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Major challenges in theoretical chemistry

* Treating heterogeneous systems

1. Catalysis on surfaces (often defect dominated)
2. Electrochemistry (water, electrodes, various ions)
3. Biological processes (water, ions, long-time scales)

4. Photochemical processes in the condensed phase

and at interfaces (excited states, non-adiabatic dynamics)

e Bridging time and length scales (e.g., protein folding may
occur on msec or longer time scale)

e Sampling structures (e.g., locating polymorphs of crystals, transition states,
minimum energy pathways)



Even a cluster as small as (H,0),, has a huge number of isomerst

Disconnectivity diagram! shows only the minima
within 17 kJ/mol of the global minimum
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The dodecahedral form of (H,O),,, in isolation, is
about 47 kJ/mol less stable than the global
minimum
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Each rearrangement pathway can be quite complex as
shown below for (H,0O), (again from Wales)
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5,-305.52 Dy;—305.41 ID. J. Wales and M. P. Hodges, Chem. Phys. Lett., 286, 65-72 (1998)



Approaches/Tools

e Electronic structure theory

v" Wave function based methods
v' DFT

e QM/MM: Embedded electronic structure (MM = molecular
mechanics = force field)

Applicable when the changes in electronic structure are localized
e Thermodynamics and dynamics simulations

v" Monte Carlo (equilibrium properties)
v Molecular dynamics (equilibrium + non equilibrium

v’ Generally carried out with force fields, but for small systems or short
time scales simulations can be done using QM energies/forces

v" Nuclear quantum effects can be included by path
integral methods



Schrodinger equation

Hy = Ey
E=T +T, +V, +V\y +V.

Born-Oppenheimer approximation
Separate electronic + nuclear degrees of freedom

E=E, +E

nucl

Hell//el = Eelg”el
Eef :Te +VeN +VNN +Vee
E., (Ii) = potential energy surface

governs motion of the nuclei (atoms)

used in molecular dynamics simulations and in calculation of vibrational spectroscopy

What makes solving the electronic Schrodinger equation difficult are the V,, terms

Many approximations have been introduced



The Hartree-Fock method is the simplest ab initio approximation

W = |g01(l’1)(p2(r2)...(pN (1, )| «<—— Slater determinant: builds in
antisymmetry of wavefunction

To solve for the HF energy and orbitals, one introduces a basis set
Atom-centered functions (Gaussians or numerical)
1s,2s,2s',2p,2p",3d,etc.
But other choices (e.g., plane waves or grid-based) are possible
One of the most widely used GTO basis sets are Dunning’s correlation consistent basis sets

cc-pVDZ  (3s2pld) (14)
cc-pVTZ  (4s3p2d1if) (30)
cc-pvQZ (5s4p3d2flg) (55)
cc-pV5Z (6s5p4d3f2glh) (91)

To accurately describe polarization, van der Waals interactions, and anions: need to
augment these basis sets with a diffuse function of each angular momentum type



Dunning’s aug-cc-pVTZ basis set for O
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The inner functions are contracted:
i.e., represented by several primitive
Gaussian functions with fixed
coefficients

Number of primitives greatly
exceeds number of contracted
functions

As far as solving SCF equations or
doing post HF calculations, it is the
number of contracted functions that
matters

Diffuse “aug” functions indicated in
blue



Vary orbitals to minimize <z//|H |1//> )
subject to keeping orbitals orthonormal

Gives the Fock equation
Fh=6h =T +V, +<l//‘Vee‘l//>

s

Fock operator

} empty (virtual) orbitals

} filled orbitals

sl

each electron moves in the average
potential of the other electrons

/ (a mean-field method)
The effective potential depends on the orbitals

that we are trying to determine

Solve iteratively (SCF)

Koopmans’ theorem (KT)

~

P! =~ —g, (“j” an occupied orbital)

