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Geometry of Data |
L ow-dimensional “Models”



Principal Component Analysis

Curse of dimensionality: sample size for important statistical tasks scales ex-
ponentially in the ambient dimension. Hope: data concentrates near low-
dimensional sets.

Represent data as a matrix X € RP”*" one sample per column.

If data lies on a k-dimensional hyperplane, compute the Singular
Value Decomposition X = UXV?: then only k singular values are
nonzero, and the first £ columns of U span the desired hyperplane.

system of
— coordinates

U: orthogonal D x D for points

>.: diagonal D xn
Diagonal entries 01 > 09 > --- >0

are called singular values.
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Beyond PCA
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Geometry of Data Il
Simple models for M.D.



Molecular Dynamics Data

The dynamics of a small peptide (12 atoms with H-atoms removed) in a bath of
water molecules, is approximated by a Langevin system of stochastic equations

T =—-VU(x)+w

The set of configurations is a set of points in R3"V: in the state space we take
the RMSD metric, which quotients out the Galileo group.




Molecular Dynamics & F-P. equation

R.R.Coifman, I.G.Kevrekidis, S.Lafon,
MM, B.Nadler, Multiscale Model. Simul.

op o (10 OE\

B = 1/(kgT), kp is Boltzmann’s constant

Under suitable conditions, Hpp has discrete spectrum 0 = A\g < A\ < ...\ K

Aea1 < ..., and fundamental solution with eigen-expansion
—+ o0

pe(,y) = go(®) + Y ;(y)ds(x)e "
j=1

The dual system of eigenfunctions, which we pick as reaction coordinates, is

Vi(z) = ¢j(x)/Po(x) .

Diffusion Distance at time t

d(,9) = e, ) — prly. e = \/Z ity (o) — 5 ()



Difftusions maps for MD

9 AN R.R. Coifman, |.G. Kevrekidis, S. Lafon, MM, B. Nadler

P = Lp= ZAp+V - (pVU) = —Hppp Hrpp; = Ajp;  Hppy = A9,

Theorem: The optimal k-dimensional approrimation of p(x,t|y) that mini-
mizes the mean squared norm of the approrimation error

How doinvielconipute/iearn.the above?

where averaging is over all initial points y sampled according to the equilibrium
density ©o(y), is given by by the truncated sum

k—1

pr(,tly) = e ' ;(y)p; ().

7=0

This is simply an SVD approximation w.r.t. the diffusion kernel.

Empirical approximations, given samples distributed according to ¢y, can be
obtained by suitably modifying diffusion maps (with guarantees).



Random walks on graphs and data

R. Coifman, S. Lafon, MM, B. Nadler

We may construct weighted graphs from data: given
. Data X = {x;}7, C RP.

. Local similarities via a kernel function W(x;,z;) > 0.

Simplest example: W, (x;,x;) = e~ llzi—z;lI*/o

Given a weighted graph (G, E, W): vertices represent data points,
edges connect z;,x; with weight W;; := W(x;,x,), when positive
(or above a threshold). Let D;; = > i Wij and

P=D"'w P;; = prob. of jumping x; — x;

Let 1 = )Xo > A1 > ... and ¢; the eigenval.’s and eigenvec.’s of P,
i.e. Pp;, = \jp;. We consider the map

Gozxz— (p1(x),...,0om(x)) € R™



Random walks on graphs and data

R. Coifman, S. Lafon, MM, B. Nadler, Y. Kevrekidis

Given a weighted graph (G, E,W): vertices represent data points,
edges connect x;,z; with weight W;; := W (z;,x;), when positive
(or above a threshold). Let Dy; = . W;; and

P=D"'w, P;; = prob. of jumping x; — x;

Let 1 =X > A1 > ... and ¢; the eigenval.’s and eigenvec.’s of P,
i.e. Pp; = A\;i0;. We consider the map

Gozr (p1(x),...,om(x)) € R™
With suitable modifications, one can show that as n — 400, and if the sam-

ples {x;} are drawn according to the stationary distribution of the process, P
converges to the propagator of the Fokker-Planck equation.



