QUANTUM CHEMISTRY APPROACHES TO ELECTRON CORRELATION

Kenneth D. Jordan University of Pittsburgh

Major challenges in theoretical chemistry

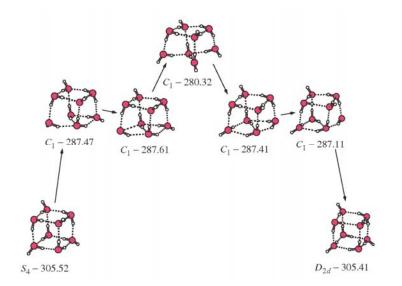
- Treating heterogeneous systems
 - 1. Catalysis on surfaces (often defect dominated)
 - 2. Electrochemistry (water, electrodes, various ions)
 - 3. Biological processes (water, ions, long-time scales)
 - 4. Photochemical processes in the condensed phase and at interfaces (excited states, non-adiabatic dynamics)
- Bridging time and length scales (e.g., protein folding may occur on msec or longer time scale)
- Sampling structures (e.g., locating polymorphs of crystals, transition states, minimum energy pathways)

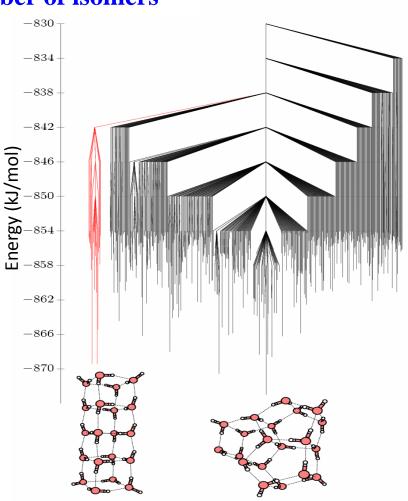
Even a cluster as small as $(H_2O)_{20}$ has a huge number of isomers¹

Disconnectivity diagram¹ shows only the minima within 17 kJ/mol of the global minimum

The dodecahedral form of $(H_2O)_{20}$, in isolation, is about 47 kJ/mol less stable than the global minimum

Each rearrangement pathway can be quite complex as shown below for $(H_2O)_8$ (again from Wales)





¹D. J. Wales and M. P. Hodges, Chem. Phys. Lett., 286, 65-72 (1998)

Approaches/Tools

- Electronic structure theory
 - ✓ Wave function based methods
 - ✓ DFT
- **QM/MM**: Embedded electronic structure (MM = molecular mechanics = force field)

Applicable when the changes in electronic structure are localized

- Thermodynamics and dynamics simulations
 - ✓ Monte Carlo (equilibrium properties)
 - ✓ Molecular dynamics (equilibrium + non equilibrium)
 - ✓ Generally carried out with force fields, but for small systems or short time scales simulations can be done using QM energies/forces
 - ✓ Nuclear quantum effects can be included by path integral methods

Schrödinger equation

$$H\psi = E\psi$$

$$E = T_e + T_N + V_{eN} + V_{NN} + V_{ee}$$

Born-Oppenheimer approximation

Separate electronic + nuclear degrees of freedom

$$E = E_{el} + E_{nucl}$$

$$H_{el}\psi_{el} = E_{el}\psi_{el}$$

$$E_{e\ell} = T_e + V_{eN} + V_{NN} + V_{ee}$$

$$E_{e\ell}\left(ilde{R}
ight) = \;\; ext{potential energy surface}$$

governs motion of the nuclei (atoms)

used in molecular dynamics simulations and in calculation of vibrational spectroscopy

What makes solving the electronic Schrödinger equation difficult are the $\,V_{ee}\,$ terms Many approximations have been introduced

The Hartree-Fock method is the simplest **ab initio** approximation

$$\psi = |\varphi_1(r_1)\varphi_2(r_2)...\varphi_N(r_N)|$$
 Slater determinant: builds in antisymmetry of wavefunction