EAS =—&, (“a” an empty orbital)
Only meaningful if the empty orbital is bound

For most neutral molecules, all virtual orbitals are at positive energy

Virtual orbitals are appropriate for N+1 electron system

Empty valence orbitals “dissolve” in the continuum with large basis sets




Electron correlation energy (neglecting relativistic effects)

Ecorr — g&act _ EHF - (assuming basis set large enough
to reach HF limit)

Electron correlation effects are described by excitations from
filled to empty orbitals

Slowly convergent expansion, requiring high angular
momentum basis functions due to the difficulty of
describing in the cusp in terms of ¢, (I, )4, (rj )
products as F; >0
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There are two (related) problems caused by the basis sets

One needs a very large basis to describe the cusps which,
in turn, increases the number of virtual orbitals

Due to the virtualorbitals corresponding to the N+1
electron system and the presence of the continuum, one
cannot simply excite into only the low-lying orbitals
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HF energy converges much more quickly with
increasing basis set size than does the energy
from calculations including electron
correlation. (Results for H,0; shifted energy

scales.)



CCSD(T) results for N,

Tot. E BE
Basis set (a.u.) (kcal/mol) 1 eV difference
cc-pvVDZ -109.2765 200.6
cc-pVTZ  -109.3739 216.5
cc-pvVQZ -109.4044 222.9 6.4 kcal/mol difference

Expt. 228.9

To reach the complete basis set limit (CBS) MP2 or CCSD(T) results

requires extrapolating along sequence of the basis sets (e.g., aug-dz,
aug-tz, aug-qz)

Not as bleak as it sounds: explicitly correlated methods that
introduce explicit r12 dependence in the wave function can achieve
the CBS limit with smaller basis sets.



2"d-order Moller-Plesset PT (MP2) is the

ab
simplest correction to Hartree-Fock 1 <WHF 3 > Coulomb and
EMP2 _ EHF | = Z I exchange

4in&t &, =&~ & contributions

N

\

A-5+V, V-A-7

V involves the bare rij‘1 minus the average of rij‘l

Pros of MP2

* Typically recovers 95-105% of the correlation energy

o

Reaction Energies
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* Describes dispersion intersections |

e Can be made linear-scaling by use of localized orbitals

Beaction Energy (kealfmecl)
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Cons of MP2
* Not applicable when there is a near degeneracy (strong static - S F P oSS
: : -
correlation) oo oo o o s e
* In general, does not meet the target accuracy of 1 kcal/mol for From F. Neese’s talk at Trieste2013
reaction and activation energies DFT and Beyond meeting

* (Can overestimate dispersion
e Often performs poorer than DFT, which is computationally faster



More sophisticated wavefunction-based procedures

Configuration interaction (from HF reference)
_C Caa 1 Cabab 1 Cabiabc a +
¥ =C,®,.+> C/ >+ZZ b >+£Z o o >+ F>=aya |0), etc.
ia
The coefficients {CXV} are determined variationally — matrix eigenvalue problem

Structure of Cl matrix

e <0|V|S> <0|V|D> 0 0
<S|H|0> <S|H|S> <S|V|D> <S|V|T> 0
<D|V|0> <D|V|S> <D|H|D> <D|V|T> <D|V|Q>
0 <T|V|S> <T|V|D> <T|H|T> <T|V|Q>
0 0 <Q|V|D> <Q|V|T> <Q|H|Q>.

=

<0|H|T>, etc. = 0 since H involves at most double excitations

<0|H|S>=0: Brillouin’s theorem: Holds only if |0>= |HF>




Double excitations most important
2nd order PT: doubles
34 order PT: doubles

4t order PT: singles, doubles, triples, quadruples

Single-plus-double-excitation CI (CISD) used to be quite common

Truncated ClI’s not size extensive (i.e., E©° does not scale with number of particles)

Consider two He atoms at long distance
SDCI “exact” for He atom
E(He -----He) = 2E(He)

Also while a full Cl does not depend on the choice of 0t"-order wavefunction, a truncated Cl does

Truncated Cl calculations based on a single reference configuration fail for near degeneracy problems

Full Cl (applicable to only small systems, e.g., H,0)

If we knew exact C/;” = would know exact correlation

) . corr __ 1 ab H-
Nesbet’s theorem: C_E —ZZCU <ij[[ab> energy

However, ¢/’ dependon C?, Ci*, Ci, etc.




