Quantum Nuclei: Path Integral Molecular Dynamics for Static and Dynamical Observables

Mariana Rossi PTCL, University of Oxford, UK; St. Edmund's Hall, Oxford, UK

Density functional theory and beyond, IPAM, Los Angeles CA, USA

• Relation between thermal De Broglie wavelength Λ and interparticle spacing l

$$\Lambda = \frac{h}{\sqrt{2\pi m k_B T}}$$

 $\Lambda \gg l$

 $\Lambda \ll l$

Low temperature, low mass \Rightarrow nuclear quantum effects important

High temperature, high mass \Rightarrow classical Boltzmann statistics are fine

Species	T(K)	Λ	Species	T(K)	٨
е	300	43.03	Li	300	0.38
H	300	1.00	Li	100	0.66
He	300	0.50	Cu	10	0.69
He	4	4.35			

• Relation between thermal De Broglie wavelength Λ and interparticle spacing l

$$\Lambda = \frac{h}{\sqrt{2\pi m k_B T}}$$

 $\Lambda \gg l$

 $\Lambda \ll l$

Low temperature, low mass \Rightarrow nuclear quantum effects important

High temperature, high mass \Rightarrow classical Boltzmann statistics are fine

Species	T(K)	Λ	Species	T(K)	Λ
е	300	43.03	Li	300	0.38
Н	300	1.00	Li	100	0.66
He	300	0.50	Cu	10	0.69
He	4	4.35			

• How far from equipartition of energy? (k_BT/2 for each vibrational mode) Systems approximately harmonic $\Rightarrow \frac{\hbar\omega}{k_BT} \gg 1 \Rightarrow$ quantum (vibration dominated by ZPE) T=300K corresponds to $\omega \approx 208$ cm-1 \Rightarrow anything above is ZPE dominated

• Classically the average value of the kinetic energy follows equipartition (Boltzmann operator factorizes) and is given by

$$\langle K \rangle = \frac{3Nk_BT}{2}$$

 Classically the average value of the kinetic energy follows equipartition (Boltzmann operator factorizes) and is given by

$$\langle K \rangle = \frac{3Nk_BT}{2}$$

 In quantum mechanics, Boltzmann operator does not factorize (because momentum and position do not commute). E.g. for a system of harmonic oscillators:

$$\langle K_{qm}^{harm} \rangle = \sum_{i} \frac{\hbar \sqrt{k_i}}{4\sqrt{m_i}} \coth\left(\frac{\beta \hbar \sqrt{k_i}}{2\sqrt{m_i}}\right) \qquad \text{mass} \\ \text{dependence}$$

 Classically the average value of the kinetic energy follows equipartition (Boltzmann operator factorizes) and is given by

$$\langle K \rangle = \frac{3Nk_BT}{2}$$

 In quantum mechanics, Boltzmann operator does not factorize (because momentum and position do not commute). E.g. for a system of harmonic oscillators:

- I. Parametrize the full Born-Oppenheimer surface and solve the Schrödinger equation for the nuclei
 - Impossible Impractical for high-dimensional systems

- I. Parametrize the full Born-Oppenheimer surface and solve the Schrödinger equation for the nuclei
 - Impossible Impractical for high-dimensional systems
- Restore quantum nuclear fluctuations by "fudging" classical nuclear velocities: Generalized Langevin equation (GLE) based colored noise thermostats [Ceriotti, Bussi, Parrinello, JCTC 6, 1170 (2010)]

- I. Parametrize the full Born-Oppenheimer surface and solve the Schrödinger equation for the nuclei
 - Impossible Impractical for high-dimensional systems
- Restore quantum nuclear fluctuations by "fudging" classical nuclear velocities: Generalized Langevin equation (GLE) based colored noise thermostats [Ceriotti, Bussi, Parrinello, JCTC 6, 1170 (2010)]
- 3. Path integral molecular dynamics PIMD [R. P. Feynman (1948)]

- I. Parametrize the full Born-Oppenheimer surface and solve the Schrödinger equation for the nuclei
 - Impossible Impractical for high-dimensional systems
- Restore quantum nuclear fluctuations by "fudging" classical nuclear velocities: Generalized Langevin equation (GLE) based colored noise thermostats [Ceriotti, Bussi, Parrinello, JCTC 6, 1170 (2010)]
- 3. Path integral molecular dynamics PIMD [R. P. Feynman (1948)]

Time dependent Schrödinger equation:

$$\begin{split} i\hbar\frac{\partial}{\partial t}|\Psi\rangle &= \hat{H}|\Psi\rangle \\ |\Psi(t)\rangle &= \exp(-i\hat{H}t/\hbar)|\Psi(0)\rangle = \hat{U}(t)|\Psi(0)\rangle \\ \swarrow \\ \text{Time evolution} \end{split}$$

propagator

Time dependent Schrödinger equation:

$$\begin{split} i\hbar \frac{\partial}{\partial t} |\Psi\rangle &= \hat{H} |\Psi\rangle \\ |\Psi(t)\rangle &= \exp(-i\hat{H}t/\hbar) |\Psi(0)\rangle = \hat{U}(t) |\Psi(0)\rangle \\ \swarrow \\ \text{Time evolution} \\ \text{propagator} \end{split}$$

$$\begin{aligned} \text{Project into position space:} \\ \langle q'|\Psi(t)\rangle &= \langle q'|\exp(-i\hat{H}t/\hbar)|\Psi(0)\rangle \\ &= \int dq \langle q'|\exp(-i\hat{H}t/\hbar)|q\rangle \langle q|\Psi(0)\rangle \\ &= \int dq \langle q'|\exp(-i\hat{H}t/\hbar)|q\rangle \Psi(q,0) \end{aligned}$$