To solve for the HF energy and orbitals, one introduces a basis set

Atom-centered functions (Gaussians or numerical)

But other choices (e.g., plane waves or grid-based) are possible

One of the most widely used GTO basis sets are Dunning's correlation consistent basis sets

To accurately describe polarization, van der Waals interactions, and anions: need to augment these basis sets with a diffuse function of each angular momentum type

Dunning's aug-cc-pVTZ basis set for O

0.0737600

S 8 1.00 15330.0000000 2299.0000000	0.0005080 0.0039290	P 3 1.00 34.4600000 7.7490000	0.0159280 0.0997400
522.4000000	0.0202430	2.2800000	0.3104920
147.3000000 47.5500000	0.0791810 0.2306870	P 1 1.00	
16.7600000	0.4331180	0.7156000 P 1 1.00	1.0000000
6.2070000 0.6882000	0.3502600 -0.0081540	0.2140000	1.0000000
S 8 1.00	-0.0081340	P 1 1.00	4 0000000
15330.0000000	-0.0001150	0.0597400 D 1 1.00	1.0000000
2299.0000000 522.4000000	-0.0008950 -0.0046360	2.3140000	1.0000000
147.3000000	-0.0187240	D 1 1.00 0.6450000	1.0000000
47.5500000	-0.0584630	D 1 1.00	1.0000000
16.7600000 6.2070000	-0.1364630 -0.1757400	0.2140000	1.0000000
0.6882000	0.6034180	F 1 1.00 1.4280000	1.0000000
S 1 1.00	4.000000	F 1 1.00	1.0000000
1.7520000 S 1 1.00	1.0000000	0.5000000	1.0000000
0.2384000	1.0000000		
S 1 1.00			

1.0000000

The inner functions are contracted: i.e., represented by several primitive Gaussian functions with fixed coefficients

Number of primitives greatly exceeds number of contracted functions

As far as solving SCF equations or doing post HF calculations, it is the number of contracted functions that matters

Diffuse "aug" functions indicated in blue

Vary orbitals to minimize $\langle \psi | H | \psi \rangle$, subject to keeping orbitals orthonormal

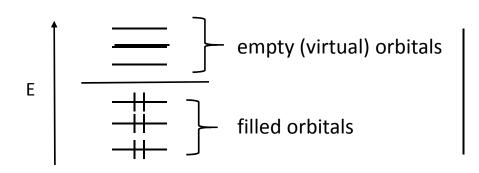
Gives the Fock equation

$$\mathcal{F}\phi_{i}=\mathcal{E}_{i}\phi_{i}$$
 : $\mathcal{F}=T_{e}+V_{eN}+\left\langle \psi\left|V_{ee}\right|\psi\right\rangle$ Fock operator

each electron moves in the average potential of the other electrons (a mean-field method)

The effective potential depends on the orbitals that we are trying to determine

Solve iteratively (SCF)



Koopmans' theorem (KT)

 $IP_{j}^{KT} \approx -\varepsilon_{j}$ ("j" an occupied orbital)

 $EA_a^{KT} \simeq -\varepsilon_a$ ("a" an empty orbital)

Only meaningful if the empty orbital is bound

For most neutral molecules, all virtual orbitals are at positive energy

Virtual orbitals are appropriate for N+1 electron system

Empty valence orbitals "dissolve" in the continuum with large basis sets

Electron correlation energy (neglecting relativistic effects)

 $E^{corr} = E^{exact} - E^{HF}$ (assuming basis set large enough to reach HF limit)

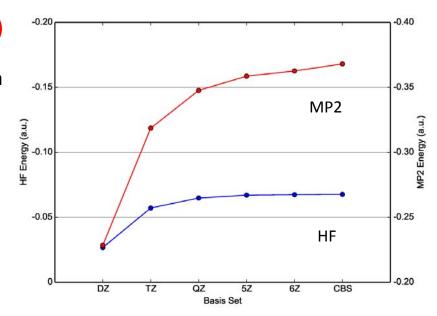
Electron correlation effects are described by excitations from filled to empty orbitals

