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Theorems by Hohenberg and Kohn 1964 and Kohn and Sham 

1965 showed that, in principle, the gs electron density determines the 

gs energy and everything else. To find the gs density and energy for 

N electrons in external potential        we have to minimize: ),(rv


The Hohenberg-Kohn theorem is only an existence theorem. 

It tells us that  the energy functional exists, but not what it is  

(in computable form).  

0)}(][{ 3   rnrdnE


  )(/ rnE


],[
`

`)()(
`

2

1
)()(],[],[ 333





  nnE

rr

rnrn
rdrdrnrrvdnnTnnE xcs 










Ts is a large term that can be evaluated exactly from orbitals or one-electron 

wavefunctions.  Then only the smaller exchange-correlation energy  

remains to be approximated. 

Basics of DFT 

chemical potential :
 Hohenberg and W. Kohn, Phys. Rev. B 136, B864 (1964). 
W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965). 

Density Functional Theory, edited by R.M. Dreizler and E.K.U. Gross, Springer, Berlin (1990). 
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Universal Approximations 

ACCURACY   

John P. Perdew, Physics, Temple University, Philadelphia 

Heaven of the Chemical Accuracy 

 n             LSDA 

 n        GGA 

 and/or 2n      meta-GGA 

    ex         hyper-GGA 

Hartree world 

SIMPLICITY 

Exc[n↑, n↓] =  Ex[n↑, n↓] + Ec[n↑, n↓] = 

                                     d3r n exc(n↑, n↓,n↑,n↓, ↑,↓, ...) 

        RPA 
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(1) For an electron density that varies slowly over space, for  

     which density gradient expansions are exact. The densities of many 

solids are almost slowly-varying or even almost uniform. 

 

(2) For a density that is compact and displays no fluctuation 

     of electron number, like the densities of atoms or typical  

     small molecules.  Here the true exchange-correlation  

     energy density at a point arises mainly from the electron  

     density near that point. There is often an understood error 

      cancellation between semilocal x and semilocal c. 

 

(3) For typical sp bonds in molecules and solids around 

     the equilibrium bond lengths 

 

                             “WEAK CORRELATION” 

Where are semilocal functionals accurate? 
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Where do semilocal functionals fail? 

(1) For a density that varies rapidly over space. (But this is  

       rare in real atoms, molecules, and solids.) 

 

(2) For a compact density with fluctuating electron number, 

      where the average electron number N is not an integer. 

      In this case, part of the exchange-correlation hole or 

      “personal space” around the electron in the open system  

       is located on a distant reservoir system that shares the  

       electrons. Semilocal information cannot recognize this 

       situation.   
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This situation occurs for the valence d and f electrons in 

transition-metal oxides or heavy metals (strongly-correlated 

systems).  But it also occurs in a one-electron system, bond-

stretched H2
+.  It can occur in other stretched-bond situations, 

such as the dissociation curves of open-shell atoms or the 

transition states of chemical reactions. That is why semilocal 

functionals underestimate the energy barriers to chemical 

reactions. 

 
 

 

                       AJ. Cohen, P. Mori-Sanchez, and W. Yang, Science, 321, 792 (2008). 
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“STRONG CORRELATION” 



After 1981, two roads diverged in density functional theory. The road 

subsequently more traveled led from LSDA to GGA and higher-level 

semilocal functionals (meta-GGAs) and eventually made DFT widely 

useful to chemists as well as solid state physicists.  

 

The road subsequently less traveled led from LSDA to the self-

interaction correction (SIC) and to the derivative discontinuity (and 

perhaps to the related LDA+U method), and to a useful treatment of 

strongly-correlated materials such as transition-metal oxides, lanthanides, 

and actinides.  

 

Interestingly, the strengths and weaknesses of these divergent 

approaches are complementary: The semilocal functionals can be 

accurate for sp bonds near equilibrium, while SIC can be accurate for 

open-shell d or f electrons or for any stretched bonds over which electrons 

are shared. 

 

Question for the Future: Is it possible to bring back the 

SIC on the Ladder of Approximations? Answer: Yes! 
MR. Pederson and JP Perdew, Psi-k Newsletter, (2011). 8 



The exact exchange-correlation energy is the electrostatic 

interaction between the electron density at a point and the  

density of the exchange-correlation hole surrounding an 

electron at that point.  

is the coupling constant averaged hole density. 