Clustering, diffusion distances

Joint with R. Coifman and S. Lafon
In some cases the geodesic distance ds may not capture geometric information of

interest. For example here dg (A, B) ~ dg(B, C). The diffusion distance is sensitive
to connectivity between clusters.

Shortest paths have
comparable length




Spectral Clustering in one sl

T (P2(), p3())

Original space
Every point is connected to its 5
nearest neighbors, obtaining a graph.

Flexibility + rolbustness
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Example: Molecular Dynamics Data

Joint with C. Clementi, M. Rohrdanz, W. Zheng

The dynamics of a small peptide (12 atoms with H-atoms removed) in a bath of
water molecules, is approximated by a Langevin system of stochastic equations

T =—-VU(x)+w
The set of configurations is a point cloud in R*#%3,
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Molecular Dynamics data for alanine

M. Rohrdanz, W. Zheng, MM, C. Clementi, JCP
Given only trajectory data, we construct

an empirical approximation to the
generator of the Fokker-Planck, and o _ = 0 (1 0 8E> p = —Hppp
compute its eigenvalues/vectors to obtain a '

low-dimensional embedding and reaction
coordinates. Slowest mode

Alanine dipeptide Fo eigenspectrum \
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DIffusion coord.’s - empirical coord.’s

M. Rohrdanz, W. Zheng, MM, C. Clementi, JCP

e
@)

We may plot the diffusion coordinates as functions of the
{4 physical observables given by the angles and notice they
are essentially in one-to-one correspondence, with the

2 | diffusion coordinates emphasizing energy barriers
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Random walks on graphs and data

R. Coifman, S. Lafon, MM, B. Nadler, Y. Kevrekidis

We may construct weighted graphs from data: given
. Data X = {x;}7, C RP.

. Local similarities via a kernel function W(x;,z;) > 0.

Simplest example: W, (x;,x;) = 6""’“_%”2@

Given a weighted graph (G, E, W): vertices represent data points,
edges connect z;,x; with weight W;; := W(x;,x,), when positive
(or above a threshold). Let D;; = > i Wij and

P=D"'w P;; = prob. of jumping x; — x;

Let 1 = )Xo > A1 > ... and ¢; the eigenval.’s and eigenvec.’s of P,
i.e. Pp;, = \jp;. We consider the map

Gozxz— (p1(x),...,0om(x)) € R™



Geometry of Data lll;
INtrinsic Dimension



Multiscale SVD: COV(M‘BZ(T))

Model: data {z;};", is sampled from a manifold M of dimension k, embed-
ded in R”, with k < D. We receive X,, := {x; +n;}7_,, where n; ~iia N
is D-dimensional noise (e.g. Gaussian). Objective: estimate k.

-~

Consider ¢" = \;(cov(X,, N Bz(r)))
forall»>0,and allz=1,...,D.

Green: where data is
Red: where noisy data is
Blue: volume in ball

Only need number of samples linear in the intrinsic dimension, robust to noise
Turns out to be consequence of a blessing of dimensionality



Molecular Dynamics Data

Joint with C. Clementi, M. Rohrdanz, W. Zheng

The dynamics of a small peptide (12 atoms with H-atoms removed) in a bath of
water molecules, is approximated by a Langevin system of stochastic equations

T =—-VU(x)+w

R12X3

The set of configurations is a point cloud in




Example: Alanine dipeptide

M. Rohrdanz, W. Zheng, MM, C. Clementi, J. Chem. Phys. 2011
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Random walks on graphs and data

R. Coifman, S. Lafon, MM, B. Nadler, Y. Kevrekidis

We may construct weighted graphs from data: given
. Data X = {x;}7, C RP.

. Local similarities via a kernel function W(x;,z;) > 0.