34, and 4"h-order MP perturbation theory

Implemented in codes somewhat after MP2
Sometimes perform better than MP2, but sometimes not
In fact, the perturbation expansion of the energy often diverges

Relatively little used now

Coupled-cluster methods

Basic ideas can be traced back to papers of Coester and Kummel (1957, 1960)

Applications to nuclear structure
Brought over to electronic structure applications by Cizek, Paldus and Shavitt
Nesbitt and Sinanoglu introduced approximate coupled cluster theories
Implemented in efficient codes by the Bartlett and Pople groups

Now implemented in nearly all codes that are wave-function based and use GTOs



z//>=eT|z//HF>, T=T,+T,+T,+..

A~ A+B — QAAQB
Ti=) tla’a, EAB =g e%, 50

1 automatically size
T:==)t"aja a3 extensive

CCSD: T =T,+T,, scalesas O(NG)
(T Ty 4 To a2 T 4 TaT o 42T+
2 2
CCSDT: T=T,+T,+T,, scalesas O(NS)
CCSD(T): triples evaluated perturbatively using t, amplitudes from CSSD, scales as [O(N7)]

CCSD)(T) guantum chemistry “gold standard”

* achieves chemical accuracy (except in near degeneracy cases)
multireference coupled cluster theories exist,
but there are no computationally fast implementations

* N7 scaling restricts the size system that can be treated



How does one solve the coupled-cluster equations?

Hly)=Hle'® )=E|e' ®,)
E=<®,|H|e'D, >
E=<®,|H|D;>+<D,|H|TD, >

<;”}b\H\eTCDO>: E<;”}b|eTCDO>

LetT =T,
E =E, +(D,[H|T,®,)

2
<§b\H\1+T2 +T72|cpo>= E(3T,®,)

2
<f}b\H\1+T2 +T72|c1>0>:(EHF (D [H[T,®0)) (51T, )

£
ij
Solve for the amplitudes

Equations are nonlinear



Delving a bit further:

—~

H=e"He' (similarity transform)

Baker-Campbell-Hausdorff (BCH) expansion

H=¢T"He' =[H,T]+%[[H,T],T]+%[[[H,T],T],T]+

Truncates exactly
after 4 commutators

1
ﬂ[[[[H,T],T],T],T]

E=Ey +(HF[[H,T,][HF) +(HF [[[H,T,], T,]| HF)

Only T, and T, terms enter, but they are coupled to higher order terms through
the coefficients



Ways of reducing computational effort
e use localized orbitals (“linear scaling)

Requires sizable HOMO/LUMO gap E.g., generate

* truncate virtual orbital space (most effectively done using natural orbitals) - NO’s from MP2,

e use with explicit correlation (e.g., F12 method) | and truncate
space before

Reduces the size of the GTO basis by ~3x
CCSD(T)

calculation

Connection with the RPA method

The RPA method has been around since the early 1950’s (Bohn and Pines)

So why the recent interest?

e Adiabatic connection fluctuation-dissipation: natural extension of DFT
 New algorithms give O ( N 3) scaling
e Direct RPA = CCD (with ring diagrams)

AWAW O NP ~{ See Ren et al., Ph
+ N o+ N + ., Phys. Rev.
Q0 Q% U0 QoY smimaaem,



Advantages of RPA method over DFT (GGA, hybrid, etc)

e Self-interaction problem largely removed
e Correctly describes long-range dispersion

e “Systematically” improvable

Problems
* Neglects second and higher-order exchange interactions
* Neglects ladder diagrams

* Underestimates net correlation energies

RPA with periodic boundary conditions now supported in the
VASP and CP2K codes.



