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Where are nuclear quantum effects important?
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• Relation between thermal De Broglie wavelength Λ and interparticle spacing
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Low temperature, low mass 
⇒ nuclear quantum effects important

High temperature, high mass 
⇒ classical Boltzmann statistics are fine

Species T(K) Λ
e 300 43.03
H 300 1.00
He 300 0.50
He 4 4.35

Species T(K) Λ
Li 300 0.38
Li 100 0.66
Cu 10 0.69
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• How far from equipartition of energy? (kBT/2 for each vibrational mode)

Systems approximately harmonic ⇒ 
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T=300K corresponds to ω≈208cm-1 ⇒ anything above is ZPE dominated 



• Classically the average value of the kinetic energy follows equipartition 
(Boltzmann operator factorizes) and is given by
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dependence

• In quantum mechanics, Boltzmann operator does not factorize (because 
momentum and position do not commute). E.g. for a system of harmonic 
oscillators:

Where are nuclear quantum effects important?
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The time-dependent Schrödinger Equation

BRIEF ARTICLE 5

(53) ⇥̂ = exp(��Ĥ)
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=

Z
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1

Z qt
⌅q| exp(��Ĥ)Â|q⇧
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dqhq0| exp(�iĤt/~)|qihq| (0)i(65)

=

Z
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(69) hx1|Û(t)|x2i /
X

paths

exp

✓
� i

~

Z

path
Ldt

◆
=

X

paths

exp

✓
� i

~Spath

◆

(70) hx1|Û(t)|x2i /
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dqhq0| exp(�iĤt/~)|qihq| (0)i(65)

=

Z
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ṡ

◆
=

✓�V 0(x)
0

◆
�
✓
app a

T
p

ap A

◆✓
p
s

◆
+

✓
bpp b

T
p

bp B

◆�
⇠
�

(76)
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Rotating to imaginary time
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(61) � = 1/(kBT )

(62) ⇢̂(�) = Û(�i�~)
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(59) Û(t) = exp(�iĤt/~)

(60) ⇢̂ = exp(��Ĥ)
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exp(��Ĥ) = ⇢̂(�) t = �i�~(64)

(65) i~ @

@t
| i = Ĥ| i
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(56) Zcl /
Z

dpdq exp(��H(p,q))

(57) Zqt /
Z

dpdq exp(��Ĥ)
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[eÂ/2neB̂/neÂ/2n]n
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(74) hx1|Û(t)|x2i /
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• Trotter theorem:
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dqhq0| exp(�iĤt/~)|qihq| (0)i(68)

(69)
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(72) ⇢(q, q0,�) = hq0| exp(��Ĥ)|qi = hq0|⇢̂(�)|qi
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(77) P (x1, 0;x2,�i�~) = |hx1|Û(�i�~)|x2i|2 = |hx1|⇢̂(�)|x2i|2

(78) Z = Tr(⇢̂) = hq| exp(�Ĥ)|qi
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(71) eÂ+B̂ = lim
n!1
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=

Z
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(73) ⇢(q, q0,�) = lim
n!1

hq0|[e��K̂(p)/2ne��V̂ (q)/ne��K̂(p)/2n]n|qi

= hq0|[e��nK̂(p)/2e��nV̂ (q)e��nK̂(p)/2][e��nK̂(p)/2e��nV̂ (q)e��nK̂(p)/2][e��nK̂(p)/2e��nV̂ (q)e��nK̂(p)/2] . . . |qi

(74) �n = �/n

(75) P (q, 0; q0, t) = |hq0|Û(t)|qi|2
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(78) hx1|Û(t)|x2i /
X

paths

exp

✓
� i

~

Z

path
Ldt

◆
=

X

paths

exp

✓
� i

~Spath

◆

(79) P (x1, 0;x2,�i�~) = |hx1|Û(�i�~)|x2i|2 = |hx1|⇢̂(�)|x2i|2
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dqhq0| exp(�iĤt/~)|qihq| (0)i(67)

=

Z
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(70) exp(��Ĥ) = e��[K̂(p)+V̂ (q)] 6= e��K̂(p)e��V̂ (q)
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=

Z
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(79) P (x1, 0;x2,�i�~) = |hx1|Û(�i�~)|x2i|2 = |hx1|⇢̂(�)|x2i|2

(80) Z = Tr(⇢̂) = hq| exp(�Ĥ)|qi
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dqhq0| exp(�iĤt/~)|qihq| (0)i(67)

=

Z
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(73) ⇢(q, q0,�) = lim
n!1

hq0|[e��K̂(p)/2ne��V̂ (q)/ne��K̂(p)/2n]n|qi

= hq0|[e��nK̂(p)/2e��nV̂ (q)e��nK̂(p)/2][e��nK̂(p)/2e��nV̂ (q)e��nK̂(p)/2][e��nK̂(p)/2e��nV̂ (q)e��nK̂(p)/2] . . . |qi

(74) �n = �/n

(75) P (q, 0; q0, t) = |hq0|Û(t)|qi|2
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(69) ⇢(q, q0,�) = lim
n!1

hq0|[e��V̂ (q)/2ne��K̂(p)/ne��V̂ (q)/2n]n|qi

= hq0|[e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2][e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2][e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2] . . . |qi

hqk�1|[e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2] |qki =

= e��nV (qk�1)/2hqk�1|e��nK̂(p)|qkie��nV (qk)/2 =

= e��n[V (qk�1)+V (qk)]/2
Z

dp e�nK(p)hqk�1|pihp|qki =

=
e��n[V (qk�1)+V (qk)]/2

2⇡~

Z
dp e�np2/2m+i(qk�1�qk)p/~ =

=
1

2⇡~

✓
2⇡m

�n

◆1/2

e
��n[V (qk�1)+V (qk)]/2+

m

2�2n~2 (qk�qk�1)2

(70) hq|pi = 1p
2⇡

eipq/~

(71) �n = �/n

(72) P (q, 0; q0, t) = |hq0|Û(t)|qi|2
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dqhq0| exp(�iĤt/~)|qihq| (0)i

(66) exp(��Ĥ) = e��[K̂(p)+V̂ (q)] 6= e��K̂(p)e��V̂ (q)
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dqhq0| exp(�iĤt/~)|qihq| (0)i
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dqhq0| exp(�iĤt/~)|qihq| (0)i
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(68) ⇢(q, q0,�) = hq0| exp(��Ĥ)|qi = hq0|⇢̂(�)|qi
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(66) exp(��Ĥ) = e��[K̂(p)+V̂ (q)] 6= e��K̂(p)e��V̂ (q)
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[eÂ/2neB̂/neÂ/2n]n
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(67) eÂ+B̂ = lim
n!1
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(76) hAi = 1

Z
Tr[e��ĤÂ]
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Sampling the partition function
• How to sample the partition function and get ensemble averages?
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(69) ⇢(q, q0,�) = lim
n!1

hq0|[e��V̂ (q)/2ne��K̂(p)/ne��V̂ (q)/2n]n|qi

= hq0|[e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2][e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2][e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2] . . . |qi

hqk�1|[e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2] |qki =

= e��nV (qk�1)/2hqk�1|e��nK̂(p)|qkie��nV (qk)/2 =

= e��n[V (qk�1)+V (qk)]/2
Z

dp e�nK(p)hqk�1|pihp|qki =

=
e��n[V (qk�1)+V (qk)]/2

2⇡~

Z
dp e�np2/2m+i(qk�1�qk)p/~ =

=
1

2⇡~

✓
2⇡m

�n

◆1/2

e
��n[V (qk�1)+V (qk)]/2+

m

2�2n~2 (qk�qk�1)2

(70) ⇢(q, q0,�) =
1

2⇡~

✓
2⇡m

�n

◆1/2 Z
dq1 . . . dqn�1e

��n
P

k{[V (qk�1)+V (qk)]/2+m!2
n(qk�qk�1)2}

Z = Tr[⇢̂(�)] =

Z
dq⇢(q, q,�) =

1

2⇡~

✓
2⇡m

�n

◆1/2 Z
dq1 . . . dqne

��n
P

k[V (qk)+m!2
n(qk�qk�1)2]

qn+1 = q1 q0 = q qn = q0 !n = 1/(�n~)

6 THE AUTHOR

hq0| (t)i = hq0| exp(�iĤt/~)| (0)i
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=

Z
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(69) ⇢(q, q0,�) = lim
n!1

hq0|[e��V̂ (q)/2ne��K̂(p)/ne��V̂ (q)/2n]n|qi

= hq0|[e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2][e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2][e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2] . . . |qi

hqk�1|[e��nV̂ (p)/2e��nK̂(q)e��nV̂ (p)/2] |qki =

= e��nV (qk�1)/2hqk�1|e��nK̂(p)|qkie��nV (qk)/2 =

= e��n[V (qk�1)+V (qk)]/2
Z

dp e�nK(p)hqk�1|pihp|qki =

=
e��n[V (qk�1)+V (qk)]/2

2⇡~

Z
dp e�np2/2m+i(qk�1�qk)p/~ =

=
1

2⇡~

✓
2⇡m

�n

◆1/2

e
��n[V (qk�1)+V (qk)]/2+

m

2�2n~2 (qk�qk�1)2

(70) ⇢(q, q0,�) =
1

2⇡~

✓
2⇡m

�n

◆1/2 Z
dq1 . . . dqn�1e

��n
P

k{[V (qk�1)+V (qk)]/2+m!2
n(qk�qk�1)2}

Zn = Tr[⇢̂(�)] =

Z
dq⇢(q, q,�) =

1

2⇡~

✓
2⇡m

�n

◆1/2 Z
dq1 . . . dqne

��n
P

k[V (qk)+m!2
n(qk�qk�1)2]

Z = lim
n!1

Zn

qn+1 = q1 q0 = q qn = q0 !n = 1/(�n~)

BRIEF ARTICLE 7

1 =

✓
�n
2⇡m

◆1/2 Z
dpk e

��np2k/2m

Zn =
1

(2⇡~)n

Z
dp

Z
dqe��n

P
k[

p2k
2m+m!2

n(qk�qk�1)2+V (qk)] =
1

(2⇡~)n

Z
dp

Z
dqe��nHn

Hn =
X

k

[
p2k
2m

+m!2
n(qk � qk�1)

2 + V (qk)]

Hn =
nX

k=1

NX

j=1

[
(pj

k)
2

2mj
+m!2

n(q
j
k � q

j
k�1)

2] +
nX

k=1

V (q1
k,q

2
k, . . .q

N
k )

(70) p̃

j
s =

nX

k=1

p

j
kCks q̃

j
s =

nX

k=1

q

j
kCks

H =
p2

2m
+ V (q)

V (q) = m!2
harmq2 !harm !s

m!

2

(71) hq|pi = 1p
2⇡

eipq/~

(72) �n = �/n

(73) hAi = 1

Z
Tr[⇢̂Â]

(74) Â = Â(q)
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Sampling the partition function
• How to sample the partition function and get ensemble averages?
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(79) Z ⇡ 1

(2⇡~)Nn

Z
dpNn

Z
dqNn exp

�Hn(q,p)

nkBT

�

(80) HP (x,p) =
NX

I

PX

k

"
[p(k)

I ]2

2MI
+

MI!
2
P

2
(x(k)

I � x

(k+1)
I )2

#
+

PX

k

V (x(k)),
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Note that these are fictitious (sampling) masses 
Could be set to any value!
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Sampling the partition function
• How to sample the partition function and get ensemble averages?
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(67) eÂ+B̂ = lim
n!1

[eÂ/2neB̂/neÂ/2n]n
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Can be sampled by Monte Carlo
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(68) ⇢(q, q0,�) = hq0| exp(��Ĥ)|qi = hq0|⇢̂(�)|qi
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• Reintroduce momenta
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(77) P (x1, 0;x2,�i�~) = |hx1|Û(�i�~)|x2i|2 = |hx1|⇢̂(�)|x2i|2

(78) Z = Tr(⇢̂) = hq| exp(�Ĥ)|qi
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Note that these are fictitious (sampling) masses 
Could be set to any value!
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• Partition function of a classical ring polymer with Hamiltonian
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Can be sampled by Molecular Dynamics
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Properties and estimators

Classic Quantum
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(73) P (q, 0; q0, t) = |hq0|Û(t)|qi|2
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(73) P (q, 0; q0, t) = |hq0|Û(t)|qi|2
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Z
dq|qihq|

(77) hx1|Û(t)|x2i /
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ṗ = �@V

@R
�
Z t

1
K(t� ⌧)p(⌧) + ⇣(t)(90)

(91) H(t) = h⇣(t)⇣(0)i = kBTK(t)

(92) ApCp +CpA
T
p = BpB

T
p

(93) Cp = h(p, s)T (p, s)i



Properties and estimators

Classic Quantum

iτ

q2

q3

q4

q5

q6

q

q1

BRIEF ARTICLE 7

1 =

✓
�n
2⇡m

◆1/2 Z
dpk e

��np2k/2m

Zn =
1

(2⇡~)n

Z
dp

Z
dqe��n

P
k[

p2k
2m+m!2

n(qk�qk�1)2+V (qk)] =
1

(2⇡~)n

Z
dp

Z
dqe��nHn

Hn =
X

k

[
p2k
2m

+m!2
n(qk � qk�1)

2 + V (qk)]

(70) hq|pi = 1p
2⇡

eipq/~

(71) �n = �/n

(72) hÂi = 1
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(77) P (x1, 0;x2,�i�~) = |hx1|Û(�i�~)|x2i|2 = |hx1|⇢̂(�)|x2i|2

(78) Z = Tr(⇢̂) = hq| exp(�Ĥ)|qi
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(79) P (x1, 0;x2,�i�~) = |hx1|Û(�i�~)|x2i|2 = |hx1|⇢̂(�)|x2i|2

BRIEF ARTICLE 7

1 =

✓
�n
2⇡m

◆1/2 Z
dpk e

��np2k/2m

Zn =
1

(2⇡~)n

Z
dp

Z
dqe��n

P
k[

p2k
2m+m!2

n(qk�qk�1)2+V (qk)] =
1

(2⇡~)n

Z
dp

Z
dqe��nHn

Hn =
X

k

[
p2k
2m

+m!2
n(qk � qk�1)

2 + V (qk)]

Hn =
nX

k=1

NX

j=1

[
(pj

k)
2

2mj
+m!2

n(q
j
k � q

j
k�1)

2] +
nX

k=1

V (q1
k,q

2
k, . . .q

N
k )

(70) p̃

j
s =

nX

k=1

p

j
kCks q̃

j
s =

nX

k=1

q

j
kCks

H =
p2

2m
+ V (q)

V (q) = m!2
harmq2 !harm !s

m!

2

(71) hq|pi = 1p
2⇡

eipq/~

(72) �n = �/n

(73) hAi = 1

Z
Tr[⇢̂Â]
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Ṙ = p/m(87)
✓
ṗ
ṡ
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• Each bead evolves at temperature nT 	


• n determined by how “quantum” the 

problem is	


•            

(typically between 10 and 100)	
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ṡ

◆
=

✓�V 0(x)
0

◆
�
✓
app a

T
p

ap A

◆✓
p
s

◆
+

✓
bpp b

T
p

bp B

◆�
⇠
�

(88)
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cAB(t) = Tr[e��ĤÂ(0)B̂(t)](116)

c̃AB(t) =
1

�

Z �

0
c�AB(t)(117)

c�AB(t) = Tr[e�(���)ĤÂ(0)e��ĤB̂(t)](118)
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cAB(t) = Tr[e��ĤÂ(0)B̂(t)](116)

c̃AB(t) =
1

�

Z �

0
c�AB(t)(117)

c�AB(t) = Tr[e�(���)ĤÂ(0)e��ĤB̂(t)](118)
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Else: complicated — open paths, etc.  
                (e.g. Lin, Morrone, Car PRL 105, 110602)
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is the position of the centroid. In Fig. 1, one sees that up to
64 beads (64 replicas of the system) are necessary to fully converge the quantities. This
would be prohibitive for the use with first principles potential energy surfaces. One way to
reduce the number of beads necessary to converge static (average) properties is to attach
properly tuned thermostats based on the generalized langevin equation to the beads of
the ring polymer, as proposed in Ref. [10]. This is what is shown in red in Fig. 1, where
one achieves convergence already with 8 replicas. Due to the computational resources
available, we will only be able to perform calculations with 4 beads.

• Server: An example of an input file for i-PI can be found inside the exercise_3/
folder, called input.xml. It is an xml file, which is quite intuitive to learn. The
input is not complete. Please take your time to understand the keywords that are
there and consult the i-PI manual found in $HANDSON/doc/manual.pdf.
Besides setting the number of beads (4), there are two other fields that should be
completed in the file: The field address about the socket communication and the
field of the thermostat.

1. We will be using UNIX domain sockets here, since we will be running both
server and client in the same machine. Just write in the <address> field a
string of your choice, e.g. ipam-2014-h5o2 . In the input there is a commented
block with an example of how it would look if we would use internet sockets
communicating with the local host. If using in di�erent machines or nodes, one
would have to give a proper IP address at the "address” field.

2. The thermostat parameters can be found in
https://epfl-cosmo.github.io/gle4md/.
Choose the parameters in the website like it
is shown in the picture and paste it into the
relevant section of the i-PI input file.

More detailed instructions about the input file can be found in manual of i-PI, in
Sec. 5.1.2.