 

The hole is created by three effects:   

   self-interaction correction 

  Pauli exclusion principle 

Coulomb repulsion 

                                                   

correlation  

exchange 

The exact exchange-correlation energy and hole 
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λ: coupling constant  

Langreth and Perdew, 1976 

M. Levy, Phys. Rev. A 43, 4637 (1991). 
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Exact constraints on EXC[n]  

(Langreth, Perdew, Gunnarson,Lundqvist, Levy,…) 
 

Formally exact (but not computable) expressions for Exc[n] imply 

exact constraints on EXC , e.g., 
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• Density gradient expansions for slowly-varying densities 

 

• Scaling relations for EX + EC when          is scaled. 

 

• Lieb-Oxford lower bound on EXC[n],   etc. 

 

• The higher-level approximations keep the constraints of the 

lower-level ones , and add more exact constraints. 

Other exact constraints: 
 

These and other exact constraints explain why LDA works 

better than expected, and suggests approximations  

beyond LDA. 
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• Symmetric charged radicals with realistic charges on the fragments 

display spurious energy barrier at  intermediate bond length 

energy of the H atom 

dissociates into two H+½ 

Example: dissociation of H2
+ in PBE 

Failures of the semilocal functionals for radicals–failures come 

from the approximate character of the exchange hole 

In the exact dissociation limit, all the following configurations 
Hq+ + H(1–q)+,  where 0 < q < 1 must be energetically equivalent 

A. Ruzsinszky, J.P. Perdew, G.I. Csonka, O.A. Vydrov, and G.E. Scuseria, J. Chem. Phys. 126, 104102 (2007). 
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Failures of the semilocal functionals for neutral  

homonuclear diatomics 

Dissociation of H2 molecule 

      AJ. Cohen, P. Mori-Sanchez, and W. Yang, Science, 321, 792 (2008). 
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Fractional (Mulliken) charge q on Na in NaCl as a function of bond 

length R (in Ǻ).The Hartree-Fock behavior is qualitatively right. 
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Dissociation of many-electron systems 

A. Ruzsinszky, J.P. Perdew, G.I. Csonka, O.A. Vydrov, and G.E. Scuseria,. J. Chem. Phys. 125, 194112 (2006). 

A.D. Dutoi and M. Head-Gordon, Chem. Phys. Lett. 422, 230 (2006). 

• Asymmetric neutral molecules dissociate with unrealistic fractional charges 

 

14 
14 



   Requirement for the exact exchange-correlation functional in 

a one-electron system 

U[n] is the Coulomb interaction of an electron with itself 

The semilocal exchange-correlation hole is local, the exact hole is non-
local. The SIE mimics non-dynamical correlation 

    00,  iix nUnE

The correlation energy must obey: 

  00, ic nE

  The self-exchange must cancel the self-repulsion: 

Basic SIC 

equations 

15 
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   SIE manifests itself not only in one-electron systems but in many-electron 

systems as well. It is easy to remove the spurious SI term in a one-

electron system, but not easy in a many electron system. 

No unique definition of SIE in many-electron systems 

Many-electron self-interaction error 

•Underestimation of reaction energy barriers 

• Wrong description of charge transfers 

• Overestimation of the electric response  

• Incorrect asymptotic behavior of the xc potential; leads to wrong 

description of Rydberg-states 

• underestimation of the binding energy of electrons 

 

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 121, 8187 (2004).  

A Ruzsinszky, JP Perdew, GI Csonka, GE Scuseria, OA Vydrov, Phys. Rev. A 77, 060502 (2008). 
16 
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where niσ are the orbital densities 

Perdew-Zunger Self-Interaction Correction 

In the PZ-SIC localized orbitals are used to maximize the SI 

correction, and achieve size consistency. The SIC potential is orbital 

dependent. 

PZ-SIC is not invariant under a unitary transformation of occupied orbitals! 

   }{],[}{ SICKSPZ

 ii nEnnEnE 

] J.P. Perdew and A. Zunger, Self-Interaction Correction to Density Functional Approximations for Many-Electron Systems. Phys. Rev. B 23, 5048 (1981). 

] J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 
17 17 
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Analogy of PZ-SIC with DFT+U 

The DFT+U approach adds an orbital-dependent term to DFT energy. 

In this expression the  EHub  term contains the detailed on-site 

electron-electron interactions. Edc  measures the corresponding 

electron correlation already included in the DFA, which must be 

subtracted from the total energy functional to avoid double-counting. 

The effective strength of the on-site Coulomb-repulsion is expressed 

by the parameter U.  

The choice of the “U” parameter is not rigorously based. It can be 

derived from: 

• solid-state calculations 

• linear-response calculations 

V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991). 

V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993). 

A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995). 