Multiconfigurational SCF Methods

CASSCF: all arrangements of electrons in a
specified (active) orbital space

Both Cl coefficients and orbitals are optimized

il

CASSCEF ideal for treating static (near-degeneracy)

correlation effects

lllustrates a CAS (4,4)
(4 electrons in 4

Can be used as references for multi-reference orbitals) active space

MP2 (CASMP2)

Can properly dissociate bonds

However, largest possible CAS is (18,18) and that is very expensive
Recently density matrix renormalization group (DMRG) methods have
been developed that can account for near degeneracy effects in ~50 or so

orbitals



Restricted active space (RAS) methods
are very flexible

E.g., could allow at most 2 electrons excited from
RAS1, at most 2 electrons in RAS3, and all
arrangements in RAS2 space.

Allows more active orbitals than CASSCF
But can be challenging to “correctly” choose
the spaces and excitation restrictions

0

RAS3

RAS2

RAS1




Examples where one needs to use multiconfigurational wavefunctions

1. To dissociate H, to atoms: ¢, |1a§>—c2 |1auz>
n +, (a®~b?) or (ab+ba)
+- depending on whether

one is using localized or
delocalized orbitals

2. Singlet state of square H, requires two a
configurations

3. Insertion of Be into H,

||-| E(HZJU) ;(O-g)
H
Be + — Be "!a’f( BeZs)><—tt(au)
_H_
) H.o,)

reactants product

Symmetry labels: C,, point group

21n 2 . : .
e b2 Strong configuration mixing near
transition state on reaction pathway

reactants products



Summary of methods

HF

MP2 2" order (dynamic)
CCSD oo order (dynamic)
CCSD(T) oo order (dynamic)
CASSCF near deg. (static)
CASMP2 near deg. (static) +
(MR-MP2) dynamic

CISD oo order (dynamic)
CISDTQ oo order (dynamic)
Full Cl Exact in basis set

N4
N5
N6
N7
See full Cl, below

See full Cl, below

Nznv4 ~ N6
Ngo:N?n,2,  Noo ~ (m? N"n,

N=# orbitals, n,=
# virtuals, m = exc.
level

CAS and RAS can be used as reference spaces for multconfigurational Cl (MRCI)
and multiconfigurational PT (e.g., MRPT2, CASPT2)

Can be used to characterize electronically excited states




EOM-CCSD for IPs, EAs, excitation energies

—~

H=e"He'

|l//ex>:R|Wg>; R:RO+R1+R2+...
y,=e 0>

HR|g >=HRe' [0>=ERe" |0>
e "He'R|0>=ER|0>
(e "THe'R—ER)[0>=0
(ﬁ—E)R|0>:o

level of excitation

ground state: R=R, =1

EA: R=a;, a;a;g,
IP: R=4a,a,aa,

. At +At
Exc. energy: R=aja, a;a;aa,

IPs, EAs, excitation energies: matrix eigenvalue problem of configurations using H~

and above operators.

In general, very accurate IPs, EAs., excitation energies (except where ground state

not well described by CCSD)

For some systems, EOM-MP2 is viable

use to amplitudes from MP2 rather than from CSSD to generate

—_—

H




Some timings

IP of Auy;: PP with 5525p®5d1%6s electrons treated explicitly
6s5p3d1f basis set
248 electrons, 559 basis functions

EOM-MP2: 1.5 hours on 3 cores
EOM-CCSD: 62 hours on 3 cores

EA of C,,: 360 correlated electrons, ~1400 basis functions
EOM-CCSD: ~ 240 hours on 1 core

Calculations carried out using a disk-based code (CFOUR)
Lots of room for improved performance (e.g., density fitting not implemented)

Used to demonstrate that C,, has an s-type anion bound by

{Z} ~130 meV

Electron bound by long-range correlation effects

Counterpart to an image potential state of a metal surface