• Client: The keyword to add to the control.in file that is in the exercise_3 folder
of FHI-aims is
use_pimd_wrapper hostaddress portnumber
where hostaddress should be substituted by the address (IP or name) of the server
and portnumber by the number of the port with which it should communicate.
Since we are using UNIX domain sockets, one can just put a dummy number on the
portnumber field. In the hostaddress field write, for example, UNIX:ipam-2014-h5o2,
i.e., the only constrain is that the string after the semicolon matches the address
field in the i-PI input file.
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input is not complete. Please take your time to understand the keywords that are
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1. We will be using UNIX domain sockets here, since we will be running both
server and client in the same machine. Just write in the <address> field a
string of your choice, e.g. ipam-2014-h5o2 . In the input there is a commented
block with an example of how it would look if we would use internet sockets
communicating with the local host. If using in di�erent machines or nodes, one
would have to give a proper IP address at the "address” field.

2. The thermostat parameters can be found in
https://epfl-cosmo.github.io/gle4md/.
Choose the parameters in the website like it
is shown in the picture and paste it into the
relevant section of the i-PI input file.

More detailed instructions about the input file can be found in manual of i-PI, in
Sec. 5.1.2.

• Client: The keyword to add to the control.in file that is in the exercise_3 folder
of FHI-aims is
use_pimd_wrapper hostaddress portnumber
where hostaddress should be substituted by the address (IP or name) of the server
and portnumber by the number of the port with which it should communicate.
Since we are using UNIX domain sockets, one can just put a dummy number on the
portnumber field. In the hostaddress field write, for example, UNIX:ipam-2014-h5o2,
i.e., the only constrain is that the string after the semicolon matches the address
field in the i-PI input file.
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available, we will only be able to perform calculations with 4 beads.
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folder, called input.xml. It is an xml file, which is quite intuitive to learn. The
input is not complete. Please take your time to understand the keywords that are
there and consult the i-PI manual found in $HANDSON/doc/manual.pdf.
Besides setting the number of beads (4), there are two other fields that should be
completed in the file: The field address about the socket communication and the
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1. We will be using UNIX domain sockets here, since we will be running both
server and client in the same machine. Just write in the <address> field a
string of your choice, e.g. ipam-2014-h5o2 . In the input there is a commented
block with an example of how it would look if we would use internet sockets
communicating with the local host. If using in di�erent machines or nodes, one
would have to give a proper IP address at the "address” field.

2. The thermostat parameters can be found in
https://epfl-cosmo.github.io/gle4md/.
Choose the parameters in the website like it
is shown in the picture and paste it into the
relevant section of the i-PI input file.

More detailed instructions about the input file can be found in manual of i-PI, in
Sec. 5.1.2.

• Client: The keyword to add to the control.in file that is in the exercise_3 folder
of FHI-aims is
use_pimd_wrapper hostaddress portnumber
where hostaddress should be substituted by the address (IP or name) of the server
and portnumber by the number of the port with which it should communicate.
Since we are using UNIX domain sockets, one can just put a dummy number on the
portnumber field. In the hostaddress field write, for example, UNIX:ipam-2014-h5o2,
i.e., the only constrain is that the string after the colon matches the address field
in the i-PI input file.
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The Nuts and Bolts of the PIMD simulation

iτ

• For a system of N distinguishable particles: 

• Problem is exactly like (ab initio) molecular dynamics, but involving several 
replicas of the system

atom index

bead index

potential,	


e.g. from first-principles  

electronic structure

V(q1, q2)

V(q11, q12)

V(q21, q22)

V(q31, q32)

V(q41, q42)

V(q51, q52)

V(q61, q62)

q1 q2

q11
q21

q12

q22

q32

q61
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Z
dq|qihq|

BRIEF ARTICLE 7

Zn = Tr[⇢̂(�)] =

Z
dq⇢(q, q,�) =

1

(2⇡~)n

✓
2⇡m

�n

◆n/2 Z
dq1 . . . dqne

��n
P

k[V (qk)+m!2
n(qk�qk�1)2]

Z = lim
n!1

Zn

qn = q0 = q q0 = q qn = q0 !n = 1/(�n~)

1 =

✓
�n
2⇡m

◆1/2 Z
dpk e

��np2k/2m

Zn =
1

(2⇡~)n

Z
dp

Z
dqe��n

P
k[

p2k
2m+m!2

n(qk�qk�1)2+V (qk)] =
1

(2⇡~)n

Z
dp

Z
dqe��nHn

Hn =
X

k

[
p2k
2m

+m!2
n(qk � qk�1)

2 + V (qk)]

Hn =
nX

k=1

NX

j=1

[
(pj

k)
2

2mj
+

1

2
mj!2

n(q
j
k � q

j
k�1)

2] +
nX

k=1

V (q1
k,q

2
k, . . .q

N
k )

(70) p̃

j
s =

nX

k=1

p

j
kCks q̃

j
s =

nX

k=1

q

j
kCks

(71) Hn = H0 +HV

(72) eiL�t ' eiLV �t/2eiL0�teiLV �t/2

H =
p2

2m
+ V (q)

V (q) = m!2
harmq2 !harm !s

m!

2

(73) hq|pi = 1p
2⇡

eipq/~

(74) �n = �/n

(75) hAi = 1

Z
Tr[⇢̂Â]
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Ṙ = p/m(85)
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Â
=

Â
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For a harmonic oscillator at 300K with 32 beads

BRIEF ARTICLE 7

1 =

✓
�n
2⇡m

◆1/2 Z
dpk e

��np2k/2m

Zn =
1

(2⇡~)n

Z
dp

Z
dqe��n

P
k[

p2k
2m+m!2

n(qk�qk�1)2+V (qk)] =
1

(2⇡~)n

Z
dp

Z
dqe��nHn

Hn =
X

k

[
p2k
2m

+m!2
n(qk � qk�1)

2 + V (qk)]

Hn =
nX

k=1

NX

j=1

[
(pjk)

2

2mj
+m!2

n(q
j
k � qjk�1)

2] +
nX

k=1

V (q1k, q
2
k, . . . q

N
k )

H =
p2

2m
+ V (q)

V (q) = m!2
harm(q � q0)

2 !harm !s

(70) hq|pi = 1p
2⇡

eipq/~

(71) �n = �/n

(72) hAi = 1

Z
Tr[⇢̂Â]
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(76) Î =
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(73) Â = Â(q)
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• Could be painful to integrate the  
high frequencies numerically  
(would need small time steps)

BRIEF ARTICLE 7

1 =

✓
�n
2⇡m

◆1/2 Z
dpk e

��np2k/2m

Zn =
1

(2⇡~)n

Z
dp

Z
dqe��n

P
k[

p2k
2m+m!2

n(qk�qk�1)2+V (qk)] =
1

(2⇡~)n

Z
dp

Z
dqe��nHn

Hn =
X

k

[
p2k
2m

+m!2
n(qk � qk�1)

2 + V (qk)]

Hn =
nX

k=1

NX

j=1

[
(pj

k)
2

2mj
+m!2

n(q
j
k � q

j
k�1)

2] +
nX

k=1

V (q1
k,q

2
k, . . .q

N
k )

(70) p̃

j
s =

nX

k=1

p

j
kCks q̃

j
s =

nX

k=1

q

j
kCks

H =
p2

2m
+ V (q)

V (q) = m!2
harmq2 !harm !s

(71) hq|pi = 1p
2⇡

eipq/~

(72) �n = �/n

(73) hAi = 1

Z
Tr[⇢̂Â]
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(77) Î =
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Such that:

We can also split the operator

And the pieces do not commute
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• Small digression about the Liouville operator
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For a quantity a evolving by 
Hamiltonian dynamics (in 1D):
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One can define the Liouville 
operator L:
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Such that:

We can also split the operator

And the pieces do not commute
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In order to apply it 
piecewise, must again 
do a Trotter splitting

For microcanical dynamics, 
the (second order) Trotter 
splitting leads to the Verlet 

algorithm



Integrating PIMD Equations of Motion

• How to integrate the PIMD equations of motion efficiently?
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• Hamiltonian dynamics can be evolved with the Liouville operator, which here 
can be factorized in the following way:
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Involves HV Involves H0
Involves HV

The middle step can be computed analytically  
(especially easy in the normal mode representation)  

⇒ Resulting dynamics of a free particle would be independent of time step

Attention: In a real system modes couple (resonate) — maximum time step is constrained!
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Integrating PIMD Equations of Motion

• The actual scheme for integrating then becomes:
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• How can we reduce the number of beads needed for computation?

Some last considerations: reduce computational cost

• Ring polymer contraction 
 
Markland, Manolopoulos, CPL 464, 256 (2008)	



!

• Using higher order integrators (and better estimators)  
 
Jang, Jang, Voth, JCP 115 , 7832 (2001)	



!

• Smart thermostatting of internal modes (generalized Langevin 
equation based colored noise thermostats) 
 
Ceriotti, Parinello, Markland, Manolopoulos, JCP 133, 124104 (2010)
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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A path-integral Car-Parrinello molecular dynamics simulation of liquid water and ice is performed. It is
found that the inclusion of nuclear quantum effects systematically improves the agreement of first-
principles simulations of liquid water with experiment. In addition, the proton momentum distribution is
computed utilizing a recently developed open path-integral molecular dynamics methodology. It is shown
that these results are in good agreement with experimental data.

DOI: 10.1103/PhysRevLett.101.017801 PACS numbers: 61.20.Ja, 71.15.Pd

Because of the fundamental importance of water in the
physical and biological sciences, understanding its micro-
scopic structure is an issue of long-standing interest.
Elucidating the local environment of the protons is par-
ticularly intriguing due to their crucial role in hydrogen
bonding. Nuclear quantum effects significantly impact the
behavior of water, which is indicated by the variation of
many properties when protons are substituted with deute-
rium (D) or tritium (T). For example, the melting point of
heavy water (D2O) is 3.82 K higher than that of light (H2O)
water, and this effect is more pronounced in tritiated water
(T2O) [1], providing evidence that quantum effects desta-
bilize the hydrogen bond network.

Recently, the equilibrium state of the protons in water
and ice has been probed by neutron Compton scattering
experiments [2]. This technique measures the proton mo-
mentum distribution [3], thereby providing complementary
information to what is garnered from diffraction techniques
that measure the spatial correlations among the nuclear
positions [4–7]. Because of the noncommuting character
of position and momentum operators in quantum mechan-
ics, the proton momentum distribution is sensitive to the
local environment. In particular, the differences in the
momentum distribution of the solid and liquid water phases
reflect the breaking and distortion of hydrogen bonds that
occurs upon melting. In systems such as confined water
[8,9] and the quantum ferroelectric potassium phosphate
[10], the momentum distribution provides signatures of
tunneling and delocalization.

Molecular simulations with quantum nuclei are made
feasible by the Feynman path-integral representation of the
equilibrium density matrix at finite temperature. This ap-
proach has been used in conjunction with empirical force
fields in studies [11–13] showing that quantum fluctuations
soften the structure of liquid water. The effect is illustrated
by a broadening of the radial distribution functions (RDF)
compared to those generated from classical nuclei.
Interestingly, these works indicated that quantum nuclei
affect the structure in a similar way to a temperature
increase in a classical simulation. Recently, empirical force

fields have been employed within ‘‘open’’ path-integral
molecular dynamics methodologies to compute the proton
momentum distribution in ice and water [13–15]. The
calculated distribution, while in agreement with experi-
ment in many respects, did not reproduce the shorter tail
that is observed in ice, signaling a lack of transferability of
the empirical potentials. The faster decaying ice distribu-
tion reflects a red-shift of the OH stretch frequency that is a
consequence of the recovery of an intact hydrogen bond
network upon freezing.

To investigate whether this effect can be reproduced in
ab initio simulations, we perform an ‘‘open’’ path-integral
Car-Parrinello molecular dynamics (PI CPMD) [16] study
of water in the liquid and solid phases. In this approach the
nuclear potential energy surface is derived on the fly from
the instantaneous ground state of the electrons within
density functional theory (DFT). Our study is also moti-
vated by a previous, pioneering PI CPMD simulation of
liquid water [17]. This study reached the counterintuitive
conclusion that nuclear quantum effects harden the struc-
ture of the liquid in comparison to classical CPMD simu-
lations at the same temperature. Numerous studies have
shown that such simulations generate an overstructured
liquid [12,18,19]. Consequently, nuclear quantum effects
would increase the discrepancy between experiment and
simulation. If correct, this result would have severe impli-
cations for the accuracy of current DFT approximations of
water.

In this work we use a combination of closed and open
Feynman paths to compute the pair correlation functions
and the momentum distribution. We find that the liquid is
significantly less structured than in computations utilizing
an identical electronic structure description with classical
nuclei, in qualitative agreement with experimental isotope
effects and previous force field studies. The computed
proton momentum distributions are in good agreement
with experiment and, unlike in empirical force field based
studies, the difference between the liquid and the solid
observed in experiment is reproduced. Remaining devia-
tions from experiment suggest overbinding in the hydrogen
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Structure and Dynamics of a Proton Wire: A Theoretical Study of H+
Translocation along the Single-File Water Chain in the Gramicidin
A Channel

Regis Pomes and Benoit Roux
Groupe de Recherche en Transport Membranaire, Departements de Physique et de Chimie, Universit6 de Montr6al, Montr6al,
Qu6bec H3C 3J7 Canada

ABSTRACT The rapid translocation of H+ along a chain of hydrogen-bonded water molecules, or proton wire, is thought to
be an important mechanism for proton permeation through transmembrane channels. Computer simulations are used to
study the properties of the proton wire formed by the single-file waters in the gramicidin A channel. The model includes the
polypeptidic dimer, with 22 water molecules and one excess proton. The dissociation of the water molecules is taken into
account by the "polarization model" of Stillinger and co-workers. The importance of quantum effects due to the light mass
of the hydrogen nuclei is examined with the use of discretized Feynman path integral molecular dynamics simulations. Results
show that the presence of an excess proton in the pore orients the single-file water molecules and affects the geometry of
water-water hydrogen bonding interactions. Rather than a well-defined hydronium ion OH' in the single-file region, the
protonated species is characterized by a strong hydrogen bond resembling that of 02H5 . The quantum dispersion of protons

has a small but significant effect on the equilibrium structure of the hydrogen-bonded water chain. During classical
trajectories, proton transfer between consecutive water molecules is a very fast spontaneous process that takes place in the
subpicosecond time scale. The translocation along extended regions of the chain takes place neither via a totally concerted
mechanism in which the donor-acceptor pattern would flip over the entire chain in a single step, nor via a succession of
incoherent hops between well-defined intermediates. Rather, proton transfer in the wire is a semicollective process that
results from the subtle interplay of rapid hydrogen-bond length fluctuations along the water chain. These rapid structural
fluctuations of the protonated single file of waters around an average position and the slow movements of the average
position of the excess proton along the channel axis occur on two very different time scales. Ultimately, it is the slow
reorganization of hydrogen bonds between single-file water molecules and channel backbone carbonyl groups that, by
affecting the connectivity and the dynamics of the single-file water chain, also limits the translocation of the proton across the
pore.

INTRODUCTION
Unique properties are displayed by proton translocation
phenomena across biological membranes, implying that the
mechanism underlying the conduction of protons is radi-
cally different from that of other ions (Levitt, 1984). Trans-
port through the simple transmembrane channel formed by
the gramicidin A molecule (GA) offers a particularly strik-
ing example of this phenomenon (Hladky and Haydon,
1972). The measured channel conductance to H+ (530
pmho; see Akeson and Deamer, 1991) is more than 15 times
that to potassium (29 pmho). [The maximum conductance
to K+ is approximately 29 pmho, based on previous exper-
imental results (Hladky and Haydon, 1972; Finkelstein and
Andersen, 1981; see also Roux and Karplus, 1991).] As
shown in Table 1, such a difference is much larger than
would be expected simply from the ratio of the mobility of
these ions in bulk water. This is all the more remarkable,
because the size of K+ is similar to that of a hydronium ion
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OH+. In fact, diffusion constants inside the pore deduced
from experimental data suggest that protons move almost
eight times as fast as water molecules themselves (see Table
1). Because of the narrowness of the pore, permeating
waters or ions cannot pass each other inside the GA channel,
and they must move in single file (Finkelstein and
Andersen, 1981). The transport of a cation such as potas-
sium is limited by the displacement of the single file of
water molecules inside the channel; as shown in Table 1, the
estimated diffusion constants of potassium ion or a water
molecule inside the channel are nearly equivalent. In con-
trast, translocation of a proton does not in principle require
the displacement of the single file of water molecules.
Instead, the rapid translocation of protons across the GA
channel is thought to occur through a succession of hops
along the single file of hydrogen-bonded water molecules,
which acts effectively as a proton wire (Hille, 1992).
The concept of proton wires was first introduced by

Nagle and Morowitz to account for the fast conductance of
protons along chains of hydrogen-bonded protonable groups
in biological systems (Nagle and Morowitz, 1978) and
includes the single file of water molecules that fill the
narrow channels of transmembrane pores such as the GA
channel (Akeson and Deamer, 1991). However, the biolog-
ical relevance of water proton wires extends beyond the
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.
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Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.