B. M. Cococcioni and S. Gironcoli, Phys. Rev. B 70, 235121, (2005). 

dcHubDFAUDFAUDFA EEEEEE 
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• Performance of PZ-SIC: 

 

it improves some properties of stretched bond systems, improves Rydberg-

excited states, correctly predicts the anitferromagnetic insulator state of 

transition-metal oxides, but it spoils thermochemistry at equilibrium 

 

•  PZ-SIC often seems to overcorrect 

• The greatest inconvenience of the PZ-SIC: dependence on orbital 

representation 

• PZ-SIC works better for LSDA than for other functionals 

Performance of the PZ-SIC 

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 121, 8187 (2004).  

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 122,184107(2005). 

A. Svane, G. Gunnarson, Phys. Rev. Lett, 65,1148, (1990). 

Z. Szotek and W. M. Temmerman and  H. Winter, Phys. Rev. B, 47, 4019, (1993). 

G.I. Csonka and B. G. Johnson, Theor. Chem. Acc, 99, 158 (1998). 

S. Patchkovskii and T. Ziegler, . Chem. Phys. 116, 7806 (2002). 

A. Filipetti, N. Spaldin, Phys. Rev. B, 67, 125109, (2003). 

J. Gräfenstein, E. Kraka and D. Cremer, J. Chem. Phys. 120, 524 (2004). 

H. Gudmundsdottir, Y. Zhang, P. M. Weber and H. Jónsson J. Chem. Phys. 139, 194102 (2013).  19 



Scaled down Self-Interaction Correction 

the same as in the 

PZ  correction 

Scaling Factor 

0 ≤ Xi ≤ 1 

Perdew-Zunger correction is a special case when k = 0 

The correction is scaled down in many-electron regions. 

In one-electron regions the τW
σ(r)= τσ(r)         Xi=1. 

       τW
σ (r): is the Weizsäcker kinetic energy 

τσ(r): the kinetic energy density of  σ spin electron 

k: non-negative parameter 
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OA Vydrov, GE Scuseria, JP Perdew, A Ruzsinszky, GI Csonka, J. Chem. Phys. 124 (9), 094108, (2006). 
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Tests of the Scaled SIC for atomization energies 

functional ME MAE RMSE functional ME MAE RMSE

LSDA 77.3 77.3 92.2 TPSS 4.1 5.9 6.6

SIC-LSDA (k  = 0) 57.7 60.3 79.4 SIC-TPSS (k  = 0) –28.8 34.7 39.2

SIC-LSDA (k  = 1) 18.6 21.0 25.1 SIC-TPSS (k  = 1) 1.3 9.9 10.6

SIC-LSDA (k  = 2) 6.7 8.6 10.0 SIC-TPSS (k  = 2) 9.4 11.3 12.4

SIC-LSDA (k  = 3) 0.8 7.2 8.7 SIC-TPSS (k  = 3) 11.9 12.4 14.1

PBE 12.4 15.5 17.8 PBEh 0.6 6.2 6.6

SIC-PBE (k  = 0) –13.6 17.0 21.7 SIC-PBEh (k  = 0) –19.2 19.8 25.6

SIC-PBE (k  = 1) 7.8 12.6 14.7 SIC-PBEh (k  = 1) 0.2 8.1 11.2

SIC-PBE (k  = 2) 13.5 16.0 19.3 SIC-PBEh (k  = 2) 5.1 10.3 11.9

SIC-PBE (k  = 3) 14.8 17.2 20.6 SIC-PBEh (k  = 3) 6.3 10.9 12.1

Errors in Atomization Energies for the AE6 test set (kcal/mol) 

• equilibrium: 

GI Csonka, OA Vydrov, GE Scuseria, A Ruzsinszky, JP Perdew, J. Chem. Phys. 126 (24), 244107, (2007). 

S. Klüpfel, P. Klüpfel and H. Jónsson, J. Chem. Phys. 137, 124102, (2012) 

S. Klüpfel, P. Klüpfel and H. Jónsson, Phys. Rev. A 84,050501(R) (2011). 
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 At dissociation of the many-electron systems Ne2
+ the scaled-down SIC fails.  
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• dissociation 

These errors in the open systems are not necessarily corrected either by a 

semilocal or a one-electron self-interaction free functional. To avoid this error, 
a universally-useful functional must be many-electron self-interaction free for                                                               
all positive integer numbers, not only for one-electron densities. 

  
 

OA Vydrov, GE Scuseria, JP Perdew, A Ruzsinszky, GI Csonka, J. Chem. Phys. 124 (9), 094108, (2006). 22 



Fractional (Mulliken) charge q on Na in NaCl at bond lengths R = 
6 Å and 12 Å, evaluated in the HF, LSDA (k=∞) and PBE GGA 
(k=∞), with scaled-down self-interaction corrections (k=2 and 1), 
and with full Perdew-Zunger(PZ) self-interaction correction (k=0). 
The PZ results are qualitatively correct. 