Simplest example: W, (x;,x;) = 6""’“_%”2@

Given a weighted graph (G, E, W): vertices represent data points,
edges connect z;,x; with weight W;; := W(x;,x,), when positive
(or above a threshold). Let D;; = > i Wij and

P=D"'w P;; = prob. of jumping x; — x;

Let 1 = )Xo > A1 > ... and ¢; the eigenval.’s and eigenvec.’s of P,
i.e. Pp;, = \jp;. We consider the map

Gozxz— (p1(x),...,0om(x)) € R™



| ocally Scaled Diffusion Map

9 M. Rohrdanz, W. Zheng, MM, C. Clementi
,- Construct the N x N matrix of transition probability kernels K, as

2
__drmMsD (%% ;)
L 2€;€,

for z; and z; molecular configurations, ¢; and ¢; their local scales.

. For each x;, compute
N

P; = ZKija

g=1

which is proportional to a density estimation around z;.

. Normalize the kernel as

. Define the diagonal matrix D as D, = Z;\le f(ij, and construct a Markov
matrix M = D_lff,

~

K

1

M;; =D

. Compute largest eigenvalues and corresponding right eigenvectors of M.



2" DC

Example; SH-3

M. Rohrdanz, W. Zheng, MM, C. Clementi

SH3 Fokker-Planck eigenspectrum
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Small polymer reversal rate

20 bead polymer confined in nanopore; the axis z of
nanopore is the reaction coordinate. Previous work by
Huang and Makarov used distance between bead ends,
projected onto z, as empirical reaction coordinates, and
noticed poor approximation of the transition rates.

Locally scaled diffusion maps vyield a reaction
coordinate along which a more accurate transition rate
IS estimated; this coordinate corresponds quite well with
z, while the second diffusion coordinate is related to
radius of gyration of the polymer.
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Summary, part |

“"Models”: high-dimensional data may often be
approximated by low-dimensional geometric objects

Intrinsic dimension: use Multiscale SVD to measure intrinsic
dimension

Coordinates: global low-dimensional parametrizations via
diffusion maps. This can be adapted to Langevin dynamics
for low-dimensional descriptions of large-time dynamics.

The above requires long trajectories -
typically expensive




Geometry of Data [V
| earning Accelerated Dynamics



ATLAS: a geometric approach to learning stochastic
systems in high dimensions

Interested in high-dimensional stochastic systems s.t.:

| | . | ronrsiudont
- the timescale of interest is medium-large les Crosskey

- are intrinsically low-dimensional, at the relevant timescale

- are very expensive to simulate P

N f_\ AN '

- need an approximation with reasonable
but not too high accuracy




Objectives

Given:

(i) stochastic simulator for the system & concentrated around a manifold M
of dimension d

(ii) smallest “spatial” scale of interest
(iii) distance function d
Return:

(i) a fast, continuous-time and continuous-space simulator (ATLAS) at all
scales larger than §, having accuracy O(6)

(ii) ATLAS is constructed using O(dd~*) paths of length O(§) from S, col-
lected in parallel

(iii) efficient storage of all paths



Main ldeas

[




Main ldeas

. Divide configuration space using a o-net

['adnetifr#yel = d(z,vy) >%
and for every x € M thereis y € I'
with d(x,y) < 6

Use cover trees to construct in
online fashion in O(C?Dnlogn)




Main ldeas

. Divide configuration space using a o-net

Connect each y, € I' to its neighbors.
This connectivity will be used to transition
between local reduced simulators.

Also O(C%logn), and in parallel.




Main ldeas

. Divide configuration space using a o-net

. Construct local Euclidean charts in each piece of partition

Use Multi-Dimensional Scaling
to obtain maps ®; from

neighborhood of yr € T’ — /
tO Ck C Rd ‘\‘ |I I
!

Completely local calculation,
Can use landmarks to speed up. Y,

— — —




Main ldeas

. Divide configuration space using a o-net

. Construct local Euclidean charts in each piece of partition

. Construct connections between charts

A transition map between C} and C}

is learned whenever k ~ k’.
We use linear maps Sk i : R?¢ — RY.