Author contributions: X.-Z.L. B.W., and A.M. designed research; X.-Z.L. and B.W.
performed research; X.-Z.L., B.W., and A.M. analyzed data; and X.-Z.L., B.W., and A.M.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: angelos.michaelides@ucl.ac.uk.

www.pnas.org/cgi/doi/10.1073/pnas.1016653108 PNAS ∣ April 19, 2011 ∣ vol. 108 ∣ no. 16 ∣ 6369–6373

CH
EM

IS
TR

Y

Nuclear Quantum Effects in Water

Joseph A. Morrone
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Roberto Car*
Department of Chemistry and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 25 March 2008; published 1 July 2008)

A path-integral Car-Parrinello molecular dynamics simulation of liquid water and ice is performed. It is
found that the inclusion of nuclear quantum effects systematically improves the agreement of first-
principles simulations of liquid water with experiment. In addition, the proton momentum distribution is
computed utilizing a recently developed open path-integral molecular dynamics methodology. It is shown
that these results are in good agreement with experimental data.
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Because of the fundamental importance of water in the
physical and biological sciences, understanding its micro-
scopic structure is an issue of long-standing interest.
Elucidating the local environment of the protons is par-
ticularly intriguing due to their crucial role in hydrogen
bonding. Nuclear quantum effects significantly impact the
behavior of water, which is indicated by the variation of
many properties when protons are substituted with deute-
rium (D) or tritium (T). For example, the melting point of
heavy water (D2O) is 3.82 K higher than that of light (H2O)
water, and this effect is more pronounced in tritiated water
(T2O) [1], providing evidence that quantum effects desta-
bilize the hydrogen bond network.

Recently, the equilibrium state of the protons in water
and ice has been probed by neutron Compton scattering
experiments [2]. This technique measures the proton mo-
mentum distribution [3], thereby providing complementary
information to what is garnered from diffraction techniques
that measure the spatial correlations among the nuclear
positions [4–7]. Because of the noncommuting character
of position and momentum operators in quantum mechan-
ics, the proton momentum distribution is sensitive to the
local environment. In particular, the differences in the
momentum distribution of the solid and liquid water phases
reflect the breaking and distortion of hydrogen bonds that
occurs upon melting. In systems such as confined water
[8,9] and the quantum ferroelectric potassium phosphate
[10], the momentum distribution provides signatures of
tunneling and delocalization.

Molecular simulations with quantum nuclei are made
feasible by the Feynman path-integral representation of the
equilibrium density matrix at finite temperature. This ap-
proach has been used in conjunction with empirical force
fields in studies [11–13] showing that quantum fluctuations
soften the structure of liquid water. The effect is illustrated
by a broadening of the radial distribution functions (RDF)
compared to those generated from classical nuclei.
Interestingly, these works indicated that quantum nuclei
affect the structure in a similar way to a temperature
increase in a classical simulation. Recently, empirical force

fields have been employed within ‘‘open’’ path-integral
molecular dynamics methodologies to compute the proton
momentum distribution in ice and water [13–15]. The
calculated distribution, while in agreement with experi-
ment in many respects, did not reproduce the shorter tail
that is observed in ice, signaling a lack of transferability of
the empirical potentials. The faster decaying ice distribu-
tion reflects a red-shift of the OH stretch frequency that is a
consequence of the recovery of an intact hydrogen bond
network upon freezing.

To investigate whether this effect can be reproduced in
ab initio simulations, we perform an ‘‘open’’ path-integral
Car-Parrinello molecular dynamics (PI CPMD) [16] study
of water in the liquid and solid phases. In this approach the
nuclear potential energy surface is derived on the fly from
the instantaneous ground state of the electrons within
density functional theory (DFT). Our study is also moti-
vated by a previous, pioneering PI CPMD simulation of
liquid water [17]. This study reached the counterintuitive
conclusion that nuclear quantum effects harden the struc-
ture of the liquid in comparison to classical CPMD simu-
lations at the same temperature. Numerous studies have
shown that such simulations generate an overstructured
liquid [12,18,19]. Consequently, nuclear quantum effects
would increase the discrepancy between experiment and
simulation. If correct, this result would have severe impli-
cations for the accuracy of current DFT approximations of
water.

In this work we use a combination of closed and open
Feynman paths to compute the pair correlation functions
and the momentum distribution. We find that the liquid is
significantly less structured than in computations utilizing
an identical electronic structure description with classical
nuclei, in qualitative agreement with experimental isotope
effects and previous force field studies. The computed
proton momentum distributions are in good agreement
with experiment and, unlike in empirical force field based
studies, the difference between the liquid and the solid
observed in experiment is reproduced. Remaining devia-
tions from experiment suggest overbinding in the hydrogen
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Structure and Dynamics of a Proton Wire: A Theoretical Study of H+
Translocation along the Single-File Water Chain in the Gramicidin
A Channel

Regis Pomes and Benoit Roux
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ABSTRACT The rapid translocation of H+ along a chain of hydrogen-bonded water molecules, or proton wire, is thought to
be an important mechanism for proton permeation through transmembrane channels. Computer simulations are used to
study the properties of the proton wire formed by the single-file waters in the gramicidin A channel. The model includes the
polypeptidic dimer, with 22 water molecules and one excess proton. The dissociation of the water molecules is taken into
account by the "polarization model" of Stillinger and co-workers. The importance of quantum effects due to the light mass
of the hydrogen nuclei is examined with the use of discretized Feynman path integral molecular dynamics simulations. Results
show that the presence of an excess proton in the pore orients the single-file water molecules and affects the geometry of
water-water hydrogen bonding interactions. Rather than a well-defined hydronium ion OH' in the single-file region, the
protonated species is characterized by a strong hydrogen bond resembling that of 02H5 . The quantum dispersion of protons

has a small but significant effect on the equilibrium structure of the hydrogen-bonded water chain. During classical
trajectories, proton transfer between consecutive water molecules is a very fast spontaneous process that takes place in the
subpicosecond time scale. The translocation along extended regions of the chain takes place neither via a totally concerted
mechanism in which the donor-acceptor pattern would flip over the entire chain in a single step, nor via a succession of
incoherent hops between well-defined intermediates. Rather, proton transfer in the wire is a semicollective process that
results from the subtle interplay of rapid hydrogen-bond length fluctuations along the water chain. These rapid structural
fluctuations of the protonated single file of waters around an average position and the slow movements of the average
position of the excess proton along the channel axis occur on two very different time scales. Ultimately, it is the slow
reorganization of hydrogen bonds between single-file water molecules and channel backbone carbonyl groups that, by
affecting the connectivity and the dynamics of the single-file water chain, also limits the translocation of the proton across the
pore.

INTRODUCTION
Unique properties are displayed by proton translocation
phenomena across biological membranes, implying that the
mechanism underlying the conduction of protons is radi-
cally different from that of other ions (Levitt, 1984). Trans-
port through the simple transmembrane channel formed by
the gramicidin A molecule (GA) offers a particularly strik-
ing example of this phenomenon (Hladky and Haydon,
1972). The measured channel conductance to H+ (530
pmho; see Akeson and Deamer, 1991) is more than 15 times
that to potassium (29 pmho). [The maximum conductance
to K+ is approximately 29 pmho, based on previous exper-
imental results (Hladky and Haydon, 1972; Finkelstein and
Andersen, 1981; see also Roux and Karplus, 1991).] As
shown in Table 1, such a difference is much larger than
would be expected simply from the ratio of the mobility of
these ions in bulk water. This is all the more remarkable,
because the size of K+ is similar to that of a hydronium ion
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OH+. In fact, diffusion constants inside the pore deduced
from experimental data suggest that protons move almost
eight times as fast as water molecules themselves (see Table
1). Because of the narrowness of the pore, permeating
waters or ions cannot pass each other inside the GA channel,
and they must move in single file (Finkelstein and
Andersen, 1981). The transport of a cation such as potas-
sium is limited by the displacement of the single file of
water molecules inside the channel; as shown in Table 1, the
estimated diffusion constants of potassium ion or a water
molecule inside the channel are nearly equivalent. In con-
trast, translocation of a proton does not in principle require
the displacement of the single file of water molecules.
Instead, the rapid translocation of protons across the GA
channel is thought to occur through a succession of hops
along the single file of hydrogen-bonded water molecules,
which acts effectively as a proton wire (Hille, 1992).
The concept of proton wires was first introduced by

Nagle and Morowitz to account for the fast conductance of
protons along chains of hydrogen-bonded protonable groups
in biological systems (Nagle and Morowitz, 1978) and
includes the single file of water molecules that fill the
narrow channels of transmembrane pores such as the GA
channel (Akeson and Deamer, 1991). However, the biolog-
ical relevance of water proton wires extends beyond the
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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A path-integral Car-Parrinello molecular dynamics simulation of liquid water and ice is performed. It is
found that the inclusion of nuclear quantum effects systematically improves the agreement of first-
principles simulations of liquid water with experiment. In addition, the proton momentum distribution is
computed utilizing a recently developed open path-integral molecular dynamics methodology. It is shown
that these results are in good agreement with experimental data.
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Because of the fundamental importance of water in the
physical and biological sciences, understanding its micro-
scopic structure is an issue of long-standing interest.
Elucidating the local environment of the protons is par-
ticularly intriguing due to their crucial role in hydrogen
bonding. Nuclear quantum effects significantly impact the
behavior of water, which is indicated by the variation of
many properties when protons are substituted with deute-
rium (D) or tritium (T). For example, the melting point of
heavy water (D2O) is 3.82 K higher than that of light (H2O)
water, and this effect is more pronounced in tritiated water
(T2O) [1], providing evidence that quantum effects desta-
bilize the hydrogen bond network.

Recently, the equilibrium state of the protons in water
and ice has been probed by neutron Compton scattering
experiments [2]. This technique measures the proton mo-
mentum distribution [3], thereby providing complementary
information to what is garnered from diffraction techniques
that measure the spatial correlations among the nuclear
positions [4–7]. Because of the noncommuting character
of position and momentum operators in quantum mechan-
ics, the proton momentum distribution is sensitive to the
local environment. In particular, the differences in the
momentum distribution of the solid and liquid water phases
reflect the breaking and distortion of hydrogen bonds that
occurs upon melting. In systems such as confined water
[8,9] and the quantum ferroelectric potassium phosphate
[10], the momentum distribution provides signatures of
tunneling and delocalization.

Molecular simulations with quantum nuclei are made
feasible by the Feynman path-integral representation of the
equilibrium density matrix at finite temperature. This ap-
proach has been used in conjunction with empirical force
fields in studies [11–13] showing that quantum fluctuations
soften the structure of liquid water. The effect is illustrated
by a broadening of the radial distribution functions (RDF)
compared to those generated from classical nuclei.
Interestingly, these works indicated that quantum nuclei
affect the structure in a similar way to a temperature
increase in a classical simulation. Recently, empirical force

fields have been employed within ‘‘open’’ path-integral
molecular dynamics methodologies to compute the proton
momentum distribution in ice and water [13–15]. The
calculated distribution, while in agreement with experi-
ment in many respects, did not reproduce the shorter tail
that is observed in ice, signaling a lack of transferability of
the empirical potentials. The faster decaying ice distribu-
tion reflects a red-shift of the OH stretch frequency that is a
consequence of the recovery of an intact hydrogen bond
network upon freezing.

To investigate whether this effect can be reproduced in
ab initio simulations, we perform an ‘‘open’’ path-integral
Car-Parrinello molecular dynamics (PI CPMD) [16] study
of water in the liquid and solid phases. In this approach the
nuclear potential energy surface is derived on the fly from
the instantaneous ground state of the electrons within
density functional theory (DFT). Our study is also moti-
vated by a previous, pioneering PI CPMD simulation of
liquid water [17]. This study reached the counterintuitive
conclusion that nuclear quantum effects harden the struc-
ture of the liquid in comparison to classical CPMD simu-
lations at the same temperature. Numerous studies have
shown that such simulations generate an overstructured
liquid [12,18,19]. Consequently, nuclear quantum effects
would increase the discrepancy between experiment and
simulation. If correct, this result would have severe impli-
cations for the accuracy of current DFT approximations of
water.

In this work we use a combination of closed and open
Feynman paths to compute the pair correlation functions
and the momentum distribution. We find that the liquid is
significantly less structured than in computations utilizing
an identical electronic structure description with classical
nuclei, in qualitative agreement with experimental isotope
effects and previous force field studies. The computed
proton momentum distributions are in good agreement
with experiment and, unlike in empirical force field based
studies, the difference between the liquid and the solid
observed in experiment is reproduced. Remaining devia-
tions from experiment suggest overbinding in the hydrogen
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When two phases of water are at equilibrium, the ratio of hydro-
gen isotopes in each is slightly altered because of their different
phase affinities. This isotopic fractionation process can be utilized
to analyze water’s movement in the world’s climate. Herewe show
that equilibrium fractionation ratios, an entirely quantummechan-
ical property, also provide a sensitive probe to assess the magni-
tude of nuclear quantum fluctuations in water. By comparing the
predictions of a series of water models, we show that those
describing the OH chemical bond as rigid or harmonic greatly over-
predict the magnitude of isotope fractionation. Models that
account for anharmonicity in this coordinate are shown to provide
much more accurate results because of their ability to give partial
cancellation between inter- and intramolecular quantum effects.
These results give evidence of the existence of competing quantum
effects in water and allow us to identify how this cancellation
varies across a wide-range of temperatures. In addition, this work
demonstrates that simulation can provide accurate predictions and
insights into hydrogen fractionation.

Water within Earth’s atmosphere is naturally composed of
the stable hydrogen isotopes hydrogen (H) and deuterium

(D). During cycles of evaporation, condensation, and precipita-
tion, these isotopes naturally undergo partial separation due to
their differing masses, thereby leading to different H/D ratios
in the two phases. This process of fractionation has a number of
fortuitous consequences, which are utilized in hydrology and
geology. For instance, by comparing the ratio of H to D, one can
estimate the origins of a water sample, the temperature at which
it was formed, and the altitude at which precipitation occurred (1,
2). Equilibrium fractionation, where the two phases are allowed
to equilibrate their H/D ratio, is entirely a consequence of the
effects of quantum mechanical fluctuations on water’s hydrogen
bond network. Quantum mechanical effects such as zero-point
energy and tunneling are larger for H due to its lower mass.

Despite numerous studies, the extent to which quantum fluc-
tuations affect water’s structure and dynamics remains a subject
of considerable debate. It has long been appreciated that one ef-
fect of quantum fluctuations in water is the disruption of hydro-
gen bonding, leading to destructuring of the liquid and faster
dynamics (3–6). However, more recent work has suggested that
a competing quantum effect may exist in water (7, 8), namely that
the quantum kinetic energy in the OH covalent bond allows it
to stretch and form shorter and stronger hydrogen bonds, which
partially cancels the disruptive effect. This hydrogen bond
strengthening has only been recently appreciated, as many origi-
nal studies drew their conclusions based on models with rigid or
harmonic bonds, which are unable to describe this behavior. The
degree of quantum effect cancellation depends sensitively on the
anharmonicity of the OH stretch and the temperature. These
parameters tune the balance between the lower frequency hydro-
gen bonding disruption, which will dominate at lower tempera-
tures, and the higher frequency hydrogen bond strengthening
effect, which will dominate at higher temperatures when rota-
tions become essentially classical.

If such a large degree of cancellation existed at ambient tem-
perature, it would be highly fortuitous both in terms of the bio-
logical effects of heavy water, which is only mildy toxic to humans

(9), as well as the ability to use heavy solvents in two-dimensional-
IR and NMR spectroscopies, where deuteration is assumed not
to dramatically alter the structure or dynamics observed. How-
ever, the size of this cancellation remains elusive because empiri-
cal quantum models of water are typically fit to reproduce its
properties when used in path integral simulations and the two
ab initio path integral studies performed have not produced a
consistent picture (7, 10). In addition, many of these simulation
studies compare the properties of water to those of its classical
counterpart, but classical water is physically unrealizable even at
relatively high temperatures, because water still has significant
quantum effects present in its vibrations.

In this paper, we use equilibrium fractionation ratios as a sen-
sitive probe to assess the magnitude of quantum mechanical ef-
fects in water. Fractionation ratios can be directly related to
quantum kinetic energy differences between H and D in liquid
water and its vapor and can be calculated exactly for a given water
potential energy model using path integral simulations. The large
number of accurate experimental measurements of these ratios
allows for sensitive comparisons of theory and experiment over
a wide-range of temperatures (11). In the present work, we show
what features are needed in a water model to accurately predict
these ratios by decomposing the contributions to the free energy
difference leading to fractionation. This analysis in turn leads to a
simple explanation of the inversion of the fractionation ratios
seen experimentally at high temperatures, where D is favored
over H in the vapor phase (11).