Slowly convergent expansion, requiring high angular momentum basis functions due to the difficulty of describing in the cusp in terms of $\phi_a\left(r_i\right)\phi_b\left(r_j\right)$ products as $r_{ij} \to 0$

There are two (related) problems caused by the basis sets

One needs a very large basis to describe the cusps which, in turn, increases the number of virtual orbitals

Due to the virtualorbitals corresponding to the N+1 electron system and the presence of the continuum, one cannot simply excite into only the low-lying orbitals



HF energy converges much more quickly with increasing basis set size than does the energy from calculations including electron correlation. (Results for H_2O ; shifted energy scales.)

CCSD(T) results for N₂

	Tot. E	BE			
Basis set	(a.u.)	(kcal/mol)		1 eV difference	
cc-pVDZ	-109.2765	5 200.6			
cc-pVTZ	-109.3739	9 216.5			
cc-pVQZ	-109.4044	1 222.9 -		6.4 kcal/mol differ	rence
Expt.		228.9	_		

To reach the complete basis set limit (CBS) MP2 or CCSD(T) results requires extrapolating along sequence of the basis sets (e.g., aug-dz, aug-tz, aug-qz)

Not as bleak as it sounds: explicitly correlated methods that introduce explicit r12 dependence in the wave function can achieve the CBS limit with smaller basis sets.

2nd-order Møller-Plesset PT (MP2) is the simplest correction to Hartree-Fock

$$E^{MP2} = E^{HF} + \frac{1}{4} \sum_{i,j,a,b} \frac{\left\langle \psi_{HF} \left| \hat{V} \right|_{ij}^{ab} \right\rangle}{\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b} \quad \begin{array}{|l|l|} \text{Coulomb and} \\ \text{exchange} \\ \text{contributions} \end{array}$$

$$\widehat{H} = \mathcal{F} + \widehat{V}, \quad \widehat{V} = \widehat{H} - \widehat{\mathcal{F}}$$

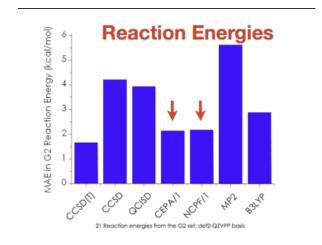
 \widehat{V} involves the bare $\ r_{ij}^{-1}$ minus the average of $\ r_{ij}^{-1}$.

Pros of MP2

- Typically recovers 95-105% of the correlation energy
- Describes dispersion intersections
- Can be made linear-scaling by use of localized orbitals

Cons of MP2

- Not applicable when there is a near degeneracy (strong static correlation)
- In general, does not meet the target accuracy of 1 kcal/mol for reaction and activation energies
- Can overestimate dispersion
- Often performs poorer than DFT, which is computationally faster



From F. Neese's talk at Trieste2013
DFT and Beyond meeting

More sophisticated wavefunction-based procedures

Configuration interaction (from HF reference)

$$\Psi = C_o \Phi_{HF} + \sum_{ia} C_i^{a} |_i^a \rangle + \frac{1}{4} \sum_i C_{ij}^{ab} |_{ij}^{ab} \rangle + \frac{1}{36} \sum_i C_{ijk}^{abi} |_{ijk}^{abc} \rangle + \dots \qquad |_i^a > = a_a^+ a_i^- |_0^a \rangle, \quad \text{etc.}$$

The coefficients $\{C_x^y\}$ are determined variationally o matrix eigenvalue problem

Structure of CI matrix

<0|H|T>, etc. = 0 since H involves at most double excitations

<0|H|S> = 0: Brillouin's theorem: Holds only if |0> = |HF>

Double excitations most important

2nd order PT: doubles

3rd order PT: doubles

4th order PT: singles, doubles, triples, quadruples

Single-plus-double-excitation CI (CISD) used to be quite common

Truncated Cl's not size extensive (i.e., E^{corr} does not scale with number of particles)