Main ldeas

. Divide configuration space using a o-net

. Construct local Euclidean charts in each piece of partition

. Construct connections between charts

. Learn simulators on charts

In each chart we fit a constant coeflicient
Ito diffusion:

dX; = bdt + 5dB;

We estimate b and & by running

p paths of length O(9).

Turns out we need p = O(dé~*) in order
to obtain accuracy 0.




Main ldeas

. Divide configuration space using a o-net

. Construct local Euclidean charts in each piece of partition

. Construct connections between charts

. Learn simulators on charts L

. Glue simulators

R
ATLAS til’le Step: N W (Ja)
Tz + DAL+ TLAB 4 ¢

€T < W(Qf) : =
k' = argmin,, ||z — Pr(y1)|] ) E%’& |

Xr — Tk,k/(x)




L arge time guarantees

Theorem [Crosskey-MM| Let M be a nice manifold and suppose X; € M
solves

dXt — b(Xt)dt (N O'(Xt)dBt

with 0,0 Lipschitz, and ¢ uniformly elliptic on M. Let g be stationary for X;
and ¢ be stationary for X;. Then if § is small enough and the number of sample
paths p > (72 + d) /&%,

g — @7 (@)L vy < Cdlog(1/6)
with probability at least 1 — 2eT.

X; 1s the process that we are interested in approximating at time scale > g
- it may be itself an approximation of an “original system” given at a finer
time-scale.

Here ® is the map from M to the collection of approximate tangent spaces. It
is invertible for 0 small enough.



L arge time guarantees

Theorem [Crosskey-MM| Let M be a nice manifold and suppose X; € M
solves

dXt — b(Xt)dt (N O'(Xt)dBt

with 0,0 Lipschitz, and ¢ uniformly elliptic on M. Let g be stationary for X;
and ¢ be stationary for X;. Then if § is small enough and the number of sample
paths p > (72 + d) /&%,

g — @ (@)||Lr ) < Cdlog(1/6)

with probability at least 1 — 2eT.

This result fits within the ideas that “short time accuracy implies long time accu-
racy’ when averaging occurs and there is an underlying large-scale smoothness
|J. Mattingly, A. Stuart, M. Tretyakov, E. Vanden-Eijnden, ...]



Examples: 1-D
Brownian motion in a potential well

dXt — —VU(Xt) —|— dBt

1.5
11

3 0.5

-0.5

0.5 : 0% 5



Examples: 1-D
Brownian motion in a potential well

dXt — —VU(Xt) —|— dBt

1.8

. 5=0.1 1-6 — Learned Simlator
. to = 1072 = 500 st . 2
0 steps § V' ”“]'I’l'l'l'l'l’l'l““ “
. 14 charts g 087 n"“‘!l””' ””]"‘”. ."l
L o6f Y \
. p = 10* samples per chart ] 0-4: "" ”’ ”""m W“‘

Recall: we should not (and do) obtain an approximation to the original potential

U, but to a smooth effective potential which is accurate at spatial scales larger
than 0.



Examples: 1-D

Measure of error:
Hpt(xa ) — ﬁt(x7 )HLl(./\/l) )

where p;(z,-) is the probability of being at - starting from x according to S and
similarly for p.

Look at the above, binned according to a partition associated with the net,
averaged of x, as a function of ¢, aver all timescales.

1c
0.9
0.81
0.7r
0.6
0.5

simulator error

0.4r
0.3F

0.2




Examples: 1-D

Measure of error:
pe(z, ) — e, )| L) s

where p;(z,-) is the probability of being at - starting from x according to S and
similarly for p.

We overlay p:(x,-) and p¢(x,-) for some x, binned; each plot correspond to a
different choice of t.
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Examples: 1-D

Transition rates:

T1—9 1s first hitting time 5
of 2 after last exit from 1. 05
Similarly for 75_,1.