The critical bond length is: 
 

 

   Method            k           q (R=6Å)      q (R=12Å) 

 
HF   -       0.01   0.00 
LSDA   ∞   0.59   0.47 
LSD-SIC   2  0.73   0.44 
LSD-SIC   1  0.83   0.33 
LSD-SIC-PZ  0  0.97  0.10 
PBE   ∞  0.57  0.45 
PBE-SIC   2  0.71   0.39 
PBE-SIC   1  0.81   0.22 

PBE-SIC-PZ 0  0.92   0.05 
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Unitarily invariant Self-Interaction Correction 

There are many possible choices for a unitary transformation from KS orbitals 

to SIC orbitals. The standard ways to find localized orbitals is usually 

computationally demanding. We can restrict the unitary transformations within 

the occupied orbital space introducing a constraint for the orbitals constructing 

the SIC correction. 

It is possible to choose such orbitals which are dependent on a quantity 

that are unitarily invariant. The Fermi orbitals satisfy this condition: 

• At   r = aiσ  the absolute square of the FO orbital is identically equal to the 

tot al spin density.         The FO is a localized function! 

• The absolute square of the FO is minus the x hole. 

VL. Luken and DN. Beratan. Theor. Chim. Acta, 6, 65, (1982) 

VL. Luken and JC. Culberson, Theor. Chim. Acta, 6, 79, (1984). 

MR Pederson, A Ruzsinszky, JP Perdew, J. Chem. Phys. 140, 121103, (2014). 
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Atomization energies of molecules(eV) with different approximations 

including SIC and FSIC. 

MR Pederson, A Ruzsinszky, JP Perdew, J. Chem. Phys. 140, 121103, (2014). 
25 



Generalization of the one-electron self-interaction error 

     Let εi and fi be the orbital energy and occupation number of orbital Ψi.The 
total energy change arising from infinitesimal changes δfi of the occupation 
numbers is: 

 

i

i

i fE e 

The orbitals obey the „aufbau” principle, with fi=1 for εi< μ and fi=0 for εi>μ. 

The first ionization potential and electron affinity are: 

J.F. Janak, Phys. Rev. B 18,7165,(1978) 
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Janak’s theorem makes a connection between KS and physical  

energy differences. 
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Derivative discontinuity  
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As a function of the continuous variable N the gs energy E(N) of the open 

system is a linkage of straight-line segments with possible derivative 

discontinuities at integer values of N. 

ω 

According to Janak’s theorem: 
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The gs energy and electron density in an open system 

is expressed with an ensemble of the Z and Z+1 systems: 

The energy eigenvalue of the highest partly-occupied KS orbital is the 

chemical potential as N crosses integer Z. 
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The occup. number ω follows a ground-state path 



What happens when N increases through the integer Z? 

 
The effective potential can change only by an infinitesimal plus a constant C: 

The fundamental gap of any system: 

                                                                (= 24.6 eV for He) 

The exact Kohn-Sham gap: 

                                          HOMO − LUMO  (= 1s − 2s = 21.16 eV for He) 

These gaps are not the same! 

CZZZAZI ZZ   )()()()( 1 ee

where: )(1 ZZ eand )(ZZe are the 

 highest occupied (HOMO) and lowest 

unoccupied  energy (LUMO) levels in the  

KS system. 
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Many electron self-interaction freedom 

 

 

The HF theory nearly satisfies 

condition (a), but not (b) because of 

the missing correlation. 

Semilocal functionals satisfy condition 

(b), but not (a) because of the self-

interaction error. 

Exact energy
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integer) if its total energy for a system of fixed external potential with 

electron number N in the range Z - 1 < N ≤ Z has 

(a) a realistic linear variation with N, 

(b) realistic energies at integer 

values of Z. 

J.P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884(1983) 

 L.J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983) 

P. Mori-Sanchez, A. J. Cohen, and W. Yang Phys. Rev. Lett. 102, 066403 (2009). 
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NaCl at R=infinity
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   The failure of the semilocal functionals and the Hartree-

Fock method can be explained through the x and xc-hole 

sum rule. 

 

   Here we generalize the sum-rule expression for open 

systems with fluctuating number of electrons.  

 

   The x and xc-hole sum-rule is the key to construct global 

and local hybrids of the fourth rung of the ladder of 

approximations. 

Many electron self-interaction freedom  

from the aspect of the sum-rule 
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•The HF midpoint error is positive and less harmful than that of the semilocal x and xc 

energy.In the Hartree-Fock theory there is an electron fluctuation between the open 

subsystems. The energy minimization forces integer occupation numbers on the 

separated fragments, e.g., a symmetry broken F…F+ as the dissociation limit of 

F2+.The F0.5+…F0.5+ is a harmfully deep minimum for the semilocal density functionals 

since their midpoint error is negative . 

