from Fig. 4,

we find that 2ndDC correlates with Rg (Pearson correlation coefficient of 0.896), but not

with the z-coordinate. The collective motion described by 2ndDC corresponds therefore

to an opening/collapsing motion. The 2ndDC decreases as z goes to zero, which is when

the transition event occurs. This is consistent with the expected dynamics of the polymer

reversal; the polymer needs to collapse to some extent in order to reverse its orientation.

10

FIG. 7. Different local geometric indicators associated with each molecular configuration are

plotted as a function of the 1stDC and 2ndDC. The color shows the local scale ε in nm (top

panel), the gap between the first two MDS eigenvalues at the local scale (middle panel), and local

intrinsic dimensionality (bottom panel).
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20 bead polymer confined in nanopore; the axis z of 
nanopore is the reaction coordinate. Previous work by 
Huang and Makarov used distance between bead ends, 
projected onto z, as empirical reaction coordinates, and 
noticed poor approximation of the transition rates.

Locally scaled diffusion maps yield a reaction 
coordinate along which a more accurate transition rate 
is estimated; this coordinate corresponds quite well with 
z, while the second diffusion coordinate is related to 
radius of gyration of the polymer.



Summary, part I

The above requires long trajectories -  
typically expensive

“Models”: high-dimensional data may often be 
approximated by low-dimensional geometric objects 
!
Intrinsic dimension: use Multiscale SVD to measure intrinsic 
dimension 
!
Coordinates: global low-dimensional parametrizations via 
diffusion maps. This can be adapted to Langevin dynamics 
for low-dimensional descriptions of  large-time dynamics.



Geometry of Data IV: 
Learning Accelerated Dynamics



Introduction

Examples

Algorithm

Results

Motivation: Molecular Dynamics

High dimensional state
space

Low intrinsic dimension

Small time steps

Non-Euclidean distance

Miles Crosskey Duke University Atlas Simulation: A Numerical Scheme for Multiscale Di↵usions

Interested in high-dimensional stochastic systems s.t.: 
!
- the timescale of interest is medium-large 
!
- are intrinsically low-dimensional, at the relevant timescale 
!
- are very expensive to simulate 
!

- need an approximation with reasonable  
but not too high accuracy

ATLAS: a geometric approach to learning stochastic 
systems in high dimensions

Miles Crosskey
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Main Ideas
Introduction

Examples

Algorithm

Results

Learning the Atlas

Divide configuration space

Fit charts to pieces

Connect neighboring
charts

Learn simulators on charts

Miles Crosskey Duke University Atlas Simulation: A Numerical Scheme for Multiscale Di↵usions
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Introduction

Examples

Algorithm

Results

Dividing the space: �-net

Given �, find {yk} such that:

�/2 balls around {yk} do
not intersect.

� balls around {yk} cover
the state space.

yk neighbors yj if
|yk � yj | < 2�.

Miles Crosskey Duke University Atlas Simulation: A Numerical Scheme for Multiscale Di↵usions
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Figure 14: Comparing true simulator with the ATLAS with � = 0.1 on example 5.2.2.
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Figure 20: Comparison of original simulator with the ATLAS (� = 0.2) in the rough three well potential
from example 5.3.2.

5.3.2 Rough Potential

In the next example we take U
2

(x) and add a fast oscillating component to simulate small scale interactions
as in example 5.2.2. The new potential well is

V
2

(x) = U
2

(x) +
1

6
cos(100⇡x

1

) +
1

6
cos(100⇡x

2

). (79)

And again see a simulator which approximates the process X
t

.

dX
t

= �rV
2

(X
t

)dt+ dB
t

(80)

As a result of the high frequency oscillations, the the timesteps will be of size 0.00005. This example will
show that our algorithm is robust to fast oscillations of the potential even in a more complicated system. In
this example we will again avoid using evenly spaced points as input, and run the grid points through the
simulator for a short time t = 0.01. These are samples we could obtain from running the original simulator
for a long time, or using some kind of fast exploration technique. Again, the distribution of this point set is
irrelevant as long as there are no holes of size �.

For this system we will use � = 0.2 which will return � nets with ⇡ 230 net points. We will again use use
p = 10, 000, t

0

= �2, �t = t
0

/5 for consistency, even though p could be chosen smaller (since � is larger).
Again, the timestep of the ATLAS is �t = 0.004 which is over 100 times larger than the timesteps of the
original simulator, and thus the ATLAS runs about 100 times faster. For the simulator comparison with
this example see figure 20. Define the regions the same as in example 5.3.1. To see the transition times, see
figure 21.

5.4 Random Walk on Images

Next we will embed the two dimensional three well examples from sections 5.3.1 and 5.3.2 into D = 12, 500
dimensions. The high dimensional embedding is given by the following algorithm given a two dimensional
point x:
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Figure 21: Comparing transition times in example 5.3.2

1. Generate a mesh {z
j

} on [�1.5, 3.5]⇥ [�1.5, 2.5] with evenly spaced grid points and spacing 0.04.