E[7]

1 —>2



Examples: 2-D
Brownian motion in a potential well

dXt — —VU(Xt) —|— dBt
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Examples: 2-D

Measure of error:
[pe(z,-) — e, ')HLl(M) ;

where p;(z,-) is the probability of being at - starting from x according to S and
similarly for p.

Look at the above, binned according to a partition associated with the net,
averaged of x, as a function of ¢, aver all timescales.

5] w —
1 Bl original
Bl atlas
0.9+ 41 B
0.8 =
T
0.7_ 27 H
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S 05f
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E 04+
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Examples: 12,500-D

Brownian motion in a potential well

dXt — —VU(Xt) —|— dBt

obtained by mapping the 2-d rough potential to a (2-d) manifold in R1%:°00,

endowed with L! distance, where each point is an image of a circle with center
at the location corresponding to the 2-d example.

.0 =0.2
. to=4-10"2 = 800 steps
. 230 charts

. p=2-10° samples per chart




Examples: 12,500-D

Measure of error:
Hpt(xa ) — ﬁt(x7 )HLl(./\/l) )

where p;(z,-) is the probability of being at - starting from x according to S and
similarly for p.

Look at the above, binned according to a partition associated with the net,
averaged of x, as a function of ¢, aver all timescales.

6 I
1- Bl original
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Examples: 100-D

f=8(5)

% simulate Brownian bridge
W = cumsum(randn(1,100))

W=Ww-W() 3 250

W =W — 2 W(100)

% Add bridge to f, smooth and renormalize 4
f=f4+(1/100) « W

f = smooth(f)

f — f * (fnorm/norm(f))

200

150

. §=0.3 100

to = 2.5- 1072 = 250 steps

~ 70 charts 20

. p=2-10° samples per chart




Examples: 12,500-D

Measure of error:

|pe(, ) — Doz, )l L1 (m)
where p;(z,-) is the probability of being at - starting from x according to S and
similarly for p.
Look at the above, binned according to a partition associated with the net,
averaged of x, as a function of ¢, aver all timescales.

L histogram error

distance to f4

0.81

0.67

Il original
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Examples: 82-D, chaotic

Noise may arise from ensembles of deterministic chaotic processes. Multiscale
ODE with a scale e:

(f = ef(X{) +9(Y)), X5=u
Yy = h(Y?) Yo=y

If the dynamics for Y; alone admits an invariant measure p, and E,|f] = O(e),
then the above behaves like the SDE dX, = b(X;)ds + o(X;s)dBs, on the
timescale s = €t in the limit € — 0. For fixed ¢, difficult to simulate directly due
to the timescale separation.

We choose Y;=Lorentz '96 with 80 dimensions, and X; € R? so that there are

two limit cycles consisting of two concentric circles. 3

e = 0.1
. 0 = 0.18 = 240 steps




Examples: 82-D, chaotic

Measure of error:
|pe(, ) — De(x, )| L1 (m)

where p;(x,-) is the probability of being at - starting from x according to S and
similarly for p.

Look at the above, binned according to a partition associated with the net,
averaged of x, as a function of ¢, aver all timescales.
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Summary

“"Models”: high-dimensional data may often be
approximated by low-dimensional geometric objects

Intrinsic dimension: use Multiscale SVD to measure intrinsic
dimension

Coordinates: global low-dimensional parametrizations via
diffusion maps. This can be adapted to Langevin dynamics
for low-dimensional descriptions of large-time dynamics.

Learning dynamics: use parallel local learning of models for
the dynamics, and caretul piecing together local models
can be done so that large time accuracy is achieved.



Current Work

Fully online mode with exploration [built into construction!
Needs more code and theory]

Multiscale: choose scale and dimension adaptively
lencouraging simulations with adaptive local scale, and
changes in local dimension]

Molecular dynamics

Generalize theory to other large-time functionals [transition
rates and beyond]

Hypoellipticity (e.g. second order Langevin); non-time-
homogeneous systems.
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