Consider two He atoms at long distance

SDCI "exact" for He atom

 $E(He \cdots He) \neq 2E(He)$

Also while a full CI does not depend on the choice of 0th-order wavefunction, a truncated CI does

Truncated CI calculations based on a single reference configuration fail for near degeneracy problems

Full CI (applicable to only small systems, e.g., H₂O)

Nesbet's theorem:
$$C_O E^{corr} = \frac{1}{4} \sum C_{ij}^{ab} < ij \mid\mid ab >$$

If we knew exact $\mathcal{C}^{ab}_{ij} \implies$ would know exact correlation energy

However, C_{ij}^{ab} depend on C_i^a , C_{ijk}^{abc} , C_{ijkl}^{abcd} , etc.

3rd, and 4^{rth}-order MP perturbation theory

Implemented in codes somewhat after MP2

Sometimes perform better than MP2, but sometimes not

In fact, the perturbation expansion of the energy often diverges

Relatively little used now

Coupled-cluster methods

Basic ideas can be traced back to papers of Coester and Kummel (1957, 1960)

Applications to nuclear structure

Brought over to electronic structure applications by Cizek, Paldus and Shavitt

Nesbitt and Sinanoglu introduced approximate coupled cluster theories

Implemented in efficient codes by the Bartlett and Pople groups

Now implemented in nearly all codes that are wave-function based and use GTOs

$$|\psi\rangle = e^{T} |\psi^{HF}\rangle, \quad \hat{T} = \hat{T}_{1} + \hat{T}_{2} + \hat{T}_{3} + ...$$

$$\hat{T}_{1} = \sum_{i} t_{i}^{a} a_{a}^{+} a_{i}$$

$$\hat{T}_{2} = \frac{1}{4} \sum_{i} t_{ij}^{ab} a_{a}^{+} a_{b}^{+} a_{j} a_{i}$$

 $E^{A+B} = e^A e^B$, so automatically size extensive

CCSD:
$$T = T_1 + T_2$$
, scales as $O(N^6)$

$$e^{(\hat{T}_1 + \hat{T}_2)} = 1 + \hat{T}_1 + \hat{T}_2 + \frac{1}{2}\hat{T}_1^2 + \hat{T}_1\hat{T}_2 + \frac{1}{2}\hat{T}_2^2 + \dots$$

CCSDT: $T = T_1 + T_2 + T_3$, scales as $O(N^8)$

CCSD(T): triples evaluated perturbatively using t_2 amplitudes from CSSD, scales as $\left\lceil O(N^7) \right\rceil$

CCSD)(T) quantum chemistry "gold standard"

- achieves chemical accuracy (except in near degeneracy cases)
 multireference coupled cluster theories exist,
 but there are no computationally fast implementations
- N⁷ scaling restricts the size system that can be treated

How does one solve the coupled-cluster equations?

$$H | \psi \rangle = H | e^{T} \Phi_{0} \rangle = E | e^{T} \Phi_{0} \rangle$$

$$E = \langle \Phi_{0} | H | e^{T} \Phi_{0} \rangle$$

$$E = \langle \Phi_{0} | H | \Phi_{0} \rangle + \langle \Phi_{0} | H | T \Phi_{0} \rangle$$

$$\langle ab | H | e^{T} \Phi_{0} \rangle = E \langle ab | e^{T} \Phi_{0} \rangle$$