Electron fluctuation in an open subsystem 

J.P Perdew, A. Ruzsinszky, G. I Csonka, Ol. A Vydrov, G. E Scuseria, Vi. N Staroverov, J. Tao, Phys. Rev. A 76 , 

040501, (2007) 

A.J. Cohen, P. Mori-Sanchez, and  W. Yang J. Chem. Phys. 129, 121104 (2008) 
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When all the occupation numbers are 1 or 0, the right-hand side of the 

equation becomes -1, which is also the sum rule implicitly assumed by 

LSD, PBE, or TPSS. But, when some occupation numbers fall between 1 

and 0, the right-hand side will fall between -1 and 0.  

 

 

where nασ(r) = fασ |ψασ (r)|2. Adding and subtracting the term 

  to this equation: 

By the orthonormality of the orbitals in any closed or open system, the 

equations for the density matrix and the exchange-hole imply the sum rule: 
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The fourth-rung: global hybrids,hyper-GGA’s and range-

separated hybrids 
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xxc EEaaEE  )1( Here “a”  is a position independent parameter 

Global hybrid are very popular in chemistry (B3LYP), but some hybrids are 

popular in solid state physics as well. 

The global hybrid form can be generalized to a local hybrid. 

Hybrid functionals add the nonlocal exact exchange: 

The earliest hyper-GGA’s were the global hybrids: 
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A.D. Becke,   New Mixing of Hartree-Fock and Local Density-Functional Theories, J. Chem. Phys. 98, 5648, (1993). 

A.D. BeckeJ. Chem. Phys. 98, 5648, (1993). 



• The sum-rule for open systems and the concept of M-electron self-
interaction freedom justify the form of the global and local hybrids. 

• Some region dependent fraction of exact exchange is necessary to 
correct the semilocal approximations. 

 

 Construction of the hyper-GGA 

A mixture of the concave down 
semilocal exchange and concave up 
exact exchange are necessary to 
construct a global or local hybrid with 
the straight line between the integer 
electron numbers. 

The local hybrid functional has the form: 

0 ≤ a (r) ≤ 1 and sl =TPSS 

static correlation 

J.P. Perdew, V.N. Staroverov, J. Tao and G E. Scuseria, Phys. Rev. A 78, 052513 (2008). 
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Range-separated hybrids 

A. Savin, Recent Advances in Density Functional Methods, Part I.  129, (1995) 

T. Leininger, H. Stoll, H-J. Werner, A. Savin, Chem. Phys. Lett, 275, 151 (1997). 

A. Savin, H. Flad, J.Int. Quantum Chem, 56, 327, (1995) 

J. Heyd and G.E. Scuseria,.J. Chem. Phys. 121, 1187 (2004). 

O.A. Vydrov, J. Heyd, A.V. Krukau, and G.E. Scuseria,. J. Chem. Phys. 125, 074106 (2006). 

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 125, 234109 (2006).  

E. Livshits and R. Baer,  Phys. Chem. Chem. Phys. 9, 2932 (2007). 

Hybrid functionals do not fully solve the band-gap problem. Improvement is 

found by using the range-separated hybrid scheme (RSH). 

 

The repulsive Coulomb potential is split into a long-range (LR) and short-

range (SR) term: 

 

 

A subset of RSHs is in which the SR exchange is represented by a semilocal 

term, while the LR part is treated by the “exact” exchange term: 
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          is the semilocal 

exchange potential 
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The RPA ranks on the fifth-rung of the Ladder of density functionals and 

employs the unoccupied as well as the occupied Kohn-Sham orbitals in a 

fully nonlocal way that can potentially solve problems which remain 

challenges for approximate density functionals. 

 

• By this nonlocal nature, the RPA includes the exact exchange and its 

correlation describes van der Waals interactions as well. 

 

• It is even able to describe the strong static correlation in the dissociation of 

the H2 molecule in a spin-restricted formalism.  

 

• RPA becomes relatively exact for the uniform gas in the high-density limit.   
 

 

 

 

 

 

 
 

The RPA approximation in DFT 

(Langreth and Perdew, 1976) 
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D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 

 M..Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364(1957). 

 C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977). 

J. Dobson, in Time-Dependent Density Functional Theory, edited by M. Marques, F. Nogueira, A. Rubio, K. Burke, and E. K. U. 

Gross, Springer, Berlin, 2006. 