2. The output vector v at position j is 1 if |z
j

� x| < 1/2 and 0 otherwise.

See figure 22 for an example image generated by this algorithm run on the point (0, 0). The natural
distance to use in this space is the hamming distance, which counts the number of di↵erent entries. It
induces a norm, which we call ||v||

1

since this is the same as the 1-norm of the vector on RD. Given a binary
vector v, we can write the ”inverse“ ex

ex = ||v||�1

1

X

j

v
j

z
j

(81)

This just averages the positions of the pixels {z
j

}, which should roughly return the center of the circle in
the image. Any two dimensional simulator now can be mapped to a simulator on RD in the following way:

1. Given input v 2 RD and a time t
0

, calculate the two dimensional point ex from the approximate inverse
mapping.

2. Run the 2-d simulator for time t
0

with initial condition x
0

= ex.

3. Take the output of the simulator, X
t0 and map it to RD with the high dimensional embedding.

Next, we rescale the distance function by the constant (0.04)2/2 so that the new norm is locally equivalent
to the original distance. In so doing, we can continue using values of � that made sense to us in the original
space. This high dimensional mapping is nontrivial, and all the possible vectors v we could see span the
entire 12, 500 dimensional space. The space can be locally approximated by a 2-d plane for a ball of radius
r < 1/2, and so we expect the ATLAS to find the appropriate local spaces to estimate the dynamics.

5.4.1 Smooth Potential

First we will apply the high dimensional mapping to the simulator with smooth potential well U
2

from
example 5.3.1. Next we start with a set of points in RD which cover the known state space (the same covering
set from before only mapped to RD). The ATLAS algorithm is given the rescaled hamming distance function
for computing distances between vectors, and it is given the simulator which takes points in RD and a time
t
0

and returns points in RD. Because distances are now 12, 500 times more expensive to compute, for this
example we set p = 1000 and m = 20 landmarks per point. Again keep t

0

= �2 and �t
0

= t/5.
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Figure 24: Comparing transition times in example 5.4.1
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Figure 25: Comparison of the ATLAS � = 0.2 with original simulator for example 5.4.2.

After constructing multiple ATLAS’s for varying values of �, we find that the distributions are well
approximating the original given simulator. See figure 23 for details. The small number of samples, along
with the width of the pixels limits the accuracy for small values of �. In fact we can see that � = 0.05
returns a simulator which is worse than � = 0.1. Define the regions the same as in example 5.3.1. To see the
transition times, see figure 24.

5.4.2 Rough Potential

In the next example of this paper, we will apply the high dimensional transformation to the rough potential
well V

2

from example 5.3.2. Again, we give the algorithm the same set of initial points from example 5.3.2
mapped to RD along with the simulator using V

2

embedded in high dimensions. In this example we use
� = 0.2, p = 2000, m = 40, t

0

= �2 and �t = t
0

/5. Again the simulation timescale of the local simulator is
100 times larger than that of the original simulator. The ATLAS has a running time which depends only on
the local dimensionality of the system, and so the ambient dimension only enters in the construction phase.
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Figure 26: Comparing transition times in example 5.4.2

Function Simulator

f = S(f)

% simulate Brownian bridge
W = cumsum(randn(1,100))
W = W �W (1)
W = W � x ⇤W (100)

% Add bridge to f, smooth and renormalize
f = f + (1/100) ⇤W
f = smooth(f)
f = f ⇤ (f

norm

/norm(f))

Figure 27: Pseudocode for a single step of the simulator used in example 5.5. f
norm

is a fixed constant equal
to the norm of sin(⇡x). The function smooth is MATLAB’s default smoothing algorithm.

After simulating 10, 000 paths for each of 10 di↵erent initial conditions, we can test the simulator error
(see figure 25). Because running the original simulator is very expensive for this system, we used the same
original simulator samples (mapped to RD) for comparison as in figure 20. Define the regions the same as
in example 5.3.1. To see the transition times, see figure 26.

5.5 Random walk on Functions

In this example, we are given a dynamical system in the form of a random walk on functions on [0, 1]
with endpoints fixed at zero. These functions are represented by values on a grid of 100 evenly spaced
points (including the ends). Typical functions seen as output from the simulator are shown in figure 28.
The distance we will use is euclidean distance in R100, rescaled by 1/100 to approximate the L2 distance on
functions. A single step of the simulator is done by adding a Brownian path fixed at the endpoints, then
smoothing the result and renormalizing. The pseudocode is shown in figure 27.

This behavior of this system in characterized by large dwelling times near the smoothest functions (f
1

and f
2

from figure 28) with rare transitions (103�104 steps) across functions like that of f
3

in figure 28. The
three constraints f(0) = 0, f(1) = 0, ||f || = ||f

0

|| force the functions to live on S97, a 97 dimensional sphere
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Figure 26: Comparing transition times in example 5.4.2

Function Simulator

f = S(f)

% simulate Brownian bridge
W = cumsum(randn(1,100))
W = W �W (1)
W = W � x ⇤W (100)

% Add bridge to f, smooth and renormalize
f = f + (1/100) ⇤W
f = smooth(f)
f = f ⇤ (f

norm

/norm(f))

Figure 27: Pseudocode for a single step of the simulator used in example 5.5. f
norm

is a fixed constant equal
to the norm of sin(⇡x). The function smooth is MATLAB’s default smoothing algorithm.