Calculating Fractionation Ratios
The liquid-vapor fractionation ratio, αl−v, is defined as

αl−v ¼
ðxD;l∕xH;lÞ
ðxD;v∕xH;vÞ

¼ e−ΔA∕kBT; [1]

where xZ is the mole fraction of isotope Z, l denotes the liquid
phase, and v denotes the vapor phase. In the second equality, ΔA
is the Helmholtz free energy corresponding to the process

H2OðlÞ þHODðvÞ ⇌ H2OðvÞ þHODðlÞ: [2]

In this work we consider the dilute D limit which reflects the si-
tuation found in the Earth’s atmosphere where it is 6,000 times
less common than H. In this limit, we consider the free energy of
exchanging a single D atom in a vapor water molecule with an H
atom in a liquid water molecule, with all other molecules being
H2O. The free energy difference can be calculated from the ther-
modynamic integration expression (12)

ΔA ¼
Z

mD

mH

dmZ

!
hKvðmZÞi − hKlðmZÞi

mZ

"
; [3]
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When two phases of water are at equilibrium, the ratio of hydro-
gen isotopes in each is slightly altered because of their different
phase affinities. This isotopic fractionation process can be utilized
to analyze water’s movement in the world’s climate. Herewe show
that equilibrium fractionation ratios, an entirely quantummechan-
ical property, also provide a sensitive probe to assess the magni-
tude of nuclear quantum fluctuations in water. By comparing the
predictions of a series of water models, we show that those
describing the OH chemical bond as rigid or harmonic greatly over-
predict the magnitude of isotope fractionation. Models that
account for anharmonicity in this coordinate are shown to provide
much more accurate results because of their ability to give partial
cancellation between inter- and intramolecular quantum effects.
These results give evidence of the existence of competing quantum
effects in water and allow us to identify how this cancellation
varies across a wide-range of temperatures. In addition, this work
demonstrates that simulation can provide accurate predictions and
insights into hydrogen fractionation.

Water within Earth’s atmosphere is naturally composed of
the stable hydrogen isotopes hydrogen (H) and deuterium

(D). During cycles of evaporation, condensation, and precipita-
tion, these isotopes naturally undergo partial separation due to
their differing masses, thereby leading to different H/D ratios
in the two phases. This process of fractionation has a number of
fortuitous consequences, which are utilized in hydrology and
geology. For instance, by comparing the ratio of H to D, one can
estimate the origins of a water sample, the temperature at which
it was formed, and the altitude at which precipitation occurred (1,
2). Equilibrium fractionation, where the two phases are allowed
to equilibrate their H/D ratio, is entirely a consequence of the
effects of quantum mechanical fluctuations on water’s hydrogen
bond network. Quantum mechanical effects such as zero-point
energy and tunneling are larger for H due to its lower mass.

Despite numerous studies, the extent to which quantum fluc-
tuations affect water’s structure and dynamics remains a subject
of considerable debate. It has long been appreciated that one ef-
fect of quantum fluctuations in water is the disruption of hydro-
gen bonding, leading to destructuring of the liquid and faster
dynamics (3–6). However, more recent work has suggested that
a competing quantum effect may exist in water (7, 8), namely that
the quantum kinetic energy in the OH covalent bond allows it
to stretch and form shorter and stronger hydrogen bonds, which
partially cancels the disruptive effect. This hydrogen bond
strengthening has only been recently appreciated, as many origi-
nal studies drew their conclusions based on models with rigid or
harmonic bonds, which are unable to describe this behavior. The
degree of quantum effect cancellation depends sensitively on the
anharmonicity of the OH stretch and the temperature. These
parameters tune the balance between the lower frequency hydro-
gen bonding disruption, which will dominate at lower tempera-
tures, and the higher frequency hydrogen bond strengthening
effect, which will dominate at higher temperatures when rota-
tions become essentially classical.

If such a large degree of cancellation existed at ambient tem-
perature, it would be highly fortuitous both in terms of the bio-
logical effects of heavy water, which is only mildy toxic to humans

(9), as well as the ability to use heavy solvents in two-dimensional-
IR and NMR spectroscopies, where deuteration is assumed not
to dramatically alter the structure or dynamics observed. How-
ever, the size of this cancellation remains elusive because empiri-
cal quantum models of water are typically fit to reproduce its
properties when used in path integral simulations and the two
ab initio path integral studies performed have not produced a
consistent picture (7, 10). In addition, many of these simulation
studies compare the properties of water to those of its classical
counterpart, but classical water is physically unrealizable even at
relatively high temperatures, because water still has significant
quantum effects present in its vibrations.

In this paper, we use equilibrium fractionation ratios as a sen-
sitive probe to assess the magnitude of quantum mechanical ef-
fects in water. Fractionation ratios can be directly related to
quantum kinetic energy differences between H and D in liquid
water and its vapor and can be calculated exactly for a given water
potential energy model using path integral simulations. The large
number of accurate experimental measurements of these ratios
allows for sensitive comparisons of theory and experiment over
a wide-range of temperatures (11). In the present work, we show
what features are needed in a water model to accurately predict
these ratios by decomposing the contributions to the free energy
difference leading to fractionation. This analysis in turn leads to a
simple explanation of the inversion of the fractionation ratios
seen experimentally at high temperatures, where D is favored
over H in the vapor phase (11).

Calculating Fractionation Ratios
The liquid-vapor fractionation ratio, αl−v, is defined as

αl−v ¼
ðxD;l∕xH;lÞ
ðxD;v∕xH;vÞ

¼ e−ΔA∕kBT; [1]

where xZ is the mole fraction of isotope Z, l denotes the liquid
phase, and v denotes the vapor phase. In the second equality, ΔA
is the Helmholtz free energy corresponding to the process

H2OðlÞ þHODðvÞ ⇌ H2OðvÞ þHODðlÞ: [2]

In this work we consider the dilute D limit which reflects the si-
tuation found in the Earth’s atmosphere where it is 6,000 times
less common than H. In this limit, we consider the free energy of
exchanging a single D atom in a vapor water molecule with an H
atom in a liquid water molecule, with all other molecules being
H2O. The free energy difference can be calculated from the ther-
modynamic integration expression (12)

ΔA ¼
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Structure and Dynamics of a Proton Wire: A Theoretical Study of H+
Translocation along the Single-File Water Chain in the Gramicidin
A Channel
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ABSTRACT The rapid translocation of H+ along a chain of hydrogen-bonded water molecules, or proton wire, is thought to
be an important mechanism for proton permeation through transmembrane channels. Computer simulations are used to
study the properties of the proton wire formed by the single-file waters in the gramicidin A channel. The model includes the
polypeptidic dimer, with 22 water molecules and one excess proton. The dissociation of the water molecules is taken into
account by the "polarization model" of Stillinger and co-workers. The importance of quantum effects due to the light mass
of the hydrogen nuclei is examined with the use of discretized Feynman path integral molecular dynamics simulations. Results
show that the presence of an excess proton in the pore orients the single-file water molecules and affects the geometry of
water-water hydrogen bonding interactions. Rather than a well-defined hydronium ion OH' in the single-file region, the
protonated species is characterized by a strong hydrogen bond resembling that of 02H5 . The quantum dispersion of protons

has a small but significant effect on the equilibrium structure of the hydrogen-bonded water chain. During classical
trajectories, proton transfer between consecutive water molecules is a very fast spontaneous process that takes place in the
subpicosecond time scale. The translocation along extended regions of the chain takes place neither via a totally concerted
mechanism in which the donor-acceptor pattern would flip over the entire chain in a single step, nor via a succession of
incoherent hops between well-defined intermediates. Rather, proton transfer in the wire is a semicollective process that
results from the subtle interplay of rapid hydrogen-bond length fluctuations along the water chain. These rapid structural
fluctuations of the protonated single file of waters around an average position and the slow movements of the average
position of the excess proton along the channel axis occur on two very different time scales. Ultimately, it is the slow
reorganization of hydrogen bonds between single-file water molecules and channel backbone carbonyl groups that, by
affecting the connectivity and the dynamics of the single-file water chain, also limits the translocation of the proton across the
pore.

INTRODUCTION
Unique properties are displayed by proton translocation
phenomena across biological membranes, implying that the
mechanism underlying the conduction of protons is radi-
cally different from that of other ions (Levitt, 1984). Trans-
port through the simple transmembrane channel formed by
the gramicidin A molecule (GA) offers a particularly strik-
ing example of this phenomenon (Hladky and Haydon,
1972). The measured channel conductance to H+ (530
pmho; see Akeson and Deamer, 1991) is more than 15 times
that to potassium (29 pmho). [The maximum conductance
to K+ is approximately 29 pmho, based on previous exper-
imental results (Hladky and Haydon, 1972; Finkelstein and
Andersen, 1981; see also Roux and Karplus, 1991).] As
shown in Table 1, such a difference is much larger than
would be expected simply from the ratio of the mobility of
these ions in bulk water. This is all the more remarkable,
because the size of K+ is similar to that of a hydronium ion
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OH+. In fact, diffusion constants inside the pore deduced
from experimental data suggest that protons move almost
eight times as fast as water molecules themselves (see Table
1). Because of the narrowness of the pore, permeating
waters or ions cannot pass each other inside the GA channel,
and they must move in single file (Finkelstein and
Andersen, 1981). The transport of a cation such as potas-
sium is limited by the displacement of the single file of
water molecules inside the channel; as shown in Table 1, the
estimated diffusion constants of potassium ion or a water
molecule inside the channel are nearly equivalent. In con-
trast, translocation of a proton does not in principle require
the displacement of the single file of water molecules.
Instead, the rapid translocation of protons across the GA
channel is thought to occur through a succession of hops
along the single file of hydrogen-bonded water molecules,
which acts effectively as a proton wire (Hille, 1992).
The concept of proton wires was first introduced by

Nagle and Morowitz to account for the fast conductance of
protons along chains of hydrogen-bonded protonable groups
in biological systems (Nagle and Morowitz, 1978) and
includes the single file of water molecules that fill the
narrow channels of transmembrane pores such as the GA
channel (Akeson and Deamer, 1991). However, the biolog-
ical relevance of water proton wires extends beyond the
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.
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Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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A path-integral Car-Parrinello molecular dynamics simulation of liquid water and ice is performed. It is
found that the inclusion of nuclear quantum effects systematically improves the agreement of first-
principles simulations of liquid water with experiment. In addition, the proton momentum distribution is
computed utilizing a recently developed open path-integral molecular dynamics methodology. It is shown
that these results are in good agreement with experimental data.
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Because of the fundamental importance of water in the
physical and biological sciences, understanding its micro-
scopic structure is an issue of long-standing interest.
Elucidating the local environment of the protons is par-
ticularly intriguing due to their crucial role in hydrogen
bonding. Nuclear quantum effects significantly impact the
behavior of water, which is indicated by the variation of
many properties when protons are substituted with deute-
rium (D) or tritium (T). For example, the melting point of
heavy water (D2O) is 3.82 K higher than that of light (H2O)
water, and this effect is more pronounced in tritiated water
(T2O) [1], providing evidence that quantum effects desta-
bilize the hydrogen bond network.

Recently, the equilibrium state of the protons in water
and ice has been probed by neutron Compton scattering
experiments [2]. This technique measures the proton mo-
mentum distribution [3], thereby providing complementary
information to what is garnered from diffraction techniques
that measure the spatial correlations among the nuclear
positions [4–7]. Because of the noncommuting character
of position and momentum operators in quantum mechan-
ics, the proton momentum distribution is sensitive to the
local environment. In particular, the differences in the
momentum distribution of the solid and liquid water phases
reflect the breaking and distortion of hydrogen bonds that
occurs upon melting. In systems such as confined water
[8,9] and the quantum ferroelectric potassium phosphate
[10], the momentum distribution provides signatures of
tunneling and delocalization.

Molecular simulations with quantum nuclei are made
feasible by the Feynman path-integral representation of the
equilibrium density matrix at finite temperature. This ap-
proach has been used in conjunction with empirical force
fields in studies [11–13] showing that quantum fluctuations
soften the structure of liquid water. The effect is illustrated
by a broadening of the radial distribution functions (RDF)
compared to those generated from classical nuclei.
Interestingly, these works indicated that quantum nuclei
affect the structure in a similar way to a temperature
increase in a classical simulation. Recently, empirical force

fields have been employed within ‘‘open’’ path-integral
molecular dynamics methodologies to compute the proton
momentum distribution in ice and water [13–15]. The
calculated distribution, while in agreement with experi-
ment in many respects, did not reproduce the shorter tail
that is observed in ice, signaling a lack of transferability of
the empirical potentials. The faster decaying ice distribu-
tion reflects a red-shift of the OH stretch frequency that is a
consequence of the recovery of an intact hydrogen bond
network upon freezing.

To investigate whether this effect can be reproduced in
ab initio simulations, we perform an ‘‘open’’ path-integral
Car-Parrinello molecular dynamics (PI CPMD) [16] study
of water in the liquid and solid phases. In this approach the
nuclear potential energy surface is derived on the fly from
the instantaneous ground state of the electrons within
density functional theory (DFT). Our study is also moti-
vated by a previous, pioneering PI CPMD simulation of
liquid water [17]. This study reached the counterintuitive
conclusion that nuclear quantum effects harden the struc-
ture of the liquid in comparison to classical CPMD simu-
lations at the same temperature. Numerous studies have
shown that such simulations generate an overstructured
liquid [12,18,19]. Consequently, nuclear quantum effects
would increase the discrepancy between experiment and
simulation. If correct, this result would have severe impli-
cations for the accuracy of current DFT approximations of
water.

In this work we use a combination of closed and open
Feynman paths to compute the pair correlation functions
and the momentum distribution. We find that the liquid is
significantly less structured than in computations utilizing
an identical electronic structure description with classical
nuclei, in qualitative agreement with experimental isotope
effects and previous force field studies. The computed
proton momentum distributions are in good agreement
with experiment and, unlike in empirical force field based
studies, the difference between the liquid and the solid
observed in experiment is reproduced. Remaining devia-
tions from experiment suggest overbinding in the hydrogen
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When two phases of water are at equilibrium, the ratio of hydro-
gen isotopes in each is slightly altered because of their different
phase affinities. This isotopic fractionation process can be utilized
to analyze water’s movement in the world’s climate. Herewe show
that equilibrium fractionation ratios, an entirely quantummechan-
ical property, also provide a sensitive probe to assess the magni-
tude of nuclear quantum fluctuations in water. By comparing the
predictions of a series of water models, we show that those
describing the OH chemical bond as rigid or harmonic greatly over-
predict the magnitude of isotope fractionation. Models that
account for anharmonicity in this coordinate are shown to provide
much more accurate results because of their ability to give partial
cancellation between inter- and intramolecular quantum effects.
These results give evidence of the existence of competing quantum
effects in water and allow us to identify how this cancellation
varies across a wide-range of temperatures. In addition, this work
demonstrates that simulation can provide accurate predictions and
insights into hydrogen fractionation.

Water within Earth’s atmosphere is naturally composed of
the stable hydrogen isotopes hydrogen (H) and deuterium

(D). During cycles of evaporation, condensation, and precipita-
tion, these isotopes naturally undergo partial separation due to
their differing masses, thereby leading to different H/D ratios
in the two phases. This process of fractionation has a number of
fortuitous consequences, which are utilized in hydrology and
geology. For instance, by comparing the ratio of H to D, one can
estimate the origins of a water sample, the temperature at which
it was formed, and the altitude at which precipitation occurred (1,
2). Equilibrium fractionation, where the two phases are allowed
to equilibrate their H/D ratio, is entirely a consequence of the
effects of quantum mechanical fluctuations on water’s hydrogen
bond network. Quantum mechanical effects such as zero-point
energy and tunneling are larger for H due to its lower mass.

Despite numerous studies, the extent to which quantum fluc-
tuations affect water’s structure and dynamics remains a subject
of considerable debate. It has long been appreciated that one ef-
fect of quantum fluctuations in water is the disruption of hydro-
gen bonding, leading to destructuring of the liquid and faster
dynamics (3–6). However, more recent work has suggested that
a competing quantum effect may exist in water (7, 8), namely that
the quantum kinetic energy in the OH covalent bond allows it
to stretch and form shorter and stronger hydrogen bonds, which
partially cancels the disruptive effect. This hydrogen bond
strengthening has only been recently appreciated, as many origi-
nal studies drew their conclusions based on models with rigid or
harmonic bonds, which are unable to describe this behavior. The
degree of quantum effect cancellation depends sensitively on the
anharmonicity of the OH stretch and the temperature. These
parameters tune the balance between the lower frequency hydro-
gen bonding disruption, which will dominate at lower tempera-
tures, and the higher frequency hydrogen bond strengthening
effect, which will dominate at higher temperatures when rota-
tions become essentially classical.

If such a large degree of cancellation existed at ambient tem-
perature, it would be highly fortuitous both in terms of the bio-
logical effects of heavy water, which is only mildy toxic to humans

(9), as well as the ability to use heavy solvents in two-dimensional-
IR and NMR spectroscopies, where deuteration is assumed not
to dramatically alter the structure or dynamics observed. How-
ever, the size of this cancellation remains elusive because empiri-
cal quantum models of water are typically fit to reproduce its
properties when used in path integral simulations and the two
ab initio path integral studies performed have not produced a
consistent picture (7, 10). In addition, many of these simulation
studies compare the properties of water to those of its classical
counterpart, but classical water is physically unrealizable even at
relatively high temperatures, because water still has significant
quantum effects present in its vibrations.

In this paper, we use equilibrium fractionation ratios as a sen-
sitive probe to assess the magnitude of quantum mechanical ef-
fects in water. Fractionation ratios can be directly related to
quantum kinetic energy differences between H and D in liquid
water and its vapor and can be calculated exactly for a given water
potential energy model using path integral simulations. The large
number of accurate experimental measurements of these ratios
allows for sensitive comparisons of theory and experiment over
a wide-range of temperatures (11). In the present work, we show
what features are needed in a water model to accurately predict
these ratios by decomposing the contributions to the free energy
difference leading to fractionation. This analysis in turn leads to a
simple explanation of the inversion of the fractionation ratios
seen experimentally at high temperatures, where D is favored
over H in the vapor phase (11).