F. Furche, Phys. Rev. B 64, 195120 (2001). 

M. Fuchs and X. Gonze, Phys. Rev. B 65, 235109 (2002). 

M. Fuchs, Y. M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys. 122, 094116 (2005). 

 H. Jiang and E. Engel, J. Chem. Phys. 127, 184108 (2007). 

M. Hellgren and U. von Barth, Phys. Rev. B 76, 075107 (2007). 
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RPA can be regarded as a simple approximate coupled-cluster method.  

The ring diagrams (particle–hole contractions, essentially) can be summed 

to infinite order if one solves the Riccati equation: 

RPA as an approximate Coupler-Cluster method 

0 TBTTAATB
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


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
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


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

0

0

XY

YX

XY

YX

AB

BA

A, B, X and Y are                 (occup and unoccup. orbitals and come from 

the TD excitation problem: 

ovov

TCCD: CCD amplitude 

G. E. Scuseria, T. M. Henderson, and D. C. Sorensen, J. Chem. Phys.129, 231101 (2008). 

J.G. Ángyán, R.F. Liu, J. Toulouse and G. Jansen, Journal of Chem. Theory and Comp. 7, 3116 (2011). 

The direct-RPA correlation energy: 

The direct-RPA accounts only for the direct  

correlation from symmetric Coulomb terms. 

 The dRPA is not self-interaction free.  
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RPA as plasmon approximation 

The RPA correlation energy can be considered as a difference 

of electronic zero point vibrational energies. 

 

RPA gets the vdW qualitatively right (contains the zero-point energy 

of plasmons coupled by the long-ranged Coulomb interaction 

between subsystems). 

"seamless" treatment of all forces incl. vdW, at any separation 
F. Furche, J. Chem. Phys, 129,  (2008). 

  
n

D

nn

RPA

cE
2

1

Significance of the zero-point vibrations in materials science: 

The zero-point oscillations of the charge density in one sphere 

produce a long-range electric field that correlates and interacts with 

the zero-point oscillations of the charge density in the other sphere. 

This is the van der Waals interaction. 

Ωn is the nth RPA excitation energy at full 

coupling,  

Ωn
D   is the sum of the zero and first 

order RPA excitation energies 
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The Adiabatic Connection Fluctuation Dissipation Theorem 

• The adiabatic connection (AC) 

makes a smooth connection 

between the KS and interacting 

systems by λ 
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• The many-body complexity is 

included in the xc energy 

• The  λ-dependent  xc hole 

is related to the fluctuation 

of the density-density 

correlation function 

• The fluctuations are 

related to the response 

properties (FDT) 

 R. Kubo, Rep. Prog. Phys. 29, 255 (1966).  

P. Nozières and D. Pines, Il Nuovo Cimento [X]9, 470 (1958).  

P. Nozières and D. Pines, The Theory of Quantum Liquids (Benjamin, New York, 1966).  
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In RPA : 

The Random Phase Approximation in the ACFDT context 

In direct RPA, Eqs. (*) and (**) are combined, 

bootstrapping a crude approximation for the χλ 

to a more sophisticated one to  Exc 

         .  

The fluctuation-dissipation theorem relates the density fluctuations 

responsible for the exchange-correlation energy to the imaginary-frequency 

continuation of the frequency-dependent density response:  

D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425, (1975) 

O.Gunnarson, B.I. Lundqvist, Phys. Rev. B 13, 4274, (1976).  

F. Furche and T. Van Voorhis, J. Chem. Phys. 122, 154106 (2005). 

(*) 

(**) 
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RPA has been applied on: 
 

•  S22 data set 

RPA improves the binding energies considerably over semilocal functionals 

 

 

• the interlayer equilibrium distance, the elastic constant, and the net 

layer binding energy of graphene, 

 

excellent agreement is found with the available experimental data; however, 

the computed binding energy of 48 meV per atom is somewhat smaller than 

the one obtained by quantum Monte Carlo methods 

 

• adsorption of organic molecules, i.e., benzene on metal surfaces, 

CO adsorption problem, graphene on metal surfaces 

 

RPA gives the correct adsorption site and energy differences and also gives 

the correct –C3/d
3  behavior for large molecule-surface separations 

 

• structural phase transitions 

Improvement for Si, but less satisfactory results for SiO2 

 

S. Lebègue, J. Harl, Tim Gould, J. G. Ángyán, G. Kresse, and J. F. Dobson, Phys. Rev. Lett. 105, 196401 (2010). 

L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nature Materials 9, 741 (2010). 

H. Eshuis and F. Furche, J. Phys. Chem. Lett. 2, 983 (2011). 

 X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 106, 153003 (2011). 

X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater, Sci. 47, 7447 (2012). 