After simulating 10, 000 paths for each of 10 di↵erent initial conditions, we can test the simulator error
(see figure 25). Because running the original simulator is very expensive for this system, we used the same
original simulator samples (mapped to RD) for comparison as in figure 20. Define the regions the same as
in example 5.3.1. To see the transition times, see figure 26.

5.5 Random walk on Functions

In this example, we are given a dynamical system in the form of a random walk on functions on [0, 1]
with endpoints fixed at zero. These functions are represented by values on a grid of 100 evenly spaced
points (including the ends). Typical functions seen as output from the simulator are shown in figure 28.
The distance we will use is euclidean distance in R100, rescaled by 1/100 to approximate the L2 distance on
functions. A single step of the simulator is done by adding a Brownian path fixed at the endpoints, then
smoothing the result and renormalizing. The pseudocode is shown in figure 27.

This behavior of this system in characterized by large dwelling times near the smoothest functions (f
1

and f
2

from figure 28) with rare transitions (103�104 steps) across functions like that of f
3

in figure 28. The
three constraints f(0) = 0, f(1) = 0, ||f || = ||f

0

|| force the functions to live on S97, a 97 dimensional sphere
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Figure 33: Comparing transition times in example 5.5

regions see figure 33. Notice that the rates of transition between states are accurate, but the comparison is
not very accurate for intermediate times. This is because the speed at which the system travels around the
limit cycles is not well approximated.

6 Extensions and Discussion

There are many open problems related to this work, some of which we mention here.
Theorem 4.1 reveals that the local learning algorithm works well on compact SDEs with Lipschitz drift

and di↵usion. We consider only bounded domains in the proof to make thing simpler, although the same
framework can be applied to the unbounded case with tight transition density. In this case, one has to
worry about parts of the space which are unexplored, but seldomly reached. Indeed we see that some of our
examples have unbounded state spaces, and the algorithm performs as desired.

The framework we introduced may be generalized to richer families of local simulators, enabling the
approximation of larger classes of stochastic systems. Proving large time accuracy may be di�cult for such
systems, so it is an open problem how much one is allowed to change these local simulators. Many molecular
dynamics (MD) systems remember the velocity of atoms and so do not follow an SDE of the form (14) which
is memoryless. A subject of ongoing research is to use more complex models locally to be able to capture
dynamics of typical MD systems.

Another subject of future work is e�cient computation of the function G, which is the inverse MDS
mapping. In some cases, such as when ⇢ is the root mean square distance (RMSD), it is possible to create
an inverse mapping which has error of order �2 instead of order �.

Using the ATLAS as a basis for generating samples from the stationary distribution is useful for quickly
computing di↵usion maps for these systems. A subject of interest is to understand how the errors made by
the ATLAS propagate through di↵usion maps. How similar do di↵usion maps look generated by samples
from the ATLAS as compared to di↵usion maps generated directly from the original simulator?

In some problems, choosing � and t
0

is di�cult. Another subject of ongoing research is a robust way of
choosing these parameters based on short simulations. For simplicity in this paper we have assumed that �
and t

0

is constant for each k 2 �, but it is possible to have these parameters depend on the location y
k

(and
perhaps statistics of short sample paths).

Last but not least, this construction as described here still requires a large number of steps to sample rare
events and reach stationarity, i.e. it does not address the problem of accelerating the sampling of rare events
or overcoming energy barriers. In many important applications, e.g. molecular dynamics, such barriers force
the simulations to be extremely long (e.g. 1012 � 1014 time-steps is common). The point of this work is
to produce a simulator that is much faster (in real world time) than the original fine scale simulator. It is
important to note that any of the many techniques developed over the years to attempt to overcome this
problem may be used in conjunction with our construction, i.e. it can be run on our ATLAS, instead of the
original expensive fine scale simulator. This yields a double gain in simulation speed, combining the gains
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Summary
!
“Models”: high-dimensional data may often be 
approximated by low-dimensional geometric objects 
!
Intrinsic dimension: use Multiscale SVD to measure intrinsic 
dimension 
!
Coordinates: global low-dimensional parametrizations via 
diffusion maps. This can be adapted to Langevin dynamics 
for low-dimensional descriptions of  large-time dynamics. 
!
Learning dynamics: use parallel local learning of models for 
the dynamics, and careful piecing together local models 
can be done so that large time accuracy is achieved.



Current Work
!
Fully online mode with exploration [built into construction! 
Needs more code and theory] 
!
Multiscale: choose scale and dimension adaptively 
[encouraging simulations with adaptive local scale, and 
changes in local dimension] 
!
Molecular dynamics 
!
Generalize theory to other large-time functionals [transition 
rates and beyond] 
!
Hypoellipticity (e.g. second order Langevin); non-time-
homogeneous systems.
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