Time dependent Schrödinger equation:

$$\begin{split} i\hbar \frac{\partial}{\partial t} |\Psi\rangle &= \hat{H} |\Psi\rangle \\ |\Psi(t)\rangle &= \exp(-i\hat{H}t/\hbar) |\Psi(0)\rangle = \hat{U}(t) |\Psi(0)\rangle \\ \swarrow \\ \mathsf{Time\ evolution\ propagator} \\ \\ \mathbf{Project\ into\ position\ space:} \\ |\Psi(t)\rangle &= \langle q' |\exp(-i\hat{H}t/\hbar) |\Psi(0)\rangle \\ &= \int dq \langle q' |\exp(-i\hat{H}t/\hbar) |q\rangle \langle q |\Psi(0)\rangle \\ &= \int dq \langle q' |\exp(-i\hat{H}t/\hbar) |q\rangle \Psi(q,0) \end{split}$$

Probability of finding particle at (q',t):

 $P(q,0;q',t) = |\langle q'|\hat{U}(t)|q\rangle|^2$

Time dependent Schrödinger equation:

$$\begin{split} i\hbar \frac{\partial}{\partial t} |\Psi\rangle &= \hat{H} |\Psi\rangle \\ |\Psi(t)\rangle &= \exp(-i\hat{H}t/\hbar) |\Psi(0)\rangle = \hat{U}(t) |\Psi(0)\rangle \\ \swarrow \\ \mathsf{Time\ evolution} \\ \mathsf{Dropagator} \end{split}$$

Project into position space:

$$\begin{aligned} \langle q'|\Psi(t)\rangle &= \langle q'|\exp(-i\hat{H}t/\hbar)|\Psi(0)\rangle \\ &= \int dq\langle q'|\exp(-i\hat{H}t/\hbar)|q\rangle\langle q|\Psi(0)\rangle \\ &= \int dq\langle q'|\exp(-i\hat{H}t/\hbar)|q\rangle\Psi(q,0) \end{aligned}$$

Probability of finding particle at (q',t):

 $P(q,0;q',t) = |\langle q'|\hat{U}(t)|q\rangle|^2$

position

(q, 0)

Time dependent Schrödinger equation:

$$\begin{split} i\hbar \frac{\partial}{\partial t} |\Psi\rangle &= \hat{H} |\Psi\rangle \\ |\Psi(t)\rangle &= \exp(-i\hat{H}t/\hbar) |\Psi(0)\rangle = \hat{U}(t) |\Psi(0)\rangle \\ & \swarrow \\ \text{Time evolution} \\ \text{propagator} \end{split}$$

$$\begin{aligned} \mathsf{Project into position space:} \\ \langle q'|\Psi(t)\rangle &= \langle q'|\exp(-i\hat{H}t/\hbar)|\Psi(0)\rangle \\ &= \int dq \langle q'|\exp(-i\hat{H}t/\hbar)|q\rangle \langle q|\Psi(0)\rangle \\ &= \int dq \langle q'|\exp(-i\hat{H}t/\hbar)|q\rangle \Psi(q,0) \end{aligned}$$

Probability of finding particle at (q',t):

 $P(q,0;q',t) = |\langle q'|\hat{U}(t)|q\rangle|^2$

time

(q', t)

Rotating to imaginary time

• How to do it? — Can we exploit some kind of isomorphism?

Now must evaluate the following matrix element $\rho(q,q',\beta) = \langle q' | \exp(-\beta \hat{H}) | q \rangle = \langle q' | \hat{\rho}(\beta) | q \rangle$

• Can we compute these matrix elements without dealing with operators?

$$\exp(-\beta \hat{H}) = e^{-\beta [\hat{K}(p) + \hat{V}(q)]} \neq e^{-\beta \hat{K}(p)} e^{-\beta \hat{V}(q)}$$

K and V do not commute

• Can we compute these matrix elements without dealing with operators?

$$\exp(-\beta \hat{H}) = e^{-\beta [\hat{K}(p) + \hat{V}(q)]} \neq e^{-\beta \hat{K}(p)} e^{-\beta \hat{V}(q)}$$

K and V do not commute

• Trotter theorem:
$$e^{\hat{A}+\hat{B}} = \lim_{n \to \infty} [e^{\hat{A}/2n} e^{\hat{B}/n} e^{\hat{A}/2n}]^n$$

• Can we compute these matrix elements without dealing with operators?

$$\exp(-\beta \hat{H}) = e^{-\beta [\hat{K}(p) + \hat{V}(q)]} \neq e^{-\beta \hat{K}(p)} e^{-\beta \hat{V}(q)}$$

K and V do not commute

• Trotter theorem:
$$e^{\hat{A}+\hat{B}} = \lim_{n \to \infty} [e^{\hat{A}/2n} e^{\hat{B}/n} e^{\hat{A}/2n}]^n$$

• Using the theorem we get:

> βħ (imaginary time) has been divided in n slices

• Now we can introduce *n*-1 identities (position eigenstates) in ρ : $\rho(q,q',\beta) =$