 

B. Xiao, J. Sun, A. Ruzsinszky, J. Feng and J.P. Perdew,. Phys. Rev. B 86, 094109 (2012). 
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Some fundamental problems with the RPA correlation:  

 
 

 

 

 

•  Stretched bonds; RPA is not self-correlation free. This error 

manifests especially in the dissociation of the H2
+ molecule.  

P. Mori-Sanchez, A.J. Cohen, W.T. Yang, Phys.Rev. A 85, 042507 (2012).  

For the H atom, the SIC correction is +0.02 hartree (the value also  

predicted by the GGA correction), but for infinitely-stretched H2
+ the SIC 

correction is +0.17 hartree. This fact suggests that the correction to RPA can 

be highly nonlocal in stretched-bond situations.  

 

•  Atomization energies 
Puzzlingly, the careful RPA calculations of molecular atomization energies 

by Furche  (2003) and by Harl and Kresse (2009) found that these 

atomization energies were too low by typically 10 kcal/mol, in comparison to 

experiment.  

Recent research shows that the correction to RPA in molecules requires full 

nonlocality of the kind found in fourth-rung or hybrid functionals. This 

correction is too long-ranged for LSDA and GGA, although it is still possible 

that the RPA hole is correct at longer range.  
 43 

F. Furche, Phys. Rev. B 64, 195120 (2001).  

J. Harl, L. Schimka, and G. Kresse, Phys. Rev. B 81, 115126 (2010)). 
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The RPA has a correlation contribution, but one which may not 

be fully compatible with exact exchange. 

 

    
 

 

 

 

 

The correction to the RPA is: 

 

 
 

 

RPA

xcxc EE 

A. Ruzsinszky, J.P. Perdew, and G.I. Csonka, J. Chem. Theory Comput. 6, 127 (2010). 

A. Ruzsinszky, J.P. Perdew, and G.I. Csonka, J. Chem. Phys. 134, 114110 (2011). 

Exc: semilocal or nonlocal? 

:xcE ”beyond RPA” energy 

:RPA

xcE ”within RPA” energy of the same density functional 
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The RPA+ semilocal (sl) short-range correction to RPA 

  

 

 
Problems: They claimed that the correction to RPA is a short- or 

intermediate-range effect and thus well modeled at the semi-local level. Since RPA 

was expected to be exact at long range and LSDA or GGA is accurate at short 

range, RPA+ was expected to provide an accurate correction. 

This claim is correct in the uniform electron gas, the jellium surface, 

and the free atom. The correction to RPA is a short-range one in an 

atom, but more intermediate ranged in a molecule, since the exact 

exchange hole in the molecule is diffuse. 

. 

45 

In many cases, RPA provides a good description of the long-range 

exchange-correlation hole, but it has too much short-range correlation, 

making a total-energy error of roughly -0.02 hartree/electron at high and 

normal electron densities. (The correction to RPA for a free atom is +0.02 

hartree/electron with LSDA) 

 
Yan, Perdew and Kurth (2000) found LSDA and GGA corrections to RPA by 

taking the difference between the same semilocal functional constructed beyond 

and within RPA. Their corrected RPA is called RPA+.  

        


  nnEnnEnnEnnE slRPA

c

sl

c

RPA

c

RPA

c ,,,,

Z. Yan, J. P. Perdew and S. Kurth, Phys. Rev. B 61, 16430, (2000) 

A. Ruzsinszky, J.P. Perdew, and G.I. Csonka, J. Chem. Theory Comput. 6, 127 (2010). 
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The long-range cancellation between exchange and correlation 

holes for atomization energies 
 

Models for the spherically- and system-averaged hole exist for many of the 

semilocal functionals.  

 

 
 

The exact exchange-correlation hole is typically deeper and more short 

ranged for exchange and correlation together than for 

exchange, so semilocal functionals are typically more accurate for 

exchange and correlation together than for either separately.  

 

• This error cancellation between semilocal exchange and semilocal 

correlation manifests much more strongly in the atomization energies of 

molecules than it does in the surface energy of jellium. 
 

  Example: exact exchange with semilocal correlation underbinds severely 
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Semilocal (GGA or meta-GGA) correlation works well with semilocal 

exchange, but poorly with exact exchange, for the atomization energies of 

molecules. Correlation is semilocal in the free atom, but fully nonlocal in 

the molecule.  

 

For the typical molecule N2, using PBE GGA: 

ΔEtot=Etot(free atoms)-Etot(molecule) ΔEc=Ec(free atoms)-Ec(molecule) 
 

PBE                      243   59  

Exact                    229                     119 

PBE error:             +14                       -60 



Corrections to RPA beyond RPA+: SOSEX 

• Exchange-like correlation terms via SOSEX  (second-order screened 

exchange). The “exchange” term in correlation. 