Calculating Fractionation Ratios
The liquid-vapor fractionation ratio, αl−v, is defined as

αl−v ¼
ðxD;l∕xH;lÞ
ðxD;v∕xH;vÞ

¼ e−ΔA∕kBT; [1]

where xZ is the mole fraction of isotope Z, l denotes the liquid
phase, and v denotes the vapor phase. In the second equality, ΔA
is the Helmholtz free energy corresponding to the process

H2OðlÞ þHODðvÞ ⇌ H2OðvÞ þHODðlÞ: [2]

In this work we consider the dilute D limit which reflects the si-
tuation found in the Earth’s atmosphere where it is 6,000 times
less common than H. In this limit, we consider the free energy of
exchanging a single D atom in a vapor water molecule with an H
atom in a liquid water molecule, with all other molecules being
H2O. The free energy difference can be calculated from the ther-
modynamic integration expression (12)

ΔA ¼
Z

mD

mH

dmZ

!
hKvðmZÞi − hKlðmZÞi

mZ

"
; [3]
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2). Equilibrium fractionation, where the two phases are allowed
to equilibrate their H/D ratio, is entirely a consequence of the
effects of quantum mechanical fluctuations on water’s hydrogen
bond network. Quantum mechanical effects such as zero-point
energy and tunneling are larger for H due to its lower mass.

Despite numerous studies, the extent to which quantum fluc-
tuations affect water’s structure and dynamics remains a subject
of considerable debate. It has long been appreciated that one ef-
fect of quantum fluctuations in water is the disruption of hydro-
gen bonding, leading to destructuring of the liquid and faster
dynamics (3–6). However, more recent work has suggested that
a competing quantum effect may exist in water (7, 8), namely that
the quantum kinetic energy in the OH covalent bond allows it
to stretch and form shorter and stronger hydrogen bonds, which
partially cancels the disruptive effect. This hydrogen bond
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nal studies drew their conclusions based on models with rigid or
harmonic bonds, which are unable to describe this behavior. The
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phase, and v denotes the vapor phase. In the second equality, ΔA
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In this work we consider the dilute D limit which reflects the si-
tuation found in the Earth’s atmosphere where it is 6,000 times
less common than H. In this limit, we consider the free energy of
exchanging a single D atom in a vapor water molecule with an H
atom in a liquid water molecule, with all other molecules being
H2O. The free energy difference can be calculated from the ther-
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We report ab initio path integral molecular dynamics simulations of hydrogen and deuterium adsorbed on
and absorbed in the Pd(100) surface at 100 K. Significant quantum nuclear effects are found by comparing
with conventional ab initio molecular dynamics simulations with classical nuclei. For on-surface adsorption,
hydrogen resides higher above the surface when quantum nuclear effects are included, an effect which brings
the computed height into better agreement with experimental measurements. For sub-surface absorption,
the classical and quantum simulations differ in an even more significant manner: the classically stable
subsurface tetrahedral position is unstable when quantum nuclear effects are accounted for. This study
provides insight that aids in the interpretation of experimental results and, more generally, underscores that
despite the computational cost ab initio path integral molecular dynamics simulations of surface and
subsurface adsorption are now feasible.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The adsorption and absorption of hydrogen at palladium surfaces
has great implications to a broad range of disciplines such as catalysis,
nuclear materials, energy storage and superconductivity [1–3], to
name a few. As a result a considerable body of work has been devoted
to understanding at the atomic scale the adsorption and absorption of
hydrogen at palladium surfaces [4–11]. It is generally accepted that
palladium dissociates hydrogen molecules at its surfaces without
appreciable activation energies, and that on-surface adsorption is
favored over subsurface absorption which in turn is favored over bulk
(interstitial site) absorption. Nonetheless, fundamental issues such as
the adsorption and absorption positions are contentious, particularly
the questions regarding how high above the surface or where below
the surface the hydrogen atoms reside [12–17]. Despite the seeming
simplicity of these questions, an accurate description of the specific
hydrogen positions has proven challenging, not least because of the
significant quantum nature of hydrogen atoms at surfaces (see e.g. ref.
[18]).

Taking Pd(100) as an example, considerable experimental effort
has been devoted to investigating the adsorption and absorption of
hydrogen and its isotopes. Many studies [19–22], such as low energy
electron diffraction (LEED) and electron energy loss spectroscopy
(EELS), have found that hydrogen chemisorbs at the surface four-fold
hollow site (4 F), as shown in Fig. 1; few however could provide direct

information on the height of hydrogen above the surface. By means of
helium scattering, Rieder et al. [12] found that hydrogen adsorption at
110 K leads to the formation of a p(1×1) ordered phase at one
monolayer (ML) coverage and a c(2×2) phase at 0.5 ML. They
estimated that the normal distance from a hydrogen atom at the 4 F
site to the topmost Pd layer (d0) is ~0.35 Å and 0.65–0.70 Å for the p
(1×1) and c(2×2) phases, respectively. By using a transmission
channeling technique, Besenbacher et al. [13] found similar adsorp-
tion patterns for deuterium (D) at ~130 K, and they measured d0 to
be 0.3±0.05 Å or 0.45±0.15 Å for a p(1×1) phase or a c(2×2) phase,
respectively.

Experiments have also suggested the existence of stable subsur-
face hydrogen atoms at low temperatures. The subsurface hydrogen
atoms are believed to be more reactive than the surface hydrogen
atoms, and thus have important implications in low temperature
catalytic hydrogenation reactions [23–25]. In a series of experiments
by Aruga et al. [26–29], mechanismsofHandDabsorptionwereprobed
with temperature-programmed desorption and high-resolution EELS.
Of particular interest is that below 120 K, the absorption coefficient
is independent of temperature and quantum tunneling was suggested
to be dominant in the process. It was also proposed that the absorbed
atom lies at the tetrahedral (Td) sites just beneath the surface (Fig. 1)
with a ~1 ML coverage.

Whilst it can be difficult to determine the precise surface (and
especially subsurface) hydrogen positions from experiments, ab initio
calculations provide a useful tool in this regard. By using density
functional theory (DFT), many authors [8,14,30] found that the
subsurface Td site is actually less favorable (by ~0.2 eV per H) than
the subsurface octahedral (Oh) site where the H atom absorbs near
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water beganwith Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have reÆned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O

+
4 complex in which an H3O

+ core is strongly
hydrogen-bonded to threeH2Omolecules. Zundel10,11, meanwhile,
supported the notion of an H5O

+
2 complex in which the proton

is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum Øuctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We Ænd that the
hydrated proton forms a Øuxional defect in the hydrogen-
bonded network, with both H9O

+
4 and H5O

+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
Øuctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.
Simulating an excess proton in liquid bulk water has proved to be

immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was Ærst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent Øuctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
Øuctuation-induced breakage of a hydrogen bond between the
Ærst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the Ærst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.
The quantum-mechanical particle density `snapshots' from the

present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as anH9O

+
4 structure possessing anH3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

coremigrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 conÆguration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5A  . Each individual particle, however,
moves by only a fraction of an a ngstro»m.
The controversial details of this process can be revealed by

examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d à ROaH2RObH

of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around Öd;ROOÜ< Ö6 0:9; 2:8Ü  A arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj< 0  A. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be reÆned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one
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Structure and Dynamics of a Proton Wire: A Theoretical Study of H+
Translocation along the Single-File Water Chain in the Gramicidin
A Channel

Regis Pomes and Benoit Roux
Groupe de Recherche en Transport Membranaire, Departements de Physique et de Chimie, Universit6 de Montr6al, Montr6al,
Qu6bec H3C 3J7 Canada

ABSTRACT The rapid translocation of H+ along a chain of hydrogen-bonded water molecules, or proton wire, is thought to
be an important mechanism for proton permeation through transmembrane channels. Computer simulations are used to
study the properties of the proton wire formed by the single-file waters in the gramicidin A channel. The model includes the
polypeptidic dimer, with 22 water molecules and one excess proton. The dissociation of the water molecules is taken into
account by the "polarization model" of Stillinger and co-workers. The importance of quantum effects due to the light mass
of the hydrogen nuclei is examined with the use of discretized Feynman path integral molecular dynamics simulations. Results
show that the presence of an excess proton in the pore orients the single-file water molecules and affects the geometry of
water-water hydrogen bonding interactions. Rather than a well-defined hydronium ion OH' in the single-file region, the
protonated species is characterized by a strong hydrogen bond resembling that of 02H5 . The quantum dispersion of protons

has a small but significant effect on the equilibrium structure of the hydrogen-bonded water chain. During classical
trajectories, proton transfer between consecutive water molecules is a very fast spontaneous process that takes place in the
subpicosecond time scale. The translocation along extended regions of the chain takes place neither via a totally concerted
mechanism in which the donor-acceptor pattern would flip over the entire chain in a single step, nor via a succession of
incoherent hops between well-defined intermediates. Rather, proton transfer in the wire is a semicollective process that
results from the subtle interplay of rapid hydrogen-bond length fluctuations along the water chain. These rapid structural
fluctuations of the protonated single file of waters around an average position and the slow movements of the average
position of the excess proton along the channel axis occur on two very different time scales. Ultimately, it is the slow
reorganization of hydrogen bonds between single-file water molecules and channel backbone carbonyl groups that, by
affecting the connectivity and the dynamics of the single-file water chain, also limits the translocation of the proton across the
pore.

INTRODUCTION
Unique properties are displayed by proton translocation
phenomena across biological membranes, implying that the
mechanism underlying the conduction of protons is radi-
cally different from that of other ions (Levitt, 1984). Trans-
port through the simple transmembrane channel formed by
the gramicidin A molecule (GA) offers a particularly strik-
ing example of this phenomenon (Hladky and Haydon,
1972). The measured channel conductance to H+ (530
pmho; see Akeson and Deamer, 1991) is more than 15 times
that to potassium (29 pmho). [The maximum conductance
to K+ is approximately 29 pmho, based on previous exper-
imental results (Hladky and Haydon, 1972; Finkelstein and
Andersen, 1981; see also Roux and Karplus, 1991).] As
shown in Table 1, such a difference is much larger than
would be expected simply from the ratio of the mobility of
these ions in bulk water. This is all the more remarkable,
because the size of K+ is similar to that of a hydronium ion
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OH+. In fact, diffusion constants inside the pore deduced
from experimental data suggest that protons move almost
eight times as fast as water molecules themselves (see Table
1). Because of the narrowness of the pore, permeating
waters or ions cannot pass each other inside the GA channel,
and they must move in single file (Finkelstein and
Andersen, 1981). The transport of a cation such as potas-
sium is limited by the displacement of the single file of
water molecules inside the channel; as shown in Table 1, the
estimated diffusion constants of potassium ion or a water
molecule inside the channel are nearly equivalent. In con-
trast, translocation of a proton does not in principle require
the displacement of the single file of water molecules.
Instead, the rapid translocation of protons across the GA
channel is thought to occur through a succession of hops
along the single file of hydrogen-bonded water molecules,
which acts effectively as a proton wire (Hille, 1992).
The concept of proton wires was first introduced by

Nagle and Morowitz to account for the fast conductance of
protons along chains of hydrogen-bonded protonable groups
in biological systems (Nagle and Morowitz, 1978) and
includes the single file of water molecules that fill the
narrow channels of transmembrane pores such as the GA
channel (Akeson and Deamer, 1991). However, the biolog-
ical relevance of water proton wires extends beyond the
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
consequently the OH stretching frequency decreases.

QNEs can also influence the interaction strength and conse-
quently the structure of H-bonded systems (4, 8, 9, 15–19). In
H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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Hydrogen bonds are weak, generally intermolecular bonds, which
hold much of soft matter together as well as the condensed phases
of water, network liquids, and many ferroelectric crystals. The
small mass of hydrogen means that they are inherently quantum
mechanical in nature, and effects such as zero-point motion and
tunneling must be considered, though all too often these effects
are not considered. As a prominent example, a clear picture for
the impact of quantum nuclear effects on the strength of hydrogen
bonds and consequently the structure of hydrogen bonded sys-
tems is still absent. Here, we report ab initio path integral molecu-
lar dynamics studies on the quantum nature of the hydrogen bond.
Through a systematic examination of a wide range of hydrogen
bonded systems we show that quantum nuclear effects weaken
weak hydrogen bonds but strengthen relatively strong ones. This
simple correlation arises from a competition between anharmonic
intermolecular bond bending and intramolecular bond stretching.
A simple rule of thumb is provided that enables predictions to be
made for hydrogen bonded materials in general with merely clas-
sical knowledge (such as hydrogen bond strength or hydrogen
bond length). Our work rationalizes the influence of quantum nu-
clear effects, which can result in either weakening or strengthening
of the hydrogen bonds, and the corresponding structures, across a
broad range of hydrogen bonded materials. Furthermore, it high-
lights the need to allow flexible molecules when anharmonic
potentials are used in force field-based studies of quantum nuclear
effects.

Hydrogen bonds are essential to life on earth. They are, for
example, the main intermolecular interactions responsible

for binding the two strands of DNA and holding together the
condensed phases of water. H-bonds are also of great contempor-
ary importance in nanoscience, being involved in, e.g., the func-
tionalization and patterning of surfaces with ordered molecular
overlayers (1, 2). It is known that H-bonds are complex and, in
particular, because of the small mass of the proton it is often not
appropriate to treat the proton in H-bonded systems as a classical
particle. Instead the quantum nature of the proton must be taken
into account and issues such as zero-point motion, quantum
delocalization, and quantum tunneling are relevant. Recent
advances in experimental techniques and the development of
theoretical approaches (coupled with enormous advances in
computer power) mean it is now possible to explore the quantum
nature of the proton in H-bonded systems in exquisite detail. The
relevance of quantum nuclear effects (QNEs) to liquid water and
ice (3–8), interfacial water (9), and enzyme kinetics (10, 11) has
recently been demonstrated. In particular, from first principles
simulations by Morrone et al. (4, 12) and neutron Compton scat-
tering measurements by Burnham et al. (13, 14), a clear picture of
the impact of QNEs on the proton’s real space delocalization
and vibrational properties has been established. Upon increasing
the H-bond strength, the proton becomes more delocalized and
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QNEs can also influence the interaction strength and conse-
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H-bonded crystals, this effect is known as the Ubbelohde effect,
where replacing H with deuterium (D) causes the O-O distance,
and consequently the ferroelectric phase-transition temperature,
to change (20). The conventional Ubbelohde effect yields an
elongation of the O-O distances upon replacing H with D,

although a negative Ubbelohde effect has also been observed
(20, 21). In H-bonded liquids analogous issues have been dis-
cussed. In liquid hydrogen fluoride (HF), for example, density-
functional theory (DFT) simulations predict that when QNEs
are accounted for the first peak of the F-F radial distribution
function (RDF) sharpens and shifts to a shorter F-F distance
(15). The implication of this increase in structure in the liquid
is that the H-bond is strengthened upon inclusion of QNEs.
In contrast, similar simulations for liquid water show that the
O-O RDF is less sharply peaked when simulations with quantum
nuclei are compared to those with classical nuclei (4), suggestive
of a decrease in the overall H-bond strength. We note, however,
that although this conclusion is probably correct, it is the opposite
of what was observed in an earlier ab initio study (8). The influ-
ence of QNEs on H-bonds has also been widely discussed in
studies of gas-phase clusters (16–18, 22). Specifically, in water
clusters up to the hexamer it is predicted that QNEs weaken
the H-bonds, whereas in simulations of HF clusters both weak-
ening and strengthening is predicted depending on cluster size
(16–18). Clearly, it would be very useful to rationalize these
various results within a single conceptual framework and identify
the underlying factors that dictate the influence of QNEs on
H-bond strength for a broad class of materials.

To this end, we report herein a simulation study in which we
investigate the impact of QNEs on a wide range of H-bonded
materials. Our simulations, using state-of-the-art ab initio mole-
cular dynamics (MD) and ab initio path integral molecular
dynamics (PIMD) [see, e.g., (23–27)], reveal that the strength
of the H-bond is a good descriptor of what influence QNEs will
have on it: Relatively weak H-bonds, such as those in water and
HF dimers, are made weaker, whereas relatively strong H-bonds,
such as those in large HF clusters and certain solids, are made
stronger by QNEs. This correlation holds for a large variety of
hydrogen-bonded systems and arises from a simple competition
between the anharmonic quantum fluctuations of intramolecular
covalent bond stretching (which tends to strengthen H-bonds)
and intermolecular H-bond bending (which tends to weaken
H-bonds). It has a number of important implications, such as
explaining the contrasting influence QNEs have on a wide range
of H-bonded materials and enabling predictions to be made for
H-bonded materials in general. Since the extent of anharmonic
quantum motion on intramolecular stretching is key to the cor-
relation, it also underscores the need for flexible monomers
when anharmonic intermolecular potentials are used in force
field-based studies of QNEs.