• Now we can introduce *n*-1 identities (position eigenstates) in ρ : $\rho(q,q',\beta) =$

$$= \langle q' | [e^{-\beta_n \hat{K}(p)/2} e^{-\beta_n \hat{V}(q)} e^{-\beta_n \hat{K}(p)/2}] [e^{-\beta_n \hat{K}(p)/2} e^{-\beta_n \hat{V}(q)} e^{-\beta_n \hat{K}(p)/2}] [e^{-\beta_n \hat{K}(p)/2} e^{-\beta_n \hat{K}(p)/2}] \dots |q\rangle$$

$$\hat{I} = \int dq |q\rangle \langle q|$$

• Each matrix element can be evaluated:

$$\begin{aligned} \langle q_{k-1} | [e^{-\beta_n \hat{V}(q)/2} e^{-\beta_n \hat{K}(p)} e^{-\beta_n \hat{V}(q)/2}] & |q_k \rangle &= \\ &= e^{-\beta_n V(q_{k-1})/2} \langle q_{k-1} | e^{-\beta_n \hat{K}(p)} | q_k \rangle e^{-\beta_n V(q_k)/2} = \\ \langle q | p \rangle &= \frac{1}{\sqrt{2\pi}} e^{ipq/\hbar} &= e^{-\beta_n [V(q_{k-1}) + V(q_k)]/2} \int dp \, e^{\beta_n K(p)} \langle q_{k-1} | p \rangle \langle p | q_k \rangle = \\ &= \frac{e^{-\beta_n [V(q_{k-1}) + V(q_k)]/2}}{2\pi\hbar} \int dp \, e^{\beta_n p^2/2m + i(q_{k-1} - q_k)p/\hbar} = \\ &= \frac{1}{2\pi\hbar} \left(\frac{2\pi m}{\beta_n}\right)^{1/2} e^{-\beta_n \left\{ [V(q_{k-1}) + V(q_k)]/2 + \frac{m}{2\beta_n^2 \hbar^2} (q_k - q_{k-1})^2 \right\}} \end{aligned}$$

We got rid of the operators!

harmonic interaction

between neighboring

• So, the final result is:

harmonic interaction

between neighboring

• So, the final result is:

harmonic interaction

between neighboring

• So, the final result is:

• <u>The partition function Z is:</u>

$$Z_{n} = \operatorname{Tr}[\hat{\rho}(\beta)] = \int dq \rho(q, q, \beta) = \frac{1}{(2\pi\hbar)^{n}} \left(\frac{2\pi m}{\beta_{n}}\right)^{n/2} \int dq_{1} \dots dq_{n} e^{-\beta_{n} \sum_{k} [V(q_{k}) + \frac{m\omega_{n}^{2}(q_{k} - q_{k-1})^{2}]}{\mathbf{with}} q_{n} = q_{0} = q$$

 $Z = \lim_{n \to \infty} Z_n$

Sampling the partition function

• How to sample the partition function and get ensemble averages?

$$Z_n = \frac{1}{2\pi\hbar} \left(\frac{2\pi m}{\beta_n}\right)^{1/2} \int dq_1 \dots dq_n e^{-\beta_n \sum_k [V(q_k) + \frac{m\omega_n^2}{2}(q_k - q_{k-1})^2]} \qquad Z = \lim_{n \to \infty} Z_n$$

$$q_{n+1} = q_1$$
Can be sampled by Monte Carlo

Sampling the partition function

• How to sample the partition function and get ensemble averages?

$$Z_n = \frac{1}{2\pi\hbar} \left(\frac{2\pi m}{\beta_n}\right)^{1/2} \int dq_1 \dots dq_n e^{-\beta_n \sum_k [V(q_k) + \frac{m\omega_n^2}{2}(q_k - q_{k-1})^2]} \qquad Z = \lim_{n \to \infty} Z_n$$

$$q_{n+1} = q_1$$

Can be sampled by Monte Carlo

• Reintroduce momenta

$$1 = \left(\frac{\beta_n}{2\pi m}\right)^{1/2} \int dp_k \, e^{-\beta_n p_k^2/2m}$$

$$Z_n = \frac{1}{(2\pi\hbar)^n} \int d\mathbf{p} \int d\mathbf{q} e^{-\beta_n \sum_k \left[\frac{p_k^2}{2m} + \frac{m\omega_n^2 (q_k - q_{k-1})^2 + V(q_k)\right]}{2}} = \frac{1}{(2\pi\hbar)^n} \int d\mathbf{p} \int d\mathbf{q} e^{-\beta_n H_n}$$
Note that these are fictitious (sampling) masses
Could be set to any value!

Sampling the partition function

• How to sample the partition function and get ensemble averages?

$$Z_n = \frac{1}{2\pi\hbar} \left(\frac{2\pi m}{\beta_n}\right)^{1/2} \int dq_1 \dots dq_n e^{-\beta_n \sum_k [V(q_k) + \frac{m\omega_n^2}{2}(q_k - q_{k-1})^2]} \qquad Z = \lim_{n \to \infty} Z_n$$

$$q_{n+1} = q_1$$

Can be sampled by Monte Carlo

• Reintroduce momenta

$$1 = \left(\frac{\beta_n}{2\pi m}\right)^{1/2} \int dp_k \, e^{-\beta_n p_k^2/2m}$$

$$Z_n = \frac{1}{(2\pi\hbar)^n} \int d\mathbf{p} \int d\mathbf{q} e^{-\beta_n \sum_k \left[\frac{p_k^2}{2m} + \frac{m\omega_n^2 (q_k - q_{k-1})^2 + V(q_k)\right]}{2}} = \frac{1}{(2\pi\hbar)^n} \int d\mathbf{p} \int d\mathbf{q} e^{-\beta_n H_n}$$
Note that these are fictitious (sampling) masses
Could be set to any value!