This approach makes use of the equivalence of RPA and direct-ring CCD 

theories. The RPA+SOSEX correlation energy uses the anti-symmetrized 

instead of the un-symmetrized Coulomb integrals: 

D.L. Freeman, Phys. Rev. B 15,5512, (1977). 

A.  Grüneis, M. Marsman, J. Harl, L. Schimka and G. Kresse, J. Chem. Phys.131, 154115 (2009) 

))((
2

1
TKBTrE SOSEX

c 

 baijK jbia |,

For one-electron system: 

B=K, 

T: ring-CC amplitudes 

The leading term in RPA (a) and SOSEX (b) 
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Performance of SOSEX 

• SOSEX improves both total energies and energy differences simultaneously. 

• Fixes the self-interaction error in the dissociation of He2+, H2+. 

• Dissociation limit for H2 and SOSEX yields dissociation limits that are much 

too large, even larger than PBE.  

• Reaction barrier heights for HTBH38/NHTBH38 test sets: The performance 

of RPA+ is very similar to standard RPA. SOSEX correction deteriorate the 

performance of RPA. 

 
J. Paier, B. G. Janesko, T. M. Henderson, G. E. Scuseria, A. Grüneis, and G. Kresse, J. 

Chem. Phys. 132,094103 (2010), erratum: ibid. 133, 179902 (2010). 

T.M. Henderson and G.E. Scuseria, Molecular Physics, 108,2511, (2010). 

X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater, Sci. 47, 7447 (2012). 

Dissociation of He2+ and N2 with dRPA and SOSEX 

E
n
e
rg

y
 k

c
a
l/
m

o
l 

49 



•  Contribution of single excitations (SE) + SOSEX into Ecorr of RPA. 

r2PT: improves binding energies  considerably over the (EX+cRPA)@PBE 

results. 

 Economical but empirical correction to the RPA 

A.D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761, (1989) 

A. Ruzsinszky, J.P. Perdew, and G.I. Csonka, J. Chem. Phys. 134, 114110 (2011)  

 

  

• Economical but empirical correction to the RPA 

This model is based on the Becke-Roussel exchange-hole model 

and gives correction for the molecules, but the correction vanishes 

 for the atoms.  
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Alternative corrections beyond RPA 

GGA: beyond-RPA 

GGA-RPA: within-RPA 

X. Ren, A. Tkatchenko, P. Rinke, M. Scheffler,Phys. Rev. Lett., 106,153003 (2011). 
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• Local field corrections use nonzero xc kernel in the Dyson-equation.  

Motivated by TDDFT kernels can be derived from semilocal functionals with 

the adiabatic approximation. The ALDA is the next-simplest approximation for 

the kernel : 
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xce is the exchange-correlation energy per particle of an electron gas of 

uniform density  

Local field corrections - ALDA kernel 

The adiabatic local density approximation (ALDA) gives reasonable 

accuracy for low-frequency, long-wavelength excitations, but is not the right 

choice for a correction to RPA.  

 

Lein, Gross and Perdew  studied the correlation energy per particle of the 

uniform gas using various kernels. They found that RPA and ALDA-

corrected RPA make errors of about 0.5 eV, of opposite sign. 

M. Lein, E.K.U. Gross, and J.P. Perdew, Phys. Rev. B 61, 13431 (2000). 

ME.K.U. Gross, W. Kohn, Adv. Quant. Chem. 21,255 (1990).  
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• The OEP-based RPA(EXX) method considerably improves correlation 

energies, gives correct dissociation of H2.  A. Hesselmann,and  A. Gӧrling, Phys.Rev.Lett.106, 093001 

(2011) 

 

• PGG kernel (approximate exact exchange kernel) 
M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996) 

 

• Most other kernel corrections to RPA rely on the paradigm of the uniform 

electron gas. Some of these efforts apply the uniform electron gas kernel to 

an inhomogeneous system. These efforts typically make use of the uniform 

gas kernel by Moroni and coworkers, the parametrization of the static kernel 

by Corradini et al. or the parametrization of the dynamic exchange-

correlation kernel by Richardson and Ashcroft. 

 

 

 

 

•Alternatively, the energy-optimized exchange-correlation kernels by Dobson 

and collaborators provide a more reasonable description of inhomogeneous 

systems 

C.F. Richardson and N.W. Ashcroft Phys. Rev. B 50, 8170 (1994). 

S. Moroni, D.M. Ceperley, and G. Senatore, Phys. Rev. Lett, 75,689 (1995). 
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