Results
Toward our aim of understanding how QNEs alter H-bonds, we
use computer simulations with the CASTEP plane-wave DFT
code (28). The simulations are performed with the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional (29) in
the canonical ensemble, with a target temperature of 100 K.
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A path-integral Car-Parrinello molecular dynamics simulation of liquid water and ice is performed. It is
found that the inclusion of nuclear quantum effects systematically improves the agreement of first-
principles simulations of liquid water with experiment. In addition, the proton momentum distribution is
computed utilizing a recently developed open path-integral molecular dynamics methodology. It is shown
that these results are in good agreement with experimental data.
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Because of the fundamental importance of water in the
physical and biological sciences, understanding its micro-
scopic structure is an issue of long-standing interest.
Elucidating the local environment of the protons is par-
ticularly intriguing due to their crucial role in hydrogen
bonding. Nuclear quantum effects significantly impact the
behavior of water, which is indicated by the variation of
many properties when protons are substituted with deute-
rium (D) or tritium (T). For example, the melting point of
heavy water (D2O) is 3.82 K higher than that of light (H2O)
water, and this effect is more pronounced in tritiated water
(T2O) [1], providing evidence that quantum effects desta-
bilize the hydrogen bond network.

Recently, the equilibrium state of the protons in water
and ice has been probed by neutron Compton scattering
experiments [2]. This technique measures the proton mo-
mentum distribution [3], thereby providing complementary
information to what is garnered from diffraction techniques
that measure the spatial correlations among the nuclear
positions [4–7]. Because of the noncommuting character
of position and momentum operators in quantum mechan-
ics, the proton momentum distribution is sensitive to the
local environment. In particular, the differences in the
momentum distribution of the solid and liquid water phases
reflect the breaking and distortion of hydrogen bonds that
occurs upon melting. In systems such as confined water
[8,9] and the quantum ferroelectric potassium phosphate
[10], the momentum distribution provides signatures of
tunneling and delocalization.

Molecular simulations with quantum nuclei are made
feasible by the Feynman path-integral representation of the
equilibrium density matrix at finite temperature. This ap-
proach has been used in conjunction with empirical force
fields in studies [11–13] showing that quantum fluctuations
soften the structure of liquid water. The effect is illustrated
by a broadening of the radial distribution functions (RDF)
compared to those generated from classical nuclei.
Interestingly, these works indicated that quantum nuclei
affect the structure in a similar way to a temperature
increase in a classical simulation. Recently, empirical force

fields have been employed within ‘‘open’’ path-integral
molecular dynamics methodologies to compute the proton
momentum distribution in ice and water [13–15]. The
calculated distribution, while in agreement with experi-
ment in many respects, did not reproduce the shorter tail
that is observed in ice, signaling a lack of transferability of
the empirical potentials. The faster decaying ice distribu-
tion reflects a red-shift of the OH stretch frequency that is a
consequence of the recovery of an intact hydrogen bond
network upon freezing.

To investigate whether this effect can be reproduced in
ab initio simulations, we perform an ‘‘open’’ path-integral
Car-Parrinello molecular dynamics (PI CPMD) [16] study
of water in the liquid and solid phases. In this approach the
nuclear potential energy surface is derived on the fly from
the instantaneous ground state of the electrons within
density functional theory (DFT). Our study is also moti-
vated by a previous, pioneering PI CPMD simulation of
liquid water [17]. This study reached the counterintuitive
conclusion that nuclear quantum effects harden the struc-
ture of the liquid in comparison to classical CPMD simu-
lations at the same temperature. Numerous studies have
shown that such simulations generate an overstructured
liquid [12,18,19]. Consequently, nuclear quantum effects
would increase the discrepancy between experiment and
simulation. If correct, this result would have severe impli-
cations for the accuracy of current DFT approximations of
water.

In this work we use a combination of closed and open
Feynman paths to compute the pair correlation functions
and the momentum distribution. We find that the liquid is
significantly less structured than in computations utilizing
an identical electronic structure description with classical
nuclei, in qualitative agreement with experimental isotope
effects and previous force field studies. The computed
proton momentum distributions are in good agreement
with experiment and, unlike in empirical force field based
studies, the difference between the liquid and the solid
observed in experiment is reproduced. Remaining devia-
tions from experiment suggest overbinding in the hydrogen
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When two phases of water are at equilibrium, the ratio of hydro-
gen isotopes in each is slightly altered because of their different
phase affinities. This isotopic fractionation process can be utilized
to analyze water’s movement in the world’s climate. Herewe show
that equilibrium fractionation ratios, an entirely quantummechan-
ical property, also provide a sensitive probe to assess the magni-
tude of nuclear quantum fluctuations in water. By comparing the
predictions of a series of water models, we show that those
describing the OH chemical bond as rigid or harmonic greatly over-
predict the magnitude of isotope fractionation. Models that
account for anharmonicity in this coordinate are shown to provide
much more accurate results because of their ability to give partial
cancellation between inter- and intramolecular quantum effects.
These results give evidence of the existence of competing quantum
effects in water and allow us to identify how this cancellation
varies across a wide-range of temperatures. In addition, this work
demonstrates that simulation can provide accurate predictions and
insights into hydrogen fractionation.

Water within Earth’s atmosphere is naturally composed of
the stable hydrogen isotopes hydrogen (H) and deuterium

(D). During cycles of evaporation, condensation, and precipita-
tion, these isotopes naturally undergo partial separation due to
their differing masses, thereby leading to different H/D ratios
in the two phases. This process of fractionation has a number of
fortuitous consequences, which are utilized in hydrology and
geology. For instance, by comparing the ratio of H to D, one can
estimate the origins of a water sample, the temperature at which
it was formed, and the altitude at which precipitation occurred (1,
2). Equilibrium fractionation, where the two phases are allowed
to equilibrate their H/D ratio, is entirely a consequence of the
effects of quantum mechanical fluctuations on water’s hydrogen
bond network. Quantum mechanical effects such as zero-point
energy and tunneling are larger for H due to its lower mass.

Despite numerous studies, the extent to which quantum fluc-
tuations affect water’s structure and dynamics remains a subject
of considerable debate. It has long been appreciated that one ef-
fect of quantum fluctuations in water is the disruption of hydro-
gen bonding, leading to destructuring of the liquid and faster
dynamics (3–6). However, more recent work has suggested that
a competing quantum effect may exist in water (7, 8), namely that
the quantum kinetic energy in the OH covalent bond allows it
to stretch and form shorter and stronger hydrogen bonds, which
partially cancels the disruptive effect. This hydrogen bond
strengthening has only been recently appreciated, as many origi-
nal studies drew their conclusions based on models with rigid or
harmonic bonds, which are unable to describe this behavior. The
degree of quantum effect cancellation depends sensitively on the
anharmonicity of the OH stretch and the temperature. These
parameters tune the balance between the lower frequency hydro-
gen bonding disruption, which will dominate at lower tempera-
tures, and the higher frequency hydrogen bond strengthening
effect, which will dominate at higher temperatures when rota-
tions become essentially classical.

If such a large degree of cancellation existed at ambient tem-
perature, it would be highly fortuitous both in terms of the bio-
logical effects of heavy water, which is only mildy toxic to humans

(9), as well as the ability to use heavy solvents in two-dimensional-
IR and NMR spectroscopies, where deuteration is assumed not
to dramatically alter the structure or dynamics observed. How-
ever, the size of this cancellation remains elusive because empiri-
cal quantum models of water are typically fit to reproduce its
properties when used in path integral simulations and the two
ab initio path integral studies performed have not produced a
consistent picture (7, 10). In addition, many of these simulation
studies compare the properties of water to those of its classical
counterpart, but classical water is physically unrealizable even at
relatively high temperatures, because water still has significant
quantum effects present in its vibrations.

In this paper, we use equilibrium fractionation ratios as a sen-
sitive probe to assess the magnitude of quantum mechanical ef-
fects in water. Fractionation ratios can be directly related to
quantum kinetic energy differences between H and D in liquid
water and its vapor and can be calculated exactly for a given water
potential energy model using path integral simulations. The large
number of accurate experimental measurements of these ratios
allows for sensitive comparisons of theory and experiment over
a wide-range of temperatures (11). In the present work, we show
what features are needed in a water model to accurately predict
these ratios by decomposing the contributions to the free energy
difference leading to fractionation. This analysis in turn leads to a
simple explanation of the inversion of the fractionation ratios
seen experimentally at high temperatures, where D is favored
over H in the vapor phase (11).

Calculating Fractionation Ratios
The liquid-vapor fractionation ratio, αl−v, is defined as

αl−v ¼
ðxD;l∕xH;lÞ
ðxD;v∕xH;vÞ

¼ e−ΔA∕kBT; [1]

where xZ is the mole fraction of isotope Z, l denotes the liquid
phase, and v denotes the vapor phase. In the second equality, ΔA
is the Helmholtz free energy corresponding to the process

H2OðlÞ þHODðvÞ ⇌ H2OðvÞ þHODðlÞ: [2]

In this work we consider the dilute D limit which reflects the si-
tuation found in the Earth’s atmosphere where it is 6,000 times
less common than H. In this limit, we consider the free energy of
exchanging a single D atom in a vapor water molecule with an H
atom in a liquid water molecule, with all other molecules being
H2O. The free energy difference can be calculated from the ther-
modynamic integration expression (12)

ΔA ¼
Z

mD

mH

dmZ

!
hKvðmZÞi − hKlðmZÞi

mZ

"
; [3]
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gen isotopes in each is slightly altered because of their different
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to analyze water’s movement in the world’s climate. Herewe show
that equilibrium fractionation ratios, an entirely quantummechan-
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tude of nuclear quantum fluctuations in water. By comparing the
predictions of a series of water models, we show that those
describing the OH chemical bond as rigid or harmonic greatly over-
predict the magnitude of isotope fractionation. Models that
account for anharmonicity in this coordinate are shown to provide
much more accurate results because of their ability to give partial
cancellation between inter- and intramolecular quantum effects.
These results give evidence of the existence of competing quantum
effects in water and allow us to identify how this cancellation
varies across a wide-range of temperatures. In addition, this work
demonstrates that simulation can provide accurate predictions and
insights into hydrogen fractionation.
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tion, these isotopes naturally undergo partial separation due to
their differing masses, thereby leading to different H/D ratios
in the two phases. This process of fractionation has a number of
fortuitous consequences, which are utilized in hydrology and
geology. For instance, by comparing the ratio of H to D, one can
estimate the origins of a water sample, the temperature at which
it was formed, and the altitude at which precipitation occurred (1,
2). Equilibrium fractionation, where the two phases are allowed
to equilibrate their H/D ratio, is entirely a consequence of the
effects of quantum mechanical fluctuations on water’s hydrogen
bond network. Quantum mechanical effects such as zero-point
energy and tunneling are larger for H due to its lower mass.

Despite numerous studies, the extent to which quantum fluc-
tuations affect water’s structure and dynamics remains a subject
of considerable debate. It has long been appreciated that one ef-
fect of quantum fluctuations in water is the disruption of hydro-
gen bonding, leading to destructuring of the liquid and faster
dynamics (3–6). However, more recent work has suggested that
a competing quantum effect may exist in water (7, 8), namely that
the quantum kinetic energy in the OH covalent bond allows it
to stretch and form shorter and stronger hydrogen bonds, which
partially cancels the disruptive effect. This hydrogen bond
strengthening has only been recently appreciated, as many origi-
nal studies drew their conclusions based on models with rigid or
harmonic bonds, which are unable to describe this behavior. The
degree of quantum effect cancellation depends sensitively on the
anharmonicity of the OH stretch and the temperature. These
parameters tune the balance between the lower frequency hydro-
gen bonding disruption, which will dominate at lower tempera-
tures, and the higher frequency hydrogen bond strengthening
effect, which will dominate at higher temperatures when rota-
tions become essentially classical.

If such a large degree of cancellation existed at ambient tem-
perature, it would be highly fortuitous both in terms of the bio-
logical effects of heavy water, which is only mildy toxic to humans

(9), as well as the ability to use heavy solvents in two-dimensional-
IR and NMR spectroscopies, where deuteration is assumed not
to dramatically alter the structure or dynamics observed. How-
ever, the size of this cancellation remains elusive because empiri-
cal quantum models of water are typically fit to reproduce its
properties when used in path integral simulations and the two
ab initio path integral studies performed have not produced a
consistent picture (7, 10). In addition, many of these simulation
studies compare the properties of water to those of its classical
counterpart, but classical water is physically unrealizable even at
relatively high temperatures, because water still has significant
quantum effects present in its vibrations.

In this paper, we use equilibrium fractionation ratios as a sen-
sitive probe to assess the magnitude of quantum mechanical ef-
fects in water. Fractionation ratios can be directly related to
quantum kinetic energy differences between H and D in liquid
water and its vapor and can be calculated exactly for a given water
potential energy model using path integral simulations. The large
number of accurate experimental measurements of these ratios
allows for sensitive comparisons of theory and experiment over
a wide-range of temperatures (11). In the present work, we show
what features are needed in a water model to accurately predict
these ratios by decomposing the contributions to the free energy
difference leading to fractionation. This analysis in turn leads to a
simple explanation of the inversion of the fractionation ratios
seen experimentally at high temperatures, where D is favored
over H in the vapor phase (11).
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The liquid-vapor fractionation ratio, αl−v, is defined as
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¼ e−ΔA∕kBT; [1]

where xZ is the mole fraction of isotope Z, l denotes the liquid
phase, and v denotes the vapor phase. In the second equality, ΔA
is the Helmholtz free energy corresponding to the process

H2OðlÞ þHODðvÞ ⇌ H2OðvÞ þHODðlÞ: [2]

In this work we consider the dilute D limit which reflects the si-
tuation found in the Earth’s atmosphere where it is 6,000 times
less common than H. In this limit, we consider the free energy of
exchanging a single D atom in a vapor water molecule with an H
atom in a liquid water molecule, with all other molecules being
H2O. The free energy difference can be calculated from the ther-
modynamic integration expression (12)
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We report ab initio path integral molecular dynamics simulations of hydrogen and deuterium adsorbed on
and absorbed in the Pd(100) surface at 100 K. Significant quantum nuclear effects are found by comparing
with conventional ab initio molecular dynamics simulations with classical nuclei. For on-surface adsorption,
hydrogen resides higher above the surface when quantum nuclear effects are included, an effect which brings
the computed height into better agreement with experimental measurements. For sub-surface absorption,
the classical and quantum simulations differ in an even more significant manner: the classically stable
subsurface tetrahedral position is unstable when quantum nuclear effects are accounted for. This study
provides insight that aids in the interpretation of experimental results and, more generally, underscores that
despite the computational cost ab initio path integral molecular dynamics simulations of surface and
subsurface adsorption are now feasible.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The adsorption and absorption of hydrogen at palladium surfaces
has great implications to a broad range of disciplines such as catalysis,
nuclear materials, energy storage and superconductivity [1–3], to
name a few. As a result a considerable body of work has been devoted
to understanding at the atomic scale the adsorption and absorption of
hydrogen at palladium surfaces [4–11]. It is generally accepted that
palladium dissociates hydrogen molecules at its surfaces without
appreciable activation energies, and that on-surface adsorption is
favored over subsurface absorption which in turn is favored over bulk
(interstitial site) absorption. Nonetheless, fundamental issues such as
the adsorption and absorption positions are contentious, particularly
the questions regarding how high above the surface or where below
the surface the hydrogen atoms reside [12–17]. Despite the seeming
simplicity of these questions, an accurate description of the specific
hydrogen positions has proven challenging, not least because of the
significant quantum nature of hydrogen atoms at surfaces (see e.g. ref.
[18]).

Taking Pd(100) as an example, considerable experimental effort
has been devoted to investigating the adsorption and absorption of
hydrogen and its isotopes. Many studies [19–22], such as low energy
electron diffraction (LEED) and electron energy loss spectroscopy
(EELS), have found that hydrogen chemisorbs at the surface four-fold
hollow site (4 F), as shown in Fig. 1; few however could provide direct

information on the height of hydrogen above the surface. By means of
helium scattering, Rieder et al. [12] found that hydrogen adsorption at
110 K leads to the formation of a p(1×1) ordered phase at one
monolayer (ML) coverage and a c(2×2) phase at 0.5 ML. They
estimated that the normal distance from a hydrogen atom at the 4 F
site to the topmost Pd layer (d0) is ~0.35 Å and 0.65–0.70 Å for the p
(1×1) and c(2×2) phases, respectively. By using a transmission
channeling technique, Besenbacher et al. [13] found similar adsorp-
tion patterns for deuterium (D) at ~130 K, and they measured d0 to
be 0.3±0.05 Å or 0.45±0.15 Å for a p(1×1) phase or a c(2×2) phase,
respectively.

Experiments have also suggested the existence of stable subsur-
face hydrogen atoms at low temperatures. The subsurface hydrogen
atoms are believed to be more reactive than the surface hydrogen
atoms, and thus have important implications in low temperature
catalytic hydrogenation reactions [23–25]. In a series of experiments
by Aruga et al. [26–29], mechanismsofHandDabsorptionwereprobed
with temperature-programmed desorption and high-resolution EELS.
Of particular interest is that below 120 K, the absorption coefficient
is independent of temperature and quantum tunneling was suggested
to be dominant in the process. It was also proposed that the absorbed
atom lies at the tetrahedral (Td) sites just beneath the surface (Fig. 1)
with a ~1 ML coverage.