• Partition function of a *classical* ring polymer with Hamiltonian

$$H_n = \sum_{k} \left[\frac{p_k^2}{2m} + \frac{m\omega_n^2 (q_k - q_{k-1})^2 + V(q_k)}{2} \right]$$

Can be sampled by Molecular Dynamics

Ensemble averages of operators

$$\langle A \rangle = \frac{1}{Z} \operatorname{Tr}[\hat{\rho}\hat{A}]$$
If: $\hat{A} = \hat{A}(q)$
Then: $\langle A \rangle = \frac{1}{Z} \int d\mathbf{p} \int d\mathbf{q} \frac{1}{n} \sum_{k} A(q_k) e^{-\beta_n H_n}$
Else: complicated — open paths, etc.
(e.g. Lin, Morrone, Car PRL 105, I 10602)
Some examples: $\langle V \rangle = \frac{1}{n} \sum_{i=1}^{n} \langle V(\mathbf{q}_i) \rangle$
 $\langle K_{cv} \rangle = \frac{3Nk_BT}{2} + \frac{1}{2n} \sum_{j=1}^{N} \sum_{i=1}^{n} \langle (\mathbf{q}_i^j - \mathbf{q}^j) \cdot \nabla V(\mathbf{q}_i^1, ..., \mathbf{q}_i^N) \rangle$

(From thermodynamic relation)

The Nuts and Bolts of the PIMD simulation

• For a system of N distinguishable particles:

Problem is exactly like (*ab initio*) molecular dynamics, but involving several replicas of the system

The Nuts and Bolts of the PIMD simulation

• For a system of N distinguishable particles:

 H_0 (free ring polymer Hamiltonian)

$$H_n = \sum_{k=1}^n \sum_{j=1}^{N} \left[\frac{(\mathbf{p}_k^j)^2}{2m^j} + \frac{1}{2} m^j \omega_n^2 (\mathbf{q}_k^j - \mathbf{q}_{k-1}^j)^2 \right] + \sum_{k=1}^n V(\mathbf{q}_k^1, \mathbf{q}_k^2, \dots, \mathbf{q}_k^N)$$

• H_0 can be solved analytically by transforming it into normal modes

$$H_0 = \sum_{j}^{N} \sum_{s=0}^{n-1} \left[\frac{\tilde{\mathbf{p}}_s^j}{2m^j} + \frac{1}{2} m^j \omega_s^2 (\tilde{\mathbf{q}}_s^j)^2 \right]$$

$$\omega_s = 2\omega_n \sin(s\pi/n)$$
$$\tilde{\mathbf{p}}_s^j = \sum_{k=1}^n \mathbf{p}_k^j C_{ks} \qquad \tilde{\mathbf{q}}_s^j = \sum_{k=1}^n \mathbf{q}_k^j C_{ks}$$

The Nuts and Bolts of the PIMD simulation

• For a system of N distinguishable particles:

H₀ (free ring polymer Hamiltonian)

$$H_n = \sum_{k=1}^n \sum_{j=1}^N \left[\frac{(\mathbf{p}_k^j)^2}{2m^j} + \frac{1}{2} m^j \omega_n^2 (\mathbf{q}_k^j - \mathbf{q}_{k-1}^j)^2 \right] + \sum_{k=1}^n V(\mathbf{q}_k^1, \mathbf{q}_k^2, \dots, \mathbf{q}_k^N)$$

• H_0 can be solved analytically by transforming it into normal modes

$$H_0 = \sum_{j}^{N} \sum_{s=0}^{n-1} \left[\frac{\tilde{\mathbf{p}}_s^j}{2m^j} + \frac{1}{2} m^j \omega_s^2 (\tilde{\mathbf{q}}_s^j)^2 \right]$$
$$\omega_s = 2\omega_n \sin(s\pi/n)$$
$$\tilde{\mathbf{p}}_s^j = \sum_{k=1}^{n} \mathbf{p}_k^j C_{ks} \qquad \tilde{\mathbf{q}}_s^j = \sum_{k=1}^{n} \mathbf{q}_k^j C_{ks}$$

• Could be painful to integrate the high frequencies numerically (would need small time steps)

• How to integrate the PIMD equations of motion efficiently?

$$H_n = \sum_{k=1}^n \sum_{j=1}^N \left[\frac{(\mathbf{p}_k^j)^2}{2m^j} + \frac{1}{2} m \omega_n^2 (\mathbf{q}_k^j - \mathbf{q}_{k-1}^j)^2 \right] + \sum_{k=1}^n V(\mathbf{q}_k^1, \mathbf{q}_k^2, \dots, \mathbf{q}_k^N)$$
$$H_n = H_0 + H_V$$

• How to integrate the PIMD equations of motion efficiently?

$$H_n = \sum_{k=1}^n \sum_{j=1}^N \left[\frac{(\mathbf{p}_k^j)^2}{2m^j} + \frac{1}{2} m \omega_n^2 (\mathbf{q}_k^j - \mathbf{q}_{k-1}^j)^2 \right] + \sum_{k=1}^n V(\mathbf{q}_k^1, \mathbf{q}_k^2, \dots, \mathbf{q}_k^N)$$
$$H_n = H_0 + H_V$$

• Small digression about the Liouville operator

For a quantity *a* evolving by Hamiltonian dynamics (in ID):

 $\frac{d a}{dt} = \frac{d a}{dq} \dot{q} + \frac{d a}{dp} \dot{p}$ $\frac{d a}{dt} = \frac{d a}{dq} \frac{\partial H}{\partial p} - \frac{d a}{dp} \frac{\partial H}{\partial q}$

One can define the Liouville operator *L*:

$$iL = \frac{\partial H}{\partial p} \frac{d}{dq} - \frac{\partial H}{\partial q} \frac{d}{dp}$$

• How to integrate the PIMD equations of motion efficiently?

$$H_n = \sum_{k=1}^n \sum_{j=1}^N \left[\frac{(\mathbf{p}_k^j)^2}{2m^j} + \frac{1}{2} m \omega_n^2 (\mathbf{q}_k^j - \mathbf{q}_{k-1}^j)^2 \right] + \sum_{k=1}^n V(\mathbf{q}_k^1, \mathbf{q}_k^2, \dots, \mathbf{q}_k^N)$$
$$H_n = H_0 + H_V$$

