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Basics of DFT

Theorems by Hohenberg and Kohn 1964 and Kohn and Sham

1965 showed that, in principle, the gs electron density determines the
gs energy and everything else. To find the gs density and energy for
N electrons in external potential v(r), we have to minimize:

K E[N]- nff*m(ri} =0 dE/ah() =

Hohenbergand W. Kohn, Phys. Rev. B36 B864(1964).
1T chemical potentia| W. Kohn and L.J. Shan®hys. Rev140, A1133(1965).

Density Functional Theqrgdited by R.MDreizlerand E.K.U. Gross, Springer, Berlin (1990).
The Hohenberg-Kohn theorem is only an existence theorem.

It tells us that the energy functional exists, but not what it is
(in computable form).

EIn ) =T 0,1+ 8 d'r (Fn, (32 s ‘”@”%r) £ n..n,]

T, Is a large term that can be evaluated exactly from orbitals or one-electron

wavefunctions. Then only the smaller exchange-correlation energy
remains to be approximated.




Universal Approximations

EJ[ny, n)= E[ny, n + E[nYy, nZ] =
Wi3r n e (ny, nZBny,PnZ, ty,tZ, ..
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Where are semilocal functionals accurate?

(1) For an electron density that varies slowly over space, for
which density gradient expansions are exact. The densities of many
solids are almost slowly-varying or even almost uniform.

(2) For a density that is compact and displays no fluctuation
of electron number, like the densities of atoms or typical
small molecules. Here the true exchange-correlation
energy density at a point arises mainly from the electron
density near that point. There is often an understood error
cancellation between semilocal x and semilocal c.

(3) For typical sp bonds in molecules and solids around
the equilibrium bond lengths

WEAK CORRELATI ONO
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Where do semilocal functionals fail?

(1) For a density that varies rapidly over space. (But this is
rare in real atoms, molecules, and solids.)

(2) For a compact density with fluctuating electron number,
where the average electron number N is not an integer.
In this case, part of the exchange-correlation hole or
Mer sonal spaceo around the &ele
IS located on a distant reservoir system that shares the
electrons. Semilocal information cannot recognize this
situation.



This situation occurs for the valence d and f electrons in
transition-metal oxides or heavy metals (strongly-correlated
systems). But it also occurs in a one-electron system, bond-
stretched H,*. It can occur in other stretched-bond situations,
such as the dissociation curves of open-shell atoms or the
transition states of chemical reactions. That is why semilocal
functionals underestimate the energy barriers to chemical
reactions.

NSTRONG CORRELATI ONO

AJ. Cohen, P. Mori-Sanchez, and W. Yang, Science, 321, 792 (2008).



After 1981, two roads diverged in density functional theory. The road
subsequently more traveled led from LSDA to GGA and higher-level
semilocal functionals (meta-GGAs) and eventually made DFT widely
useful to chemists as well as solid state physicists.

The road subsequently less traveled led from LSDA to the self-
interaction correction (SIC) and to the derivative discontinuity (and
perhaps to the related LDA+U method), and to a useful treatment of
strongly-correlated materials such as transition-metal oxides, lanthanides,
and actinides.

Interestingly, the strengths and weaknesses of these divergent
approaches are complementary: The semilocal functionals can be
accurate for sp bonds near equilibrium, while SIC can be accurate for
open-shell d or f electrons or for any stretched bonds over which electrons
are shared.

Question for the Future: Is it possible to bring back the
SIC on the Ladder of Approximations? Answer: Yes!

MR. Pederson and JP Perdew, Psi-k Newsletter, (2011).

Q2



The exact exchange-correlation energy and hole

——nj g n(C) \r r\T

The exact exchange-correlation energy Is the electrostatic
Interaction between the electron density at a point and the
density of the exchange-correlation hole surrounding an
electron at that point.

CC\_ o C,. . . |
n.(r,r)=ry/ n' (r,r): is the coupling constant averaged hole density.
0
2 coupling constant The hole ig createq by three gffects:
self-interaction correctlon} exchange
Pauli exclusion principle

Coulomb repulsion correlation
M. Levy, Phys. Rev. A 43, 4637 (1991).

Langreth and Perdew, 1976



Exact constraints on Ey.[n]
(Langreth, Perdew, Gunnarson,Lundgvist, Levy, &)

Formally exact (but not computable) expressions for E, [n] Imply
exact constraints on Ey. , e.g.,

& R
E,. :%ﬁj?’rn(r%ﬁj r‘ndr L) - E +E,

s

(& R . .
n.(rr )= density at r of the exchange-correlation hole an

electron at I

n(r,r)¢o

A () =-1

3 n, (11%) =0.
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These and other exact constraints explain why LDA works
better than expected, and suggests approximations
beyond LDA.

Other exact constraints:

ADensity gradient expansions for slowly-varying densities n(rJ.
AScaling relations for Ey + E. when n(rJ is scaled.
ALieb-Oxford lower bound on E,.[n], etc.

AThe higher-level approximations keep the constraints of the
lower-level ones , and add more exact constraints.



Failures of the semilocal functionals for radicalsi-failures come
from the approximate character of the exchange hole

A Symmetric charged radicals with realistic charges on the fragments
display spurious energy barrier at intermediate bond length

Energy (kcal/mol)
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In the exact dissociation limit, all the following configurations
H# + H3ia*  where 0 < g< 1 must be energetically equivalent

A. RuzsinszkyJ.PPerdewG.I. Csonka O.A. Wdrov, and G.EScuseriaJ. Chem. Phy4.26 104102(2007).
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Energy (kcal/mol)

Failures of the semilocal functionals for neutral
homonuclear diatomics

Dissociation of H, molecule
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AJ. Cohen, P. Mori-Sanchez, and W. Yang, Science, 321, 792 (2008).

13



Dissociation of many-electron systems
AAsymmetric neutral molecules dissociate with unrealistic fractional charges

Fractional (Mulliken) charge g on Na in NaCl as a function of bond
l engt h R (i n-FbckbeRahie is dlalitativelyaight.
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A. Ruzsinszky, J.P. Perdew, G.l. Csonka, O.A. Vydrov, and G.E. Scuseria,. J. Chem. Phys. 125, 194112 (2006). 14
A.D. Dutoi and M. Head-Gordon, Chem. Phys. Lett. 422, 230 (2006).



Requirement for the exact exchange-correlation functional in
a one-electron system

The self-exchange must cancel the self-repulsion:

\
E[n.0]+U[n]=0
_ > Basic SIC
The correlation energy must obey: equations
Ec [ni ’O] — O Y,

U[n] is the Coulomb interaction of an electron with itself

U [n] ,,Nn(r:)ng\ )drdr

\r-r

The semilocal exchangecorrelation hole is local, the exact hole is non-
local. The SIE mimics non-dynamical correlation 15



Many-electron self-interaction error

SIE manifests itself not only in one-electron systems but in many-electron

systems as well. It is easy to remove the spurious Sl term in a one-
electron system, but not easy in a many electron system.

No unique definition of SIE in many-electron systems

AJnderestimation of reaction energy barriers
AWrong description of charge transfers
AOverestimation of the electric response

Alncorrect asymptotic behavior of the xc potential; leads to wrong
description of Rydberg-states

Aunderestimation of the binding energy of electrons

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 121, 8187 (2004).

A Ruzsinszky, JP Perdew, Gl Csonka, GE Scuseria, OA Vydrov, Phys. Rev. A 77, 060502 (2008). 16



Perdew-Zunger Self-Interaction Correction

EPZ[{ nis}] — EKS[na J nb] T DESIC[{ nis}]

DESn,J1=- & & (E.n,.0+U[n,])

s=a,b i=1

< ) <2
where n; are the orbital densities N (3 =V is (r()|

n, (=& n.

In the PZ-SIC localized orbitals are used to maximize the Sl
correction, and achieve size consistency. The SIC potential is orbital

dependent. l

PZ-SIC is not invariant under a unitary transformation of occupied orbitals!

J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 17



Analogy of PZ-SIC with DFT+U

EDFA+U — EDFA + EU — EDFA + EHub - Edc

The DFT+U approach adds an orbital-dependent term to DFT energy.
In this expression the E, , term contains the detailed on-site
electron-electron interactions. E;. measures the corresponding
electron correlation already included in the DFA, which must be
subtracted from the total energy functional to avoid double-counting.
The effective strength of the on-site Coulomb-repulsion is expressed
by the parameter U.