Whilst it can be difficult to determine the precise surface (and
especially subsurface) hydrogen positions from experiments, ab initio
calculations provide a useful tool in this regard. By using density
functional theory (DFT), many authors [8,14,30] found that the
subsurface Td site is actually less favorable (by ~0.2 eV per H) than
the subsurface octahedral (Oh) site where the H atom absorbs near
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site to the topmost Pd layer (d0) is ~0.35 Å and 0.65–0.70 Å for the p
(1×1) and c(2×2) phases, respectively. By using a transmission
channeling technique, Besenbacher et al. [13] found similar adsorp-
tion patterns for deuterium (D) at ~130 K, and they measured d0 to
be 0.3±0.05 Å or 0.45±0.15 Å for a p(1×1) phase or a c(2×2) phase,
respectively.

Experiments have also suggested the existence of stable subsur-
face hydrogen atoms at low temperatures. The subsurface hydrogen
atoms are believed to be more reactive than the surface hydrogen
atoms, and thus have important implications in low temperature
catalytic hydrogenation reactions [23–25]. In a series of experiments
by Aruga et al. [26–29], mechanismsofHandDabsorptionwereprobed
with temperature-programmed desorption and high-resolution EELS.
Of particular interest is that below 120 K, the absorption coefficient
is independent of temperature and quantum tunneling was suggested
to be dominant in the process. It was also proposed that the absorbed
atom lies at the tetrahedral (Td) sites just beneath the surface (Fig. 1)
with a ~1 ML coverage.

Whilst it can be difficult to determine the precise surface (and
especially subsurface) hydrogen positions from experiments, ab initio
calculations provide a useful tool in this regard. By using density
functional theory (DFT), many authors [8,14,30] found that the
subsurface Td site is actually less favorable (by ~0.2 eV per H) than
the subsurface octahedral (Oh) site where the H atom absorbs near
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dependent) averages:

For example, di↵usion coe�cients are given by

D(T ) =
1

3

Z 1

0
cv·v(t) dt,

chemical reaction rate coe�cients by

k(T ) =
1

Qr(T )

Z 1

0
cff (t) dt,

and dipole absorption spectra by

n(!)↵(!) =
⇡!

3~cV ✏0
(1� e��~!

)Cµ·µ(!),

where

Cµ·µ(!) =
1

2⇡

Z 1

�1
e�i!tcµ·µ(t) dt.

For example, di↵usion coe�cients are given by

D(T ) =
1

3

Z 1

0
cv·v(t) dt,

chemical reaction rate coe�cients by

k(T ) =
1

Qr(T )

Z 1

0
cff (t) dt,

and dipole absorption spectra by

n(!)↵(!) =
⇡!

3~cV ✏0
(1� e��~!

)Cµ·µ(!),

where

Cµ·µ(!) =
1

2⇡

Z 1

�1
e�i!tcµ·µ(t) dt.

For example, di↵usion coe�cients are given by

D(T ) =
1

3

Z 1

0
cv·v(t) dt,

chemical reaction rate coe�cients by

k(T ) =
1

Qr(T )

Z 1

0
cff (t) dt,

and dipole absorption spectra by

n(!)↵(!) =
⇡!

3~cV ✏0
(1� e��~!

)Cµ·µ(!),

where

Cµ·µ(!) =
1

2⇡

Z 1

�1
e�i!tcµ·µ(t) dt.

10 THE AUTHOR

(109) � = D0

h
1� e�↵(r�r0)

i2

(110) � =
kb
2
(r � r0)

2

(111) � =
kb
2
(r � r0)

2

(112) hKi = 3NkBT

2

(113) hKharm
qm i =

X

i

~
p
ki

4
p
mi

coth

✓
�~
p
ki

2
p
mi

◆

pjk  pjk �
�t

2

@V (q1k, ..., q
N
k )

@qj

p̃js =
nX

k=1

pjkCks q̃js =
nX

k=1

qjkCks

pjk =
n�1X

s=0

Cksp̃
j
s qjk =

n�1X

s=0

Cksq̃
j
s

✓
p̃js
q̃js

◆
 

✓
cos(!s�t) �mj!s sin(!s�t)
1

mj!s
sin(!s�t) cos(!s�t)

◆✓
p̃js
q̃js

◆

(114) ⇤ =
hp

2⇡mkBT
⇤� l ⇤⌧ l

(115)
~!
kBT

⌧ 1
~!
kBT

� 1

cAB(t) = Tr[e��ĤÂ(0)B̂(t)](116)
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• PIMD does not give access to real time (propagation is in imaginary time)  
Approximate these quantities - easier to approximate Kubo transforms
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Path integral approximations for real time dynamics

s=0 ⇒ centroid mode; s≠0 ⇒ internal modes

• Normal mode transformation of free ring polymer Hamiltonian:

2

of thermostat parameters, this stochastic term cures the
resonance problem of RPMD without triggering the cur-
vature problem. Furthermore, this method can be ued
with much larger time steps than CMD, as it uses the
RPMD mass matrix and does not rely on adiabatic sep-
aration.

The Langevin RPMD approach we introduce (which
we refer to as dynapile) is a practical solution to explore
the role of NQEs on dynamical properties, even though
we cannot claim that there is a universal choice of the
damping that gives a rigorously better approximation to
quantum dynamics. It is quite possible that by explor-
ing the additional degrees of freedom that are associated
with stochastic dynamics of the internal modes of the
ring polymer future research may eventually fulfill this
arduous goal.

I. INVARIANCE OF RPMD LIMITS TO THE
THERMOSTATTING OF INTERNAL MODES.

II. THE RESONANCE PROBLEM

Do we want to put the analytical results for the o↵-
diagonal coupled oscillators here? If we can show just a
picture about how PILE changes the spectrum, it would
be nice.

We here define the ring polymer e↵ective Hamiltonian,
in the bead representation, as

Hn =
NX

i

nX

j

"
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i |2

2m0
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X

j
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1 , ...,q(j)

N ), (1)

where H0 is the free ring polymer Hamiltonian, i runs
through the N particles of the physical system, j runs
through the n path integral replicas, p(j)

i and q(j)
i are

the momenta and positions associated with particle i,
replica j, respectively, V is the physical interacting po-
tential, and !n = nkbT/~. We note that while mi should
correspond to the physical masses of the system, there is
no apriori requirement for the choices of m0

i in the stan-
dard PIMD formulation, since this term is just added to
the Halmiltonian to allow the evaluation of the dynamics.
Finally, q(n+1)

i = q(1)
i , which closes the ring polymer.

As explained in detail in Ref.16, it is possible to per-
form a normal mode transformation on the Hamiltonian
above, such that the free ring polymer Hamiltonian H0

can be written as

H0 =
1
2
P̃T M�1P̃ +

NX

i

n�1X

k=0


1
2
mi!

2
k(q̃(k)

i )2
�

, (2)

where P̃ is an array containing all normal mode trans-
formed momenta p̃(k)

i , q̃(k)
i are the normal mode trans-

formed coordinates, and !k = 2!n sin(k⇡/n). In RPMD,
the mass matrix M simply a diagonal matrix contain-
ing all the physical masses mi of the system, and the
time evolution of position and momenta are carried out
without any thermostat attached to them. In the nor-
mal mode representation, k=0 is the mode connected to
the centroid and k > 0 represent the internal modes of
the ring polymer. It is already worth pointing out that
!1 ⇡ 2⇡/(�~) for the free ring polymer lies around 1300
cm�1 at 300K and around 435 cm�1 at 100K (a temper-
ature that will be important later on in this paper).

As pointed out in Refs.13,15,17, if one applies the
RPMD formalism to a simple potential corresponding
to a chain of uncoupled harmonic oscillators V (q) =P

i mi!
2
i q2

i /2, it is straightforward to show that the fre-
quencies of vibration of ring polymer will be given by
check!

!i
k =

q
!2

i + 4!2
n sin2(k⇡/n), (3)

such that the centroid vibrates at the frequencies of the
physical system and the other internal modes vibrate
at higher frequencies. Clearly, in any real system, the
potential will not be exactly harmonic, and the expres-
sion in Eq. 3 will be just an approximation for the
internal frequencies of the ring polymer. Nevertheless,
Eq. 3 already shows clearly the origin of the so-called
“resonance-problem” of RPMD, thoroughly discussed in
Refs.13,15: For systems with vibrational frequencies !i

spanning from small to large wavenumbers, there will be
an !k for, e.g. a small !i that will have a very similar
frequency to another larger !i, so that they will resonate.
The lower the temperature, the more severely will these
spurious frequencies contaminate the true spectrum, so
that for most real-life applications, RPMD cannot be
used for the evaluation of vibrational spectra.

III. THE CURVATURE PROBLEM

The resonance problem is characteristic to RPMD.
CMD avoids contamination of the spectrum by internal
modes of the ring polymer by (partial) adiabatic decou-
pling, that ensures that there is no overlap between the
range of frequencies of the centroid vibration and that of
the non-zero frequency internal modes. On the contrary,
the so-called curvature problem is characteristic of CMD,
and consists in a red shift of stretching modes of groups
of atoms that also possess librations or wagging modes,
that is accompanied by a broadening of the peak and that
becomes more and more pronounced as the temperature
decreases.

As discussed in Ref.13, the curvature problem can be
understood as arising because the centroid moves on an
e↵ective potential, in which the stretching mode is av-
eraged over a soft, strongly non-linear motion of the
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Path integral approximations for real time dynamics

• Ring polymer molecular dynamics (RPMD)[1]	



• m’ = m, Newtonian dynamics, no thermostat	



• Issue: beads resonate with physical frequencies

s=0 ⇒ centroid mode; s≠0 ⇒ internal modes

• Normal mode transformation of free ring polymer Hamiltonian:

2

of thermostat parameters, this stochastic term cures the
resonance problem of RPMD without triggering the cur-
vature problem. Furthermore, this method can be ued
with much larger time steps than CMD, as it uses the
RPMD mass matrix and does not rely on adiabatic sep-
aration.

The Langevin RPMD approach we introduce (which
we refer to as dynapile) is a practical solution to explore
the role of NQEs on dynamical properties, even though
we cannot claim that there is a universal choice of the
damping that gives a rigorously better approximation to
quantum dynamics. It is quite possible that by explor-
ing the additional degrees of freedom that are associated
with stochastic dynamics of the internal modes of the
ring polymer future research may eventually fulfill this
arduous goal.

I. INVARIANCE OF RPMD LIMITS TO THE
THERMOSTATTING OF INTERNAL MODES.

II. THE RESONANCE PROBLEM

Do we want to put the analytical results for the o↵-
diagonal coupled oscillators here? If we can show just a
picture about how PILE changes the spectrum, it would
be nice.

We here define the ring polymer e↵ective Hamiltonian,
in the bead representation, as

Hn =
NX

i

nX

j

"
|p(j)
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+
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2
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where H0 is the free ring polymer Hamiltonian, i runs
through the N particles of the physical system, j runs
through the n path integral replicas, p(j)

i and q(j)
i are

the momenta and positions associated with particle i,
replica j, respectively, V is the physical interacting po-
tential, and !n = nkbT/~. We note that while mi should
correspond to the physical masses of the system, there is
no apriori requirement for the choices of m0

i in the stan-
dard PIMD formulation, since this term is just added to
the Halmiltonian to allow the evaluation of the dynamics.
Finally, q(n+1)

i = q(1)
i , which closes the ring polymer.

As explained in detail in Ref.16, it is possible to per-
form a normal mode transformation on the Hamiltonian
above, such that the free ring polymer Hamiltonian H0

can be written as

H0 =
1
2
P̃T M�1P̃ +

NX

i

n�1X

k=0


1
2
mi!

2
k(q̃(k)

i )2
�

, (2)

where P̃ is an array containing all normal mode trans-
formed momenta p̃(k)

i , q̃(k)
i are the normal mode trans-

formed coordinates, and !k = 2!n sin(k⇡/n). In RPMD,
the mass matrix M simply a diagonal matrix contain-
ing all the physical masses mi of the system, and the
time evolution of position and momenta are carried out
without any thermostat attached to them. In the nor-
mal mode representation, k=0 is the mode connected to
the centroid and k > 0 represent the internal modes of
the ring polymer. It is already worth pointing out that
!1 ⇡ 2⇡/(�~) for the free ring polymer lies around 1300
cm�1 at 300K and around 435 cm�1 at 100K (a temper-
ature that will be important later on in this paper).

As pointed out in Refs.13,15,17, if one applies the
RPMD formalism to a simple potential corresponding
to a chain of uncoupled harmonic oscillators V (q) =P

i mi!
2
i q2

i /2, it is straightforward to show that the fre-
quencies of vibration of ring polymer will be given by
check!

!i
k =

q
!2

i + 4!2
n sin2(k⇡/n), (3)

such that the centroid vibrates at the frequencies of the
physical system and the other internal modes vibrate
at higher frequencies. Clearly, in any real system, the
potential will not be exactly harmonic, and the expres-
sion in Eq. 3 will be just an approximation for the
internal frequencies of the ring polymer. Nevertheless,
Eq. 3 already shows clearly the origin of the so-called
“resonance-problem” of RPMD, thoroughly discussed in
Refs.13,15: For systems with vibrational frequencies !i

spanning from small to large wavenumbers, there will be
an !k for, e.g. a small !i that will have a very similar
frequency to another larger !i, so that they will resonate.
The lower the temperature, the more severely will these
spurious frequencies contaminate the true spectrum, so
that for most real-life applications, RPMD cannot be
used for the evaluation of vibrational spectra.

III. THE CURVATURE PROBLEM

The resonance problem is characteristic to RPMD.
CMD avoids contamination of the spectrum by internal
modes of the ring polymer by (partial) adiabatic decou-
pling, that ensures that there is no overlap between the
range of frequencies of the centroid vibration and that of
the non-zero frequency internal modes. On the contrary,
the so-called curvature problem is characteristic of CMD,
and consists in a red shift of stretching modes of groups
of atoms that also possess librations or wagging modes,
that is accompanied by a broadening of the peak and that
becomes more and more pronounced as the temperature
decreases.

As discussed in Ref.13, the curvature problem can be
understood as arising because the centroid moves on an
e↵ective potential, in which the stretching mode is av-
eraged over a soft, strongly non-linear motion of the
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Path integral approximations for real time dynamics

• Ring polymer molecular dynamics (RPMD)[1]	



• m’ = m, Newtonian dynamics, no thermostat	



• Issue: beads resonate with physical frequencies

• Centroid molecular dynamics (CMD)[2]	



• m’=σm (σ<1 for non-centroid modes), 
thermostatted 	



• Centroid moves in the effective potential given 
by the internal modes	



• Issues: "curvature problem", and needs very small 
time steps.

s=0 ⇒ centroid mode; s≠0 ⇒ internal modes

• Normal mode transformation of free ring polymer Hamiltonian:

2

of thermostat parameters, this stochastic term cures the
resonance problem of RPMD without triggering the cur-
vature problem. Furthermore, this method can be ued
with much larger time steps than CMD, as it uses the
RPMD mass matrix and does not rely on adiabatic sep-
aration.

The Langevin RPMD approach we introduce (which
we refer to as dynapile) is a practical solution to explore
the role of NQEs on dynamical properties, even though
we cannot claim that there is a universal choice of the
damping that gives a rigorously better approximation to
quantum dynamics. It is quite possible that by explor-
ing the additional degrees of freedom that are associated
with stochastic dynamics of the internal modes of the
ring polymer future research may eventually fulfill this
arduous goal.

I. INVARIANCE OF RPMD LIMITS TO THE
THERMOSTATTING OF INTERNAL MODES.

II. THE RESONANCE PROBLEM

Do we want to put the analytical results for the o↵-
diagonal coupled oscillators here? If we can show just a
picture about how PILE changes the spectrum, it would
be nice.

We here define the ring polymer e↵ective Hamiltonian,
in the bead representation, as

Hn =
NX
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where H0 is the free ring polymer Hamiltonian, i runs
through the N particles of the physical system, j runs
through the n path integral replicas, p(j)

i and q(j)
i are

the momenta and positions associated with particle i,
replica j, respectively, V is the physical interacting po-
tential, and !n = nkbT/~. We note that while mi should
correspond to the physical masses of the system, there is
no apriori requirement for the choices of m0

i in the stan-
dard PIMD formulation, since this term is just added to
the Halmiltonian to allow the evaluation of the dynamics.
Finally, q(n+1)

i = q(1)
i , which closes the ring polymer.

As explained in detail in Ref.16, it is possible to per-
form a normal mode transformation on the Hamiltonian
above, such that the free ring polymer Hamiltonian H0

can be written as

H0 =
1
2
P̃T M�1P̃ +

NX

i

n�1X

k=0


1
2
mi!

2
k(q̃(k)

i )2
�

, (2)

where P̃ is an array containing all normal mode trans-
formed momenta p̃(k)

i , q̃(k)
i are the normal mode trans-

formed coordinates, and !k = 2!n sin(k⇡/n). In RPMD,
the mass matrix M simply a diagonal matrix contain-
ing all the physical masses mi of the system, and the
time evolution of position and momenta are carried out
without any thermostat attached to them. In the nor-
mal mode representation, k=0 is the mode connected to
the centroid and k > 0 represent the internal modes of
the ring polymer. It is already worth pointing out that
!1 ⇡ 2⇡/(�~) for the free ring polymer lies around 1300
cm�1 at 300K and around 435 cm�1 at 100K (a temper-
ature that will be important later on in this paper).

As pointed out in Refs.13,15,17, if one applies the
RPMD formalism to a simple potential corresponding
to a chain of uncoupled harmonic oscillators V (q) =P

i mi!
2
i q2

i /2, it is straightforward to show that the fre-
quencies of vibration of ring polymer will be given by
check!

!i
k =

q
!2

i + 4!2
n sin2(k⇡/n), (3)

such that the centroid vibrates at the frequencies of the
physical system and the other internal modes vibrate
at higher frequencies. Clearly, in any real system, the
potential will not be exactly harmonic, and the expres-
sion in Eq. 3 will be just an approximation for the
internal frequencies of the ring polymer. Nevertheless,
Eq. 3 already shows clearly the origin of the so-called
“resonance-problem” of RPMD, thoroughly discussed in
Refs.13,15: For systems with vibrational frequencies !i

spanning from small to large wavenumbers, there will be
an !k for, e.g. a small !i that will have a very similar
frequency to another larger !i, so that they will resonate.
The lower the temperature, the more severely will these
spurious frequencies contaminate the true spectrum, so
that for most real-life applications, RPMD cannot be
used for the evaluation of vibrational spectra.

III. THE CURVATURE PROBLEM

The resonance problem is characteristic to RPMD.
CMD avoids contamination of the spectrum by internal
modes of the ring polymer by (partial) adiabatic decou-
pling, that ensures that there is no overlap between the
range of frequencies of the centroid vibration and that of
the non-zero frequency internal modes. On the contrary,
the so-called curvature problem is characteristic of CMD,
and consists in a red shift of stretching modes of groups
of atoms that also possess librations or wagging modes,
that is accompanied by a broadening of the peak and that
becomes more and more pronounced as the temperature
decreases.

As discussed in Ref.13, the curvature problem can be
understood as arising because the centroid moves on an
e↵ective potential, in which the stretching mode is av-
eraged over a soft, strongly non-linear motion of the

centroid

centroidHigh T

Low T
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Model Application: IR spectrum of OH molecule 

• Model OH molecule with interatomic interactions given by:

curvature 
problem
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Path integral approximations for real time dynamics

• Thermostatted Ring Polymer Molecular Dynamics (TRPMD)	


• m’=m, white noise Langevin thermostat applied to internal modes of the ring polymer 

only (centroid obeys Hamiltonian dynamics)	


• Maintains all exact limits of RPMD (classic, harmonic, etc.)!	


• Time step needed is the same as in usual PI simulations	


• Equations of motion: 
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molecule. In fact, the curvature problem is most se-
vere for a freely-rotating bond, and becomes less dra-
matic when the spread of the ring polymer orthogonal to
the bond is restricted by angular restraints13, or by the
presence of weak interactions with other molecules18.

Note that one could regard this e↵ect as a spurious
coupling between the physical, centroid component of
the stretching mode and the (adiabatically decoupled)
internal vibrations of the ring polymer in the perpen-
dicular, free-rotation motion. There is in this regards
an interesting connection with the resonance problem of
RPMD: at least in the case of the simple models dis-
cussed in Ref.13, resonances happen when the free ring-

polymer internal mode frequencies match the frequency
of the stretching, indicating that the resonance problem
is also exacerbated by the presence of soft, strongly non-
linear wagging modes.

Since the curvature problem is caused by the centroid
moving on a mean potential surface, averaged over the
internal modes, one could wonder whether thermostat-
ting the internal modes of the ring polymer as we advo-
cate here would be enough to cause a similar e↵ect, even
without changing the mass matrix.

IV. THE “DYNAPILE” METHOD

Since it was shown in Section I that the application of
the PILE thermostat on the internal modes of the ring
polymer does not disturb the short time limit of RPMD
(still to be shown), we here apply this technique in or-
der to obtain vibrational spectra free of the resonances
that a↵ect RPMD. We call this method dynapile in the
following.

As explained in Ref.16, applying the PILE thermostat
amounts to the following equations of motion in the nor-
mal mode representation,

d
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where ⇠(k)i is a vector of Gaussian-distributed, uncorre-
lated random noise. The �(k) friction coe�cients that
yield critical damping are the ones that minimize the
correlation time ⌧H for the Hamiltonian of the harmonic
oscillator, subject to the Langevin equations of motion
above. As explained in Ref.16, the analytical result is,

⌧H =
1

�(k)
+

�(k)

4!2
k

, (5)

so that the optimum value is �(k)
c = 2!k. The di↵erence

of the treatment here, as compared to the one in Ref.16

is that we do set �0 = 0, i.e., the centroid mode is not
thermostatted and follows Hamiltonian dynamics.
As shown in Section I, we do not find a criterion to

fix the �(k) parameters. While choosing them to yield
critical damping seems a sensible choice, we also inves-
tigate the e↵ect of changing these parameters to yield
underdamped and overdamped regimes of the Langevin
equation in the following sections.

V. THE QUARTIC OSCILLATOR

In this section, we show the results we obtain when
applying RPMD, CMD, and the dynapile method to the
one dimensional anharmonic quartic potential V (q) =
q4/4, already explored previously in the literature (e.g.
Refs.10,19). We here consider ~ = 1, m = 1, and � = 10,
in natural units. For the RPMD and dynapile simula-
tions, we used 64 beads, and a time step �t = 0.01 for
the integrator, which ensures convergence and accuracy
of all relevant quantities in the simulation. For CMD,
we used a time step of 0.002 natural units. [comment:
change PILE for dynapile in the following?]
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FIG. 1: Velocity autocorrelation function for the
quartic one-dimensional potential V (q) = q4/4. The
dotted line corresponds to the exact result. All units

are atomic units, m=1, and �=10.

In Figure 1, we show the velocity autocorrelation func-
tions calculated from 10000 trajectories of 200 time units.
All correlation functions were obtained after thermal-
ization runs with a simple Andersen thermostat. We
plot the correlation function of RPMD, CMD, PILE

(�(k) = �
(k)
c ), underdamped PILE (�(k) = 0.1�(k)

c ), and

overdamped PILE (�(k) = 10�(k)
c ). The dotted lines cor-

respond to the exact result, in which the autocorrelation
function does not decay. All methods predict an artificial
decorrelation of the autocorellation function, with CMD
being the closest to the exact result and PILE (critical
damping), being the second best. The fact that critically
damped PILE gives a better result than RPMD and than
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• Optimal damping (harmonic oscillator): 	


• Issue: no mathematical way to fix damping parameter, artificial broadening of peaks
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s=0 ⇒ centroid mode; s≠0 ⇒ internal modes

• Normal mode transformation of free ring polymer Hamiltonian:

2

of thermostat parameters, this stochastic term cures the
resonance problem of RPMD without triggering the cur-
vature problem. Furthermore, this method can be ued
with much larger time steps than CMD, as it uses the
RPMD mass matrix and does not rely on adiabatic sep-
aration.

The Langevin RPMD approach we introduce (which
we refer to as dynapile) is a practical solution to explore
the role of NQEs on dynamical properties, even though
we cannot claim that there is a universal choice of the
damping that gives a rigorously better approximation to
quantum dynamics. It is quite possible that by explor-
ing the additional degrees of freedom that are associated
with stochastic dynamics of the internal modes of the
ring polymer future research may eventually fulfill this
arduous goal.

I. INVARIANCE OF RPMD LIMITS TO THE
THERMOSTATTING OF INTERNAL MODES.

II. THE RESONANCE PROBLEM

Do we want to put the analytical results for the o↵-
diagonal coupled oscillators here? If we can show just a
picture about how PILE changes the spectrum, it would
be nice.

We here define the ring polymer e↵ective Hamiltonian,
in the bead representation, as

Hn =
NX

i

nX

j

"
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i |2

2m0
i

+
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2
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2
n|q(j)
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#

| {z }
H0

+
X

j

V (q(j)
1 , ...,q(j)

N ), (1)

where H0 is the free ring polymer Hamiltonian, i runs
through the N particles of the physical system, j runs
through the n path integral replicas, p(j)

i and q(j)
i are

the momenta and positions associated with particle i,
replica j, respectively, V is the physical interacting po-
tential, and !n = nkbT/~. We note that while mi should
correspond to the physical masses of the system, there is
no apriori requirement for the choices of m0

i in the stan-
dard PIMD formulation, since this term is just added to
the Halmiltonian to allow the evaluation of the dynamics.
Finally, q(n+1)

i = q(1)
i , which closes the ring polymer.

As explained in detail in Ref.16, it is possible to per-
form a normal mode transformation on the Hamiltonian
above, such that the free ring polymer Hamiltonian H0

can be written as

H0 =
1
2
P̃T M�1P̃ +

NX

i

n�1X

k=0


1
2
mi!

2
k(q̃(k)

i )2
�

, (2)

where P̃ is an array containing all normal mode trans-
formed momenta p̃(k)

i , q̃(k)
i are the normal mode trans-

formed coordinates, and !k = 2!n sin(k⇡/n). In RPMD,
the mass matrix M simply a diagonal matrix contain-
ing all the physical masses mi of the system, and the
time evolution of position and momenta are carried out
without any thermostat attached to them. In the nor-
mal mode representation, k=0 is the mode connected to
the centroid and k > 0 represent the internal modes of
the ring polymer. It is already worth pointing out that
!1 ⇡ 2⇡/(�~) for the free ring polymer lies around 1300
cm�1 at 300K and around 435 cm�1 at 100K (a temper-
ature that will be important later on in this paper).

As pointed out in Refs.13,15,17, if one applies the
RPMD formalism to a simple potential corresponding
to a chain of uncoupled harmonic oscillators V (q) =P

i mi!
2
i q2

i /2, it is straightforward to show that the fre-
quencies of vibration of ring polymer will be given by
check!

!i
k =

q
!2

i + 4!2
n sin2(k⇡/n), (3)

such that the centroid vibrates at the frequencies of the
physical system and the other internal modes vibrate
at higher frequencies. Clearly, in any real system, the
potential will not be exactly harmonic, and the expres-
sion in Eq. 3 will be just an approximation for the
internal frequencies of the ring polymer. Nevertheless,
Eq. 3 already shows clearly the origin of the so-called
“resonance-problem” of RPMD, thoroughly discussed in
Refs.13,15: For systems with vibrational frequencies !i

spanning from small to large wavenumbers, there will be
an !k for, e.g. a small !i that will have a very similar
frequency to another larger !i, so that they will resonate.
The lower the temperature, the more severely will these
spurious frequencies contaminate the true spectrum, so
that for most real-life applications, RPMD cannot be
used for the evaluation of vibrational spectra.

III. THE CURVATURE PROBLEM

The resonance problem is characteristic to RPMD.
CMD avoids contamination of the spectrum by internal
modes of the ring polymer by (partial) adiabatic decou-
pling, that ensures that there is no overlap between the
range of frequencies of the centroid vibration and that of
the non-zero frequency internal modes. On the contrary,
the so-called curvature problem is characteristic of CMD,
and consists in a red shift of stretching modes of groups
of atoms that also possess librations or wagging modes,
that is accompanied by a broadening of the peak and that
becomes more and more pronounced as the temperature
decreases.

As discussed in Ref.13, the curvature problem can be
understood as arising because the centroid moves on an
e↵ective potential, in which the stretching mode is av-
eraged over a soft, strongly non-linear motion of the
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Model Application: IR spectrum of OH molecule 
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IR Spectrum of the Zundel Ion
• Simulations on CCSD(T) parametrized potential of Huang, Braams, Bowman, JCP 122, 044308 
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IR Spectrum of Liquid Water
• Simulations on the q-TIP4Pf potential energy surface at 300K (box with 216 molecules)
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IR Spectrum of Liquid Water
• Simulations on the q-TIP4Pf potential energy surface at 300K (box with 216 molecules)

0

15000 Experiment

0

15000
Classical

0

15000

n(
ω
)α
(ω
) (

cm
-1

)

RPMD

0

15000
CMD

0 500 1000 1500 2000
wavenumber (cm-1)

0

15000
TRPMD

(a)

0

15000

0

15000

0

15000

n(
ω
)α
(ω
) (

cm
-1

)
0

15000

3200 3600 4000
wavenumber (cm-1)

0

15000

(b)

D
Class. 0.194(5)
RPMD 0.218(3)
CMD 0.219(2)

TRPMD 0.217(2)
Expt. 0.230

Diffusion Coefficients

O–H stretching region of the liquid water IR spectrum,
whereas previous simulations have shown that a simple har-
monic potential suffices to capture the H–O–H bending
band.9,13

In contrast to this functional form, the three-site
q-SPC/Fw quantum water model of Paesani et al.13 places
the negative charge on the oxygen atom !!=1" and uses a
harmonic description of the monomer stretching and bending
modes:

VOH!r" = 1
2kr!r − req"2. !5"

As has been shown previously13 and we shall demonstrate
again below, this purely harmonic intramolecular potential
does not provide a very good description of the O–H stretch-
ing band in the vibrational spectrum of liquid water. How-
ever, since the q-SPC/Fw model was also parametrized on
the basis of quantum simulations, it does provide a conve-
nient benchmark against which to compare our present
model.

In total, the interaction potential in Eqs. !1"–!4" contains
nine parameters. The intermolecular parameters are ", #, qM,
and !, all of which we have simply fixed at their values in
the TIP4P/2005 potential,25 and the intramolecular param-
eters are Dr, $r, req, k%, and %eq. These intramolecular param-
eters were optimized in an extensive series of calculations to
give good agreement with the experimental structure, self-
diffusion coefficient, and vibrational absorption frequencies
of the liquid in quantum mechanical !path integral" simula-
tions. The final parameters of the resulting q-TIP4P/F model
are listed alongside those of the q-SPC/Fw model13 in Table
I.

III. QUANTUM SIMULATION METHODS

A. Path integral molecular dynamics

We have used the PIMD method26 to calculate a variety
of structural and thermodynamic properties of the q-SPC/Fw
and q-TIP4P/F models, including radial distribution func-
tions !RDFs", dielectric constants, liquid densities, and melt-
ing points. Most of these calculations were straightforward
and require little additional explanation. For example, the
O–O, O–H, and H–H RDFs of the two liquids were obtained
from 250 ps NVT path integral simulations in the presence of
an Andersen thermostat.27 Dielectric constants were obtained

from much longer !10 ns" NVT simulations in order to allow
for complete dielectric relaxation, and liquid densities at 1
atm pressure were obtained from 10 ns NPT simulations in
order to fully converge the average over density fluctuations.
These latter simulations were performed in the presence of
both an Andersen thermostat and an isotropic Berendsen
barostat.28

The melting point calculations were a little more com-
plicated and do need some more explanation. These were
done by performing direct coexistence simulations of the
water-ice interface under atmospheric pressure.29,30 Initial
hexagonal ice configurations were generated by placing the
oxygen atoms at their crystallographic sites.31 The hydrogen
atom positions were determined using the Monte Carlo pro-
cedure of Buch et al.32 in such a way that the Bernal–Fowler
rules33,34 were satisfied and the total dipole moment of the
simulation cell was exactly zero. The initial ice configuration
was then equilibrated in the presence of an Andersen ther-
mostat and an anisotropic Berendsen barostat for 50 ps !Ref.
28" before placing the secondary prismatic !12̄10" face of the
ice cell in contact with an equilibrated water simulation.35

In total, the coexistence simulations consisted of 696
water molecules, with 360 initially in the ice phase and 336
in the liquid. The combined ice/water system was simulated
for 10 ns in the presence of an Andersen thermostat and an
anisotropic Berendsen barostat. Both the number density
profile of oxygen atoms along the axis perpendicular to the
ice/water interface and the total potential energy of the sys-
tem were used as order parameters to monitor the extent of
melting or freezing during the simulation.29,30 The simulation
was halted if complete melting or freezing was observed to
have occurred. The melting temperature was determined to
within 1 K for the q-TIP4P/F model and to within 5 K for the
q-SPC/Fw model by repeating the whole procedure at differ-
ent temperatures and using a bisection procedure to home in
on the melting point.

B. Ring polymer molecular dynamics

We have also used the RPMD method7,8 to calculate sev-
eral dynamical properties of the room temperature q-TIP4P/F
liquid, including the self-diffusion coefficient and various
orientational relaxation times. The diffusion coefficient was
obtained from the time integral of the RPMD velocity auto-
correlation function,

D =
1
3#0

&

c̃v·v!t"dt , !6"

and the lth order relaxation times for various axes ' of the
water molecule were obtained from the time integrals of the
corresponding orientational correlation functions,

(l
' = #

0

&

c̃l
'!t"dt . !7"

Both of these calculations have been described in detail in
recent papers and we have used the same procedures in the
present study.11,36,37 The velocity autocorrelation function
c̃v·v!t" in Eq. !6" was calculated for 2 ps by time averaging

TABLE I. Parameters in the q-TIP4P/F and q-SPC/Fw !Ref. 13" quantum
water models.

q-TIP4P/F q-SPC/Fw

" !kcal mol−1" 0.1852 0.1554
# !Å" 3.1589 3.1655
qM !$e$" 1.1128 0.84
! 0.73612 1.00
Dr !kcal mol−1" 116.09 ¯
$r !Å−1" 2.287 ¯
kr !kcal mol−1 Å−2" ¯ 1 059.162
req !Å" 0.9419 1.0000
k% !kcal mol−1 rad−2" 87.85 75.90
%eq !deg" 107.4 112.0

024501-3 Quantum effects in liquid water J. Chem. Phys. 131, 024501 !2009"
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