• Small digression about the Liouville operator

For a quantity *a* evolving by Hamiltonian dynamics (in ID):

 $\frac{d a}{dt} = \frac{d a}{dq} \dot{q} + \frac{d a}{dp} \dot{p}$

 $\frac{d\,a}{dt} = \frac{da}{dq}\frac{\partial H}{\partial p} - \frac{da}{dp}\frac{\partial H}{\partial q}$

One can define the Liouville operator *L*:

$$iL = \frac{\partial H}{\partial p} \frac{d}{dq} - \frac{\partial H}{\partial q} \frac{d}{dp}$$

Such that:

$$\frac{d\,a}{dt} = iLa \to a(t) = e^{iL}a(0)$$

We can also split the operator

$$iL = iL_1 + iL_2$$

$$L_1 = \frac{\partial H}{\partial p} \frac{d}{dq} \qquad L_2 = -\frac{\partial H}{\partial q} \frac{d}{dp}$$

And the pieces do not commute

$$a(t) = e^{iL_1 + iL_2}a(0)$$
$$[iL_1, iL_2] \neq 0$$

• How to integrate the PIMD equations of motion efficiently?

$$H_n = \sum_{k=1}^n \sum_{j=1}^N \left[\frac{(\mathbf{p}_k^j)^2}{2m^j} + \frac{1}{2} m \omega_n^2 (\mathbf{q}_k^j - \mathbf{q}_{k-1}^j)^2 \right] + \sum_{k=1}^n V(\mathbf{q}_k^1, \mathbf{q}_k^2, \dots, \mathbf{q}_k^N)$$
$$H_n = H_0 + H_V$$

• Small digression about the Liouville operator

For a quantity *a* evolving by Hamiltonian dynamics (in ID):

 $\frac{d\,a}{dt} = \frac{d\,a}{dq}\dot{q} + \frac{d\,a}{dp}\dot{p}$

 $\frac{d\,a}{dt} = \frac{da}{dq}\frac{\partial H}{\partial p} - \frac{da}{dp}\frac{\partial H}{\partial q}$

One can define the Liouville operator *L*:

$$iL = \frac{\partial H}{\partial p} \frac{d}{dq} - \frac{\partial H}{\partial q} \frac{d}{dp}$$

Such that:

$$\frac{da}{dt} = iLa \to a(t) = e^{iL}a(0)$$

We can also split the operator

$$iL = iL_1 + iL_2$$

$$L_1 = \frac{\partial H}{\partial p} \frac{d}{dq} \qquad L_2 = -\frac{\partial H}{\partial q} \frac{d}{dp}$$

And the pieces do not commute

$$a(t) = e^{iL_1 + iL_2}a(0)$$
$$[iL_1, iL_2] \neq 0$$

In order to apply it piecewise, must again do a Trotter splitting

For microcanical dynamics, the (second order) Trotter splitting leads to the Verlet algorithm

• How to integrate the PIMD equations of motion efficiently?

$$H_n = \sum_{k=1}^n \sum_{j=1}^N \left[\frac{(\mathbf{p}_k^j)^2}{2m^j} + \frac{1}{2} m^j \omega_n^2 (\mathbf{q}_k^j - \mathbf{q}_{k-1}^j)^2 \right] + \sum_{k=1}^n V(\mathbf{q}_k^1, \mathbf{q}_k^2, \dots, \mathbf{q}_k^N)$$
$$H_n = H_0 + H_V$$

• Hamiltonian dynamics can be evolved with the Liouville operator, which here can be factorized in the following way:

$$e^{iL\Delta t} \simeq e^{iL_V\Delta t/2} e^{iL_0\Delta t} e^{iL_V\Delta t/2}$$

Involves H_V
Involves H_0
$$H_0 = \sum_{j}^{N} \sum_{s=0}^{n-1} \left[\frac{\tilde{\mathbf{p}}_s^j}{2m^j} + \frac{1}{2}m^j\omega_s^2(\tilde{\mathbf{q}}_s^j)^2 \right]$$

The middle step can be computed analytically (especially easy in the normal mode representation) ⇒ Resulting dynamics of a free particle would be independent of time step

Attention: In a real system modes couple (resonate) — maximum time step is constrained!

• The actual scheme for integrating then becomes:

$$\begin{split} p_k^j &\leftarrow p_k^j - \frac{\Delta t}{2} \frac{\partial V(q_k^1, ..., q_k^N)}{\partial q^j} \\ \tilde{p}_s^j &= \sum_{k=1}^n p_k^j C_{ks} \quad \tilde{q}_s^j = \sum_{k=1}^n q_k^j C_{ks} \quad \begin{array}{c} \text{Textbook time evolution} \\ \text{for set of uncoupled} \\ \text{harmonic oscillators} \\ \left(\begin{array}{c} \tilde{p}_s^j \\ \tilde{q}_s^j \end{array} \right) &\leftarrow \left(\begin{array}{c} \cos(\omega_s \Delta t) & -m_j \omega_s \sin(\omega_s \Delta t) \\ \frac{1}{m_j \omega_s} \sin(\omega_s \Delta t) & \cos(\omega_s \Delta t) \end{array} \right) \left(\begin{array}{c} \tilde{p}_s^j \\ \tilde{q}_s^j \end{array} \right) \\ p_k^j &= \sum_{s=0}^{n-1} C_{ks} \tilde{p}_s^j \quad q_k^j = \sum_{s=0}^{n-1} C_{ks} \tilde{q}_s^j \\ p_k^j &\leftarrow p_k^j - \frac{\Delta t}{2} \frac{\partial V(q_k^1, ..., q_k^N)}{\partial q^j} \end{split}$$

• The actual scheme for integrating then becomes:

 $p_k^j \leftarrow \text{thermostat} (\Delta t/2)$

$$p_k^j \leftarrow p_k^j - \frac{\Delta t}{2} \frac{\partial V(q_k^1, ..., q_k^N)}{\partial q^j}$$

$$\tilde{p}_{s}^{j} = \sum_{k=1}^{n} p_{k}^{j} C_{ks} \quad \tilde{q}_{s}^{j} = \sum_{k=1}^{n} q_{k}^{j} C_{ks} \qquad \begin{array}{c} \text{Textbook time evolution} \\ \text{for set of uncoupled} \\ \text{harmonic oscillators} \end{array}$$

$$\begin{pmatrix} \tilde{p}_{s}^{j} \\ \tilde{q}_{s}^{j} \end{pmatrix} \leftarrow \begin{pmatrix} \cos(\omega_{s}\Delta t) & -m_{j}\omega_{s}\sin(\omega_{s}\Delta t) \\ \frac{1}{m_{j}\omega_{s}}\sin(\omega_{s}\Delta t) & \cos(\omega_{s}\Delta t) \end{pmatrix} \begin{pmatrix} \tilde{p}_{s}^{j} \\ \tilde{q}_{s}^{j} \end{pmatrix}$$

To sample the ensemble efficiently, attach (massive) thermostats to beads

$$p_k^j = \sum_{s=0}^{n-1} C_{ks} \tilde{p}_s^j \quad q_k^j = \sum_{s=0}^{n-1} C_{ks} \tilde{q}_s^j$$

$$p_k^j \leftarrow p_k^j - \frac{\Delta t}{2} \frac{\partial V(q_k^1,...,q_k^N)}{\partial q^j}$$

 $p_k^j \leftarrow \text{thermostat} (\Delta t/2)$

Some last considerations: reduce computational cost

- How can we reduce the number of beads needed for computation?
 - Ring polymer contraction

Markland, Manolopoulos, CPL 464, 256 (2008)

- Using higher order integrators (and better estimators) Jang, Jang, Voth, JCP 115, 7832 (2001)
- Smart thermostatting of internal modes (generalized Langevin equation based colored noise thermostats)

Ceriotti, Parinello, Markland, Manolopoulos, JCP 133, 124104 (2010)

NATURE VOL 397 18 FEBRUARY 1999

The nature of the hydrated excess proton in water

Dominik Marx*, Mark E. Tuckerman†, Jürg Hutter* & Michele Parrinello*

NATURE VOL 397 18 FEBRUARY 1999

The nature of the hydrated excess proton in water

Dominik Marx*, Mark E. Tuckerman†, Jürg Hutter* & Michele Parrinello*

PNAS | April 19, 2011 | vol. 108 | no. 16 | 6369-6373

Quantum nature of the hydrogen bond

Xin-Zheng Li, Brent Walker, and Angelos Michaelides¹

NATURE VOL 397 18 FEBRUARY 1999

The nature of the hydrated excess proton in water

Dominik Marx*, Mark E. Tuckerman†, Jürg Hutter* & Michele Parrinello*

PNAS | April 19, 2011 | vol. 108 | no. 16 | 6369-6373

Quantum nature of the hydrogen bond

Xin-Zheng Li, Brent Walker, and Angelos Michaelides¹

PRL 101, 017801 (2008)

PHYSICAL REVIEW LETTERS

we 4 J

Nuclear Quantum Effects in Water

Joseph A. Morrone Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Roberto Car*

Department of Chemistry and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

NATURE VOL 397 18 FEBRUARY 1999

The nature of the hydrated excess proton in water

Dominik Marx*, Mark E. Tuckerman†, Jürg Hutter* & Michele Parrinello*

PNAS | April 19, 2011 | vol. 108 | no. 16 | 6369-6373

Quantum nature of the hydrogen bond

Xin-Zheng Li, Brent Walker, and Angelos Michaelides¹

PRL 101, 017801 (2008)

PHYSICAL REVIEW LETTERS

we 4 J

Nuclear Quantum Effects in Water

Joseph A. Morrone

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Roberto Car*

Department of Chemistry and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

Biophysical Journal Volume 71 July 1996 19-39

Structure and Dynamics of a Proton Wire: A Theoretical Study of H⁺ Translocation along the Single-File Water Chain in the Gramicidin A Channel

Régis Pomès and Benoît Roux

NATURE VOL 397 18 FEBRUARY 1999

The nature of the hydrated excess proton in water

Dominik Marx*, Mark E. Tuckerman†, Jürg Hutter* & Michele Parrinello*

PNAS | April 19, 2011 | vol. 108 | no. 16 | 6369-6373

Quantum nature of the hydrogen bond

Xin-Zheng Li, Brent Walker, and Angelos Michaelides¹

PRL 101, 017801 (2008)

PHYSICAL REVIEW LETTERS

we 4 J

Nuclear Quantum Effects in Water

Joseph A. Morrone Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Roberto Car*

Department of Chemistry and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

Biophysical Journal Volume 71 July 1996 19-39

Structure and Dynamics of a Proton Wire: A Theoretical Study of H⁺ Translocation along the Single-File Water Chain in the Gramicidin A Channel

Régis Pomès and Benoît Roux

7988-7991 | PNAS | May 22, 2012 | vol. 109 | no. 21

Unraveling quantum mechanical effects in water using isotopic fractionation

Thomas E. Markland^a and B. J. Berne^{b,1}

NATURE VOL 397 18 FEBRUARY 1999

The nature of the hydrated excess proton in water

Dominik Marx*, Mark E. Tuckerman†, Jürg Hutter* & Michele Parrinello*

PNAS | April 19, 2011 | vol. 108 | no. 16 | 6369-6373

Quantum nature of the hydrogen bond

Xin-Zheng Li, Brent Walker, and Angelos Michaelides¹

PRL 101, 017801 (2008)

PHYSICAL REVIEW LETTERS

we 4 J

Nuclear Quantum Effects in Water

Joseph A. Morrone Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Roberto Car*

Department of Chemistry and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

Biophysical Journal Volume 71 July 1996 19-39

Structure and Dynamics of a Proton Wire: A Theoretical Study of H⁺ Translocation along the Single-File Water Chain in the Gramicidin A Channel

Régis Pomès and Benoît Roux

7988-7991 | PNAS | May 22, 2012 | vol. 109 | no. 21

Unraveling quantum mechanical effects in water using isotopic fractionation

Thomas E. Markland^a and B. J. Berne^{b,1}

Surface Science 605 (2011) 689-694

Quantum nuclear effects on the location of hydrogen above and below the palladium (100) surface

Changjun Zhang, Angelos Michaelides*

NATURE VOL 397 18 FEBRUARY 1999

The nature of the hydrated excess proton in water

Dominik Marx*, Mark E. Tuckerman†, Jürg Hutter* & Michele Parrinello*

PNAS | April 19, 2011 | vol. 108 | no. 16 | 6369-6373

Quantum nature of the hydrogen bond

Xin-Zheng Li, Brent Walker, and Angelos Michaelides¹

PRL 101, 017801 (2008)

PHYSICAL REVIEW LETTERS

we 4 J

Nuclear Quantum Effects in Water

Joseph A. Morrone Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Roberto Car*

Department of Chemistry and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

Biophysical Journal Volume 71 July 1996 19-39

Structure and Dynamics of a Proton Wire: A Theoretical Study of H⁺ Translocation along the Single-File Water Chain in the Gramicidin A Channel

Régis Pomès and Benoît Roux

7988-7991 | PNAS | May 22, 2012 | vol. 109 | no. 21

Unraveling quantum mechanical effects in water using isotopic fractionation

Thomas E. Markland^a and B. J. Berne^{b,1}

Surface Science 605 (2011) 689-694

Quantum nuclear effects on the location of hydrogen above and below the palladium (100) surface

Changjun Zhang, Angelos Michaelides*

MANY MANY MORE!!!

Dynamical Observables

Approximating dynamical observables

PIMD uses ring polymer trajectories to calculate exact (static) averages of the form

$$\langle A \rangle = \frac{1}{Z} \operatorname{Tr}[e^{-\beta \hat{H}} \hat{A}]$$

Approximating dynamical observables

PIMD uses ring polymer trajectories to calculate exact (static) averages of the form

$$A\rangle = \frac{1}{Z} \operatorname{Tr}[e^{-\beta \hat{H}} \hat{A}]$$

• But many important quantities are actually given by time dynamic (time dependent) averages:

Time correlation function $c_{AB}(t) = \text{Tr}[e^{-\beta \hat{H}} \hat{A}(0) \hat{B}(t)]$

Diffusion coefficient

$$D(T) = \frac{1}{3} \int_0^\infty c_{\mathbf{v} \cdot \mathbf{v}}(t) \, dt$$

IR spectrum (dipole adsorption cross section)

$$\begin{split} n(\omega)\alpha(\omega) &= \frac{\pi\omega}{3\hbar cV\epsilon_0} (1 - e^{-\beta\hbar\omega})C_{\mu\cdot\mu}(\omega) \\ C_{\mu\cdot\mu}(\omega) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} c_{\mu\cdot\mu}(t) \, dt \\ & \checkmark \text{dipole} \end{split}$$

Approximating dynamical observables

PIMD uses ring polymer trajectories to calculate exact (static) averages of the form

$$\langle A \rangle = \frac{1}{Z} \operatorname{Tr}[e^{-\beta \hat{H}} \hat{A}]$$

• But many important quantities are actually given by time dynamic (time dependent) averages:

Time correlation function $c_{AB}(t) = \text{Tr}[e^{-\beta \hat{H}} \hat{A}(0) \hat{B}(t)]$

Diffusion coefficient

IR spectrum (dipole adsorption cross section)

$$n(\omega)\alpha(\omega) = \frac{\pi\omega}{3\hbar c V \epsilon_0} (1 - e^{-\beta\hbar\omega}) C_{\mu\cdot\mu}(\omega)$$
$$C_{\mu\cdot\mu}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} c_{\mu\cdot\mu}(t) dt$$
$$\text{dipole}$$

 PIMD does not give access to real time (propagation is in imaginary time) Approximate these quantities - easier to approximate Kubo transforms

$$\tilde{c}_{AB}(t) = \frac{1}{\beta} \int_0^\beta c_{AB}^\lambda(t) \qquad \qquad c_{AB}^\lambda(t) = \operatorname{Tr}[e^{-(\beta-\lambda)\hat{H}}\hat{A}(0)e^{-\lambda\hat{H}}\hat{B}(t)]$$

• Normal mode transformation of free ring polymer Hamiltonian:

$$H_0 = \sum_{j=1}^{N} \sum_{s=0}^{n-1} \left[\frac{\tilde{\mathbf{p}}_s^j}{2(m^j)'} + \frac{1}{2} m^j \omega_s^2 (\tilde{\mathbf{q}}_s^j)^2 \right] \begin{array}{l} \omega_s = 2\omega_n \sin(s\pi/n) \\ \omega_n = nk_b T/\hbar \end{array}$$

 $s=0 \Rightarrow$ centroid mode; $s \neq 0 \Rightarrow$ internal modes

[1] Craig and Manolopoulos, JCP 121, 3368 (2004)
[2] Cao and Voth, JCP 100, 5093 (1994)