Let
$$T = T_2$$

$$E = E_{HF} + \left\langle \Phi_0 \middle| H \middle| T_2 \Phi_0 \right\rangle$$

$$\left\langle {}^{ab}_{ij} \middle| H \middle| 1 + T_2 + \frac{T_2^2}{2} \middle| \Phi_0 \right\rangle = E \left\langle {}^{ab}_{ij} \middle| T_2 \Phi_0 \right\rangle$$

$$\left\langle {}^{ab}_{ij} \middle| H \middle| 1 + T_2 + \frac{T_2^2}{2} \middle| \Phi_0 \right\rangle = \left(E_{HF} + \left\langle \Phi_0 \middle| H \middle| T_2 \Phi_0 \right\rangle \right) \left\langle {}^{ab}_{ij} \middle| T_2 \Phi_0 \right\rangle$$

Solve for the amplitudes

Equations are nonlinear

Delving a bit further:

$$\widetilde{H} = e^{-T}He^{T}$$
 (similarity transform)

Baker-Campbell-Hausdorff (BCH) expansion

$$\widetilde{H} = e^{-T}He^{T} = [H, T] + \frac{1}{2}[[H, T], T] + \frac{1}{6}[[[H, T], T], T] +$$

$$\frac{1}{24}[[[[H,T],T],T],T]$$

Truncates exactly after 4 commutators

$$E = E_{HF} + \langle HF \mid [H, T_2] \mid HF \rangle + \langle HF \mid [[H, T_1], T_1] \mid HF \rangle$$

Only T₁ and T₂ terms enter, but they are coupled to higher order terms through the coefficients

Ways of reducing computational effort

- use localized orbitals ("linear scaling)
 Requires sizable HOMO/LUMO gap
- truncate virtual orbital space (most effectively done using natural orbitals)
- use with explicit correlation (e.g., F12 method)
 Reduces the size of the GTO basis by ~3x

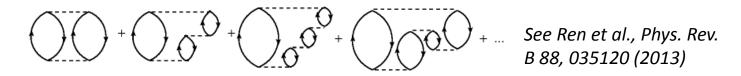
E.g., generate NO's from MP2, and truncate space before CCSD(T) calculation

Connection with the RPA method

The RPA method has been around since the early 1950's (Bohn and Pines)

So why the recent interest?

- Adiabatic connection fluctuation-dissipation: natural extension of DFT
- New algorithms give $O(N^3)$ scaling
- Direct RPA ≈ CCD (with ring diagrams)



Advantages of RPA method over DFT (GGA, hybrid, etc)

- Self-interaction problem largely removed
- Correctly describes long-range dispersion
- "Systematically" improvable

Problems

- Neglects second and higher-order exchange interactions
- Neglects ladder diagrams
- Underestimates net correlation energies

RPA with periodic boundary conditions now supported in the VASP and CP2K codes.

Multiconfigurational SCF Methods

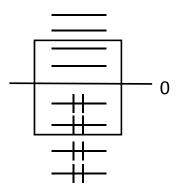
CASSCF: all arrangements of electrons in a specified (active) orbital space

Both CI coefficients and orbitals are optimized

CASSCF ideal for treating static (near-degeneracy) correlation effects

Can properly dissociate bonds

Can be used as references for multi-reference MP2 (CASMP2)



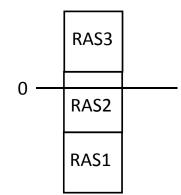
Illustrates a CAS (4,4) (4 electrons in 4 orbitals) active space

However, largest possible CAS is (18,18) and that is very expensive Recently density matrix renormalization group (DMRG) methods have been developed that can account for near degeneracy effects in ~50 or so orbitals

Restricted active space (RAS) methods are very flexible

E.g., could allow at most 2 electrons excited from RAS1, at most 2 electrons in RAS3, and all arrangements in RAS2 space.

