The Materials Genome ...

... and the example of polymer dielectrics design

Rampi Ramprasad Materials Science & Engineering University of Connecticut

The "Original" Genome

"The molecular logic of the living state"

The Genetic Code

А

Tyrosine

Tyrosine

Stop

Stop

Histidine

Histidine

Glutamine

Glutamine

Asparagine

Asparagine

Lysine

Lysine

Aspartic acid

Aspartic acid

Aspartic acid

Aspartic acid

Third

Letter

U

С

А

G

U

С

А

G

U

С

А

G

U

С

А

G

G

Cysteine

Cysteine

Stop

Tryptophan

Arginine

Arginine

Arginine

Arginine

Serine

Serine

Arginine

Arginine

Glycine

Glycine

Glycine

Glycine

<u>Knowledge</u>: Structure ⇔ Function Relationship

A Framework For Learning

The Materials Genome Challenges: Handle staggering chemical (~100 elements) and physical (3-d, multi-scale) spaces!

The ABX₃ Genome

Castelli, et al, Energy Environ. Sci. 5, 5814 (2012); Energy Environ. Sci. 5, 9034 (2012).

Mining, Learning & Searching

Castelli, et al, Modelling Simul. Mater. Sci. Eg. 22 (2014); Jain, et al, J. Mater. Sci. 48 (2013).

Rules for stable ABO₃ insulators:

- 1. Even number of electrons per unit cell
- 2. Sum of oxidation states zero
- 3. A-site element larger than B-site element

Do we need to do ~ 19,000 DFT calculations to identify 20?!

Evolutionary algorithm appears to work

A Framework For Learning

Materials That Rocked The World!

The "Materials" Genome Initiative

- Not just high-throughput computing/experiments (i.e., data generation)
- Not just database creation (i.e., data organization)
- Not just data mining
- All the above ...

• ... plus synergy between experiment, computation & theory, aimed at accelerated materials discovery

"The Materials Genome Initiative, the interplay of experiment, theory and computation", de Pablo, Jones, Kovacs, Ozolins and Ramirez, Current Opinion in Solid State and Materials Science (2014)

The Polymer Genome

Energy Storage Technologies

Capacitors are the only option for rapid (dis)charge applications

Maximum energy density \approx (dielectric constant).(breakdown field)²

Capacitor Options

- Ceramics (planar & multilayer), but breakdown is catastrophic
- Polymer films
 - Preferred for large area applications
 - Display graceful failure

Toyota Prius Capacitor Bank

Medical Defibrillators

The Current "Standard"

- Biaxially oriented polypropylene (BOPP)
 - Purely hydrocarbon based
 - Large breakdown field (700 MV/m); Low loss (0.0001); Cheap; Easily processable
 - ➢ But, low dielectric constant (2.2)
 - ➢ Energy density of 5 J/cc

• How to surpass BOPP?

Our "MGI" Effort & Team

- Search the organic & organometallic chemical space ...
- ... for materials with
 - High dielectric constant
 - High breakdown field (large band gap?)
 - Low loss (large band gap?)
 - High temperature stability
 - Easy processablity

The Length Scale Challenge

DFT computations, effective medium theory, 3-D structure searches (evolutionary algorithms, minima hopping, melt-andquench, force fields), data mining, machine learning

"Computational Strategies for Polymer Dielectrics Design", Wang, et al, Polymer 55, 979 (2014)

Our Strategy

"Rational Design of All-Organic Polymer Dielectrics", Sharma, et al, accepted (Nature Communications)

Organic Polymers

- Electronic part of dielectric constant is strