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Theorems by Hohenberg and Kohn 1964 and Kohn and Sham 

1965 showed that, in principle, the gs electron density determines the 

gs energy and everything else. To find the gs density and energy for 

N electrons in external potential        we have to minimize: ),(rv
C

The Hohenberg-Kohn theorem is only an existence theorem. 

It tells us that  the energy functional exists, but not what it is  

(in computable form).  
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Ts is a large term that can be evaluated exactly from orbitals or one-electron 

wavefunctions.  Then only the smaller exchange-correlation energy  

remains to be approximated. 

Basics of DFT 

chemical potential :m
 Hohenberg and W. Kohn, Phys. Rev. B 136, B864 (1964). 
W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965). 

Density Functional Theory, edited by R.M. Dreizler and E.K.U. Gross, Springer, Berlin (1990). 
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Universal Approximations  

ACCURACY    

John P. Perdew, Physics, Temple University, Philadelphia 

Heaven of the Chemical Accuracy 

 n             LSDA 

 Ðn        GGA 

t and/or Ð2n      meta-GGA 

    ex         hyper-GGA 

Hartree world 

SIMPLICITY  

Exc [ nŷ, nŹ] =  Ex[ nŷ, nŹ]  +  Ec[ nŷ, nŹ]  =  

                                     ñd3r  n exc(nŷ, nŹ,Ðnŷ,ÐnŹ, tŷ,tŹ, ...)  

        RPA 
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(1) For an electron density that varies slowly over space, for  

     which density gradient expansions are exact. The densities of many 

solids are almost slowly-varying or even almost uniform. 

 

(2) For a density that is compact and displays no fluctuation 

     of electron number, like the densities of atoms or typical  

     small molecules.  Here the true exchange-correlation  

     energy density at a point arises mainly from the electron  

     density near that point. There is often an understood error 

      cancellation between semilocal x and semilocal c. 

 

(3) For typical sp bonds in molecules and solids around 

     the equilibrium bond lengths 

 

                             ñWEAK CORRELATIONò 

Where are semilocal functionals accurate? 
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Where do semilocal functionals fail? 

(1) For a density that varies rapidly over space. (But this is  

       rare in real atoms, molecules, and solids.) 

 

(2) For a compact density with fluctuating electron number, 

      where the average electron number N is not an integer. 

      In this case, part of the exchange-correlation hole or 

      ñpersonal spaceò around the electron in the open system  

       is located on a distant reservoir system that shares the  

       electrons. Semilocal information cannot recognize this 

       situation.   
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This situation occurs for the valence d and f electrons in 

transition-metal oxides or heavy metals (strongly-correlated 

systems).  But it also occurs in a one-electron system, bond-

stretched H2
+.  It can occur in other stretched-bond situations, 

such as the dissociation curves of open-shell atoms or the 

transition states of chemical reactions. That is why semilocal 

functionals underestimate the energy barriers to chemical 

reactions. 

 
 

 

                       AJ. Cohen, P. Mori-Sanchez, and W. Yang, Science, 321, 792 (2008). 
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ñSTRONG CORRELATIONò 



After 1981, two roads diverged in density functional theory. The road 

subsequently more traveled led from LSDA to GGA and higher-level 

semilocal functionals (meta-GGAs) and eventually made DFT widely 

useful to chemists as well as solid state physicists.  

 

The road subsequently less traveled led from LSDA to the self-

interaction correction (SIC) and to the derivative discontinuity (and 

perhaps to the related LDA+U method), and to a useful treatment of 

strongly-correlated materials such as transition-metal oxides, lanthanides, 

and actinides.  

 

Interestingly, the strengths and weaknesses of these divergent 

approaches are complementary: The semilocal functionals can be 

accurate for sp bonds near equilibrium, while SIC can be accurate for 

open-shell d or f electrons or for any stretched bonds over which electrons 

are shared. 

 

Question for the Future: Is it possible to bring back the 

SIC on the Ladder of Approximations? Answer: Yes! 
MR. Pederson and JP Perdew, Psi-k Newsletter, (2011). 8 



The exact exchange-correlation energy is the electrostatic 

interaction between the electron density at a point and the  

density of the exchange-correlation hole surrounding an 

electron at that point.  

is the coupling constant averaged hole density. 

 

The hole is created by three effects:   

   self-interaction correction 

  Pauli exclusion principle 

Coulomb repulsion 

                                                   

correlation  

exchange 

The exact exchange-correlation energy and hole 
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Langreth and Perdew, 1976 

M. Levy, Phys. Rev. A 43, 4637 (1991). 
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Exact constraints on EXC[n]  

(Langreth, Perdew, Gunnarson,Lundqvist, Levy,é) 
 

Formally exact (but not computable) expressions for Exc[n] imply 

exact constraints on EXC , e.g., 
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Å Density gradient expansions for slowly-varying densities 

 

Å Scaling relations for EX + EC when          is scaled. 

 

Å Lieb-Oxford lower bound on EXC[n],   etc. 

 

Å The higher-level approximations keep the constraints of the 

lower-level ones , and add more exact constraints. 

Other exact constraints: 
 

These and other exact constraints explain why LDA works 

better than expected, and suggests approximations  

beyond LDA. 
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Å Symmetric charged radicals with realistic charges on the fragments 

display spurious energy barrier at  intermediate bond length 

energy of the H atom 

dissociates into two H+½  

Example: dissociation of H2
+ in PBE 

Failures of the semilocal functionals for radicalsïfailures come 

from the approximate character of the exchange hole 

In the exact dissociation limit, all the following configurations 
Hq+  + H (1ïq)+ ,  where 0 < q < 1 must be energetically equivalent 

A. Ruzsinszky, J.P. Perdew, G.I. Csonka, O.A. Vydrov, and G.E. Scuseria, J. Chem. Phys. 126, 104102 (2007). 
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Failures of the semilocal functionals for neutral  

homonuclear diatomics 

Dissociation of H2 molecule 

      AJ. Cohen, P. Mori-Sanchez, and W. Yang, Science, 321, 792 (2008). 
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Fractional (Mulliken) charge q on Na in NaCl as a function of bond 

length R (in Ȕ).The Hartree-Fock behavior is qualitatively right. 
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Dissociation of many-electron systems 

A. Ruzsinszky, J.P. Perdew, G.I. Csonka, O.A. Vydrov, and G.E. Scuseria,. J. Chem. Phys. 125, 194112 (2006). 

A.D. Dutoi and M. Head-Gordon, Chem. Phys. Lett. 422, 230 (2006). 

Å Asymmetric neutral molecules dissociate with unrealistic fractional charges 
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   Requirement for the exact exchange-correlation functional in 

a one-electron system 

U[n] is the Coulomb interaction of an electron with itself 

The semilocal exchange-correlation hole is local, the exact hole is non-
local. The SIE mimics non-dynamical correlation 

[ ] [] 00, =+ iix nUnE

The correlation energy must obey: 

[ ] 00, =ic nE

  The self-exchange must cancel the self-repulsion: 

Basic SIC 

equations 
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   SIE manifests itself not only in one-electron systems but in many-electron 

systems as well. It is easy to remove the spurious SI term in a one-

electron system, but not easy in a many electron system. 

No unique definition of SIE in many-electron systems 

Many-electron self-interaction error 

ÅUnderestimation of reaction energy barriers 

Å Wrong description of charge transfers 

Å Overestimation of the electric response  

Å Incorrect asymptotic behavior of the xc potential; leads to wrong 

description of Rydberg-states 

Å underestimation of the binding energy of electrons 

 

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 121, 8187 (2004).  

A Ruzsinszky, JP Perdew, GI Csonka, GE Scuseria, OA Vydrov, Phys. Rev. A 77, 060502 (2008). 
16 
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where niů are the orbital densities 

Perdew-Zunger Self-Interaction Correction 

In the PZ-SIC localized orbitals are used to maximize the SI 

correction, and achieve size consistency. The SIC potential is orbital 

dependent. 

PZ-SIC is not invariant under a unitary transformation of occupied orbitals! 

[ ] [ ]}{],[}{ SICKSPZ

sbas ii nEnnEnE D+=

] J.P. Perdew and A. Zunger, Self-Interaction Correction to Density Functional Approximations for Many-Electron Systems. Phys. Rev. B 23, 5048 (1981). 

] J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 
17 17 
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Analogy of PZ-SIC with DFT+U 

The DFT+U approach adds an orbital-dependent term to DFT energy. 

In this expression the  EHub  term contains the detailed on-site 

electron-electron interactions. Edc  measures the corresponding 

electron correlation already included in the DFA, which must be 

subtracted from the total energy functional to avoid double-counting. 

The effective strength of the on-site Coulomb-repulsion is expressed 

by the parameter U.  

The choice of the ñUò parameter is not rigorously based. It can be 

derived from: 

Å solid-state calculations 

Å linear-response calculations 

V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991). 

V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993). 

A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995). 

B. M. Cococcioni and S. Gironcoli, Phys. Rev. B 70, 235121, (2005). 

dcHubDFAUDFAUDFA EEEEEE -+=+=+
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Å Performance of PZ-SIC: 

 

it improves some properties of stretched bond systems, improves Rydberg-

excited states, correctly predicts the anitferromagnetic insulator state of 

transition-metal oxides, but it spoils thermochemistry at equilibrium 

 

Å  PZ-SIC often seems to overcorrect 

Å The greatest inconvenience of the PZ-SIC: dependence on orbital 

representation 

Å PZ-SIC works better for LSDA than for other functionals 

Performance of the PZ-SIC 

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 121, 8187 (2004).  

O.A. Vydrov and G.E. Scuseria, J. Chem. Phys. 122,184107(2005). 

A. Svane, G. Gunnarson, Phys. Rev. Lett, 65,1148, (1990). 

Z. Szotek and W. M. Temmerman and  H. Winter, Phys. Rev. B, 47, 4019, (1993). 

G.I. Csonka and B. G. Johnson, Theor. Chem. Acc, 99, 158 (1998). 

S. Patchkovskii and T. Ziegler, . Chem. Phys. 116, 7806 (2002). 

A. Filipetti, N. Spaldin, Phys. Rev. B, 67, 125109, (2003). 

J. Gräfenstein, E. Kraka and D. Cremer, J. Chem. Phys. 120, 524 (2004). 

H. Gudmundsdottir, Y. Zhang, P. M. Weber and H. Jónsson J. Chem. Phys. 139, 194102 (2013).  19 



Scaled down Self-Interaction Correction 

the same as in the 

PZ  correction 

Scaling Factor 

0 Ò Xi Ò 1 

Perdew-Zunger correction is a special case when k = 0 

The correction is scaled down in many-electron regions. 

In one-electron regions the ŰWů(r)= Űů(r)          Xi=1. 

       ŰWů (r): is the Weizsäcker kinetic energy 

Űů(r): the kinetic energy density of  ů spin electron 

k: non-negative parameter 
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OA Vydrov, GE Scuseria, JP Perdew, A Ruzsinszky, GI Csonka, J. Chem. Phys. 124 (9), 094108, (2006). 
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Tests of the Scaled SIC for atomization energies 

functional ME MAE RMSE functional ME MAE RMSE

LSDA 77.3 77.3 92.2 TPSS 4.1 5.9 6.6

SIC-LSDA (k  = 0) 57.7 60.3 79.4 SIC-TPSS (k  = 0) ï28.834.7 39.2

SIC-LSDA (k  = 1) 18.6 21.0 25.1 SIC-TPSS (k  = 1) 1.3 9.9 10.6

SIC-LSDA (k  = 2) 6.7 8.6 10.0 SIC-TPSS (k  = 2) 9.4 11.3 12.4

SIC-LSDA (k  = 3) 0.8 7.2 8.7 SIC-TPSS (k  = 3) 11.9 12.4 14.1

PBE 12.4 15.5 17.8 PBEh 0.6 6.2 6.6

SIC-PBE (k  = 0) ï13.617.0 21.7 SIC-PBEh (k  = 0) ï19.219.8 25.6

SIC-PBE (k  = 1) 7.8 12.6 14.7 SIC-PBEh (k  = 1) 0.2 8.1 11.2

SIC-PBE (k  = 2) 13.5 16.0 19.3 SIC-PBEh (k  = 2) 5.1 10.3 11.9

SIC-PBE (k  = 3) 14.8 17.2 20.6 SIC-PBEh (k  = 3) 6.3 10.9 12.1

Errors in Atomization Energies for the AE6 test set (kcal/mol) 

Å equilibrium: 

GI Csonka, OA Vydrov, GE Scuseria, A Ruzsinszky, JP Perdew, J. Chem. Phys. 126 (24), 244107, (2007). 

S. Klüpfel, P. Klüpfel and H. Jónsson, J. Chem. Phys. 137, 124102, (2012) 

S. Klüpfel, P. Klüpfel and H. Jónsson, Phys. Rev. A 84,050501(R) (2011). 
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 At dissociation of the many-electron systems Ne2
+ the scaled-down SIC fails.  
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Å dissociation 

These errors in the open systems are not necessarily corrected either by a 

semilocal or a one-electron self-interaction free functional. To avoid this error, 
a universally-useful functional must be many-electron self-interaction free for                                                               
all positive integer numbers, not only for one -electron densities. 

  
 

OA Vydrov, GE Scuseria, JP Perdew, A Ruzsinszky, GI Csonka, J. Chem. Phys. 124 (9), 094108, (2006). 22 