The choi dde parametéar I s not rigc
derived from:

Asolid-state calculations
Alinear-response calculations

nisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

nisimoy, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

l. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995). 18
M. Cococcioni and S. Gironcoli, Phys. Rev. B 70, 235121, (2005).
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Performance of the PZ-SIC
Performance of PZ-SIC:

it Improves some properties of stretched bond systems, improves Rydberg-
excited states, correctly predicts the anitferromagnetic insulator state of
transition-metal oxides, but it spoils thermochemistry at equilibrium

PZ-SIC often seems to overcorrect

The greatest inconvenience of the PZ-SIC: dependence on orbital
representation

PZ-SIC works better for LSDA than for other functionals

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 121, 8187 (2004).

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 122,184107(2005).

A. Svane, G. Gunnarson, Phys. Rev. Lett, 65,1148, (1990).

Z. Szotek and W. M. Temmerman and H. Winter, Phys. Rev. B, 47, 4019, (1993).

G.l. Csonka and B. G. Johnson, Theor. Chem. Acc, 99, 158 (1998).

S. Patchkovskii and T. Ziegler, . Chem. Phys. 116, 7806 (2002).

A. Filipetti, N. Spaldin, Phys. Rev. B, 67, 125109, (2003).

J. Gréfenstein, E. Kraka and D. Cremer, J. Chem. Phys. 120, 524 (2004).

H. Gudmundsdottir, Y. Zhang, P. M. Weber and H. Jonsson J. Chem. Phys. 139, 194102 (2013). 19



Scaled down Self-Interaction Correction

o ~K q
sic _ P ar.’ 0 I
E - a ,I\ % 8 1S (r)y(LJ[nls] T Exc[nig 10])
s=a i=1 [ g —_ y
— I 7
~ ~
Scaling Factor the same as in the
00X; 01 PZ correction
0V, (r): is the Weizsacker kinetic energy £ (r) = bn,
((n): the kinetic energy density of (0 spin electron N,

K: non-negative parameter
Perdew-Zunger correction is a special case when k =0

The correction is scaled down in many-electron regions.
In one-electron regions the UY;(r)= () —>X=1.

OA Vydrov, GE Scuseria, JP Perdew, A Ruzsinszky, Gl Csonka, J. Chem. Phys. 124 (9), 094108, (2006).
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Tests of the Scaled SIC for atomization energies

Aequilibrium:
Errors in Atomization Energies for the AE6 test set (kcal/mol)
functional ME MAE | RMSE functional ME MAE | RMSE

LSDA 773 773 927 | TPSS 4.1 5.9 6.6
SIC-LSDA ( = 0) 57.7 60.3 794 | SIC-TPSSK =0) i 2§. 8347 392
SIC-LSDA = 1) 18.6 21.0 251 | SIC-TPSSK =1) 1.3 9.9 10.6
SIC-LSDA ( = 2) 6.7 8.6 10.0 | SIC-TPSSK = 2) 9.4 113 124
SIC-LSDA ( = 3) 0.8 7.2 8.7 | SIC-TPSSK = 23) 11.9 124  14.1
PBE 124 155 17.9 | PBEh 0.6 6.2 6.6
SIC-PBE k = 0) i 13.617.0 217 | SIc-PBEhk=0) | 7 19. 2198 258
SIC-PBE k = 1) 7.8 12.§ 147 | SIC-PBEhk = 1) 0.2 8.1  11.2
SIC-PBE k = 2) 135 16.0 19.3 | SIC-PBEhk =2) 51/ 103 119
SIC-PBE k = 3) 148 17.2  20.4 | SIC-PBEhk =3) 6.3 109 121

Gl Csonka, OA Vydrov, GE Scuseria, A Ruzsinszky, JP Perdew, J. Chem. Phys. 126 (24), 244107, (2007).
S. Klupfel, P. Klipfel and H. Jonsson, J. Chem. Phys. 137, 124102, (2012)
S. Klipfel, P. Klupfel and H. Jonsson, Phys. Rev. A 84,050501(R) (2011).
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Adissociation

At dissociation of the many-electron systems Ne,* the scaled-down SIC fails.
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These errors in the open systems are not necessarily corrected either by a
semilocal or a one-electron self-interaction free functional. To avoid this error,
a universally-useful functional must be many-electron self-interaction free for

all positive integer numbers, not only for one -electron densities.
OA Vydrov, GE Scuseria, JP Perdew, A Ruzsinszky, Gl Csonka, J. Chem. Phys. 124 (9), 094108, (2006). 22