Allows more active orbitals than CASSCF But can be challenging to "correctly" choose the spaces and excitation restrictions



Examples where one needs to use multiconfigurational wavefunctions

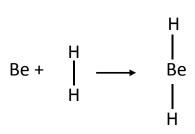
- 1. To dissociate H₂ to atoms: $c_1 |1\sigma_g^2\rangle c_2 |1\sigma_u^2\rangle$
- 2. Singlet state of square H₄ requires two configurations

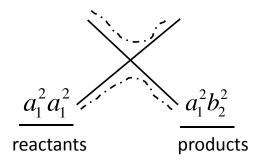
a+
$$+_{b}$$
 $+_{b}$ $(a^{2}-b^{2})$ or $(ab+ba)$ depending on whether one is using localized or

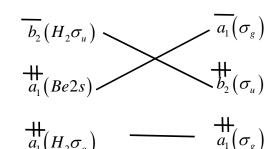
$$(a^2-b^2)$$
 or $(ab+ba)$
depending on whether

delocalized orbitals

3. Insertion of Be into H₂







reactants

product

Symmetry labels: C_{2v} point group

Strong configuration mixing near transition state on reaction pathway

Summary of methods

Method	Correl	Scaling
HF		N ⁴
MP2	2 nd order (dynamic)	N^5
CCSD	∞ order (dynamic)	N ₆
CCSD(T)	∞ order (dynamic)	N ⁷
CASSCF	near deg. (static)	See full CI, below
CASMP2 (MR-MP2)	near deg. (static) + dynamic	See full CI, below
CISD	∞ order (dynamic)	$N^2 n_v^4 \sim N^6$
CISDTQ	∞ order (dynamic)	$N^4 n_v^6 \sim N^{10}$
Full CI	Exact in basis set	$N_{\text{det}}N^2n_v^2$, $N_{\text{det}} \sim \frac{1}{(m!)^2}N^mn_v^m$

N= # orbitals, n_v= # virtuals, m = exc. level

CAS and RAS can be used as reference spaces for multconfigurational CI (MRCI) and multiconfigurational PT (e.g., MRPT2, CASPT2)

Can be used to characterize electronically excited states

EOM-CCSD for IPs, EAs, excitation energies

$$\widetilde{H} = e^{-T}He^{T}$$

$$|\psi_{ex}\rangle = R |\psi_{g}\rangle, \quad R = R_{o} + R_{1} + R_{2} + ...$$

$$\psi_{g} = e^{T} |0\rangle$$

$$HR |g\rangle = HRe^{T} |0\rangle = ERe^{T} |0\rangle$$

$$e^{-T}He^{T}R |0\rangle = ER |0\rangle$$

$$(e^{-T}He^{T}R - ER) |0\rangle = 0$$

$$(\widetilde{H} - E)R |0\rangle = 0$$

level of excitation

ground state: $R = R_0 = 1$

EA: $R = a_a^+, a_a^+ a_b^+ a_i^-$

 $IP: R = a_i, a_a^{\dagger} a_i a_j$

Exc. energy: $R = a_a^+ a_i$, $a_a^+ a_b^+ a_i a_j$

IPs, EAs, excitation energies: matrix eigenvalue problem of configurations using \widetilde{H} and above operators.

In general, very accurate IPs, EAs., excitation energies (except where ground state not well described by CCSD)

For some systems, EOM-MP2 is viable use to amplitudes from MP2 rather than from CSSD to generate

Some timings

IP of Au₁₃⁻: PP with 5s²5p⁶5d¹⁰6s electrons treated explicitly 6s5p3d1f basis set 248 electrons, 559 basis functions

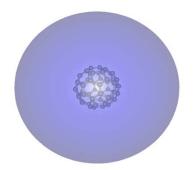
EOM-MP2: 1.5 hours on 3 cores EOM-CCSD: 62 hours on 3 cores

EA of C₆₀: 360 correlated electrons, ~1400 basis functions

EOM-CCSD: ~ 240 hours on 1 core

Calculations carried out using a disk-based code (CFOUR)

Lots of room for improved performance (e.g., density fitting not implemented)



Used to demonstrate that C_{60} has an s-type anion bound by $^{\sim}130~\text{meV}$

Electron bound by long-range correlation effects

Counterpart to an image potential state of a metal surface