• Normal mode transformation of free ring polymer Hamiltonian:

$$H_0 = \sum_{j=1}^{N} \sum_{s=0}^{n-1} \left[\frac{\tilde{\mathbf{p}}_s^j}{2(m^j)'} + \frac{1}{2} m^j \omega_s^2 (\tilde{\mathbf{q}}_s^j)^2 \right] \begin{array}{l} \omega_s = 2\omega_n \sin(s\pi/n) \\ \omega_n = nk_b T/\hbar \end{array}$$

 $s=0 \Rightarrow$ centroid mode; $s \neq 0 \Rightarrow$ internal modes

- Ring polymer molecular dynamics (RPMD)^[1]
 - m' = m, Newtonian dynamics, no thermostat
 - Issue: beads resonate with physical frequencies

• Normal mode transformation of free ring polymer Hamiltonian:

$$H_0 = \sum_{j=1}^{N} \sum_{s=0}^{n-1} \left[\frac{\tilde{\mathbf{p}}_s^j}{2(m^j)'} + \frac{1}{2} m^j \omega_s^2 (\tilde{\mathbf{q}}_s^j)^2 \right] \begin{array}{l} \omega_s = 2\omega_n \sin(s\pi/n) \\ \omega_n = nk_b T/\hbar \end{array}$$

 $s=0 \Rightarrow$ centroid mode; $s \neq 0 \Rightarrow$ internal modes

- Ring polymer molecular dynamics (RPMD)^[1]
 - m' = m, Newtonian dynamics, no thermostat
 - Issue: beads resonate with physical frequencies
- Centroid molecular dynamics (CMD)^[2]
 - m'=σm (σ<1 for non-centroid modes), thermostatted
 - Centroid moves in the effective potential given by the internal modes
 - Issues: "curvature problem", and needs very small time steps.

[1] Craig and Manolopoulos, JCP 121, 3368 (2004)
[2] Cao and Voth, JCP 100, 5093 (1994)

Model Application: IR spectrum of OH molecule

Rossi, Ceriotti, Manolopoulos, J. Chem. Phys. 140, 234116 (2014)

• Model OH molecule with interatomic interactions given by:

$$\phi = \frac{k_b}{2}(r - r_0)^2$$

Harmonic (parameters from JCP 130, 194510 (2009))

Morse (parameters from real molecule)

• Normal mode transformation of free ring polymer Hamiltonian:

$$H_0 = \sum_{j=s=0}^{N} \sum_{s=0}^{n-1} \left[\frac{\tilde{\mathbf{p}}_s^j}{2(m^j)'} + \frac{1}{2} m^j \omega_s^2 (\tilde{\mathbf{q}}_s^j)^2 \right] \begin{array}{l} \omega_s = 2\omega_n \sin(s\pi/n) \\ \omega_n = nk_b T/\hbar \end{array}$$

 $s=0 \Rightarrow$ centroid mode; $s \neq 0 \Rightarrow$ internal modes

Rossi, Ceriotti, Manolopoulos, J. Chem. Phys. 140, 234116 (2014)

- Thermostatted Ring Polymer Molecular Dynamics (TRPMD)
 - *m'=m*, white noise Langevin thermostat applied to *internal modes* of the ring polymer only (centroid obeys Hamiltonian dynamics)
 - Maintains all exact limits of RPMD (classic, harmonic, etc.)!
 - Time step needed is the same as in usual PI simulations
 - Equations of motion:

$$\frac{d}{dt}\tilde{\mathbf{p}}_{i}^{(k)} = -m_{i}\omega_{k}^{2}\tilde{\mathbf{q}}_{i}^{(k)} - \gamma^{(k)}\tilde{\mathbf{p}}_{i}^{(k)} + \sqrt{\frac{2m_{i}\gamma^{(k)}}{\beta_{n}}}\boldsymbol{\xi}_{i}^{(k)} \qquad \frac{d}{dt}\tilde{\mathbf{q}}_{i}^{(k)} = \tilde{\mathbf{p}}_{i}^{(k)}/m_{i},$$

- Optimal damping (harmonic oscillator): $\gamma_c^{(k)} = \omega_k$
- Issue: no mathematical way to fix damping parameter, artificial broadening of peaks

Model Application: IR spectrum of OH molecule

Rossi, Ceriotti, Manolopoulos, J. Chem. Phys. 140, 234116 (2014)

• Model OH molecule with interatomic interactions given by:

IR Spectrum of the Zundel Ion

 Simulations on CCSD(T) parametrized potential of Huang, Braams, Bowman, JCP 122, 044308 (2005)

IR Spectrum of Liquid Water

• Simulations on the q-TIP4Pf potential energy surface at 300K (box with 216 molecules)

IR Spectrum of Liquid Water

• Simulations on the q-TIP4Pf potential energy surface at 300K (box with 216 molecules)

The End

<u>References</u>

Statistical Mechanics: Theory and Molecular Simulation *M.Tuckerman*

Ab initio molecular dynamics: Theory and Implementation Dominik Marx and Jurg Hutter

Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms edited by J. Grotendorst, D. Marx, and M. Alejandro

Quantum Mechanics and Path Integrals R. P. Feynman, A. R. Hibbs

How to do it?

imx-cosmo.github.io/gle4md/index.html?page=ipi

The End

<u>References</u>

Statistical Mechanics: Theory and Molecular Simulation *M.Tuckerman*

Ab initio molecular dynamics: Theory and Implementation Dominik Marx and Jurg Hutter

Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms edited by J. Grotendorst, D. Marx, and M. Alejandro

Quantum Mechanics and Path Integrals R. P. Feynman, A. R. Hibbs

How to do it?

imx-cosmo.github.io/gle4md/index.html?page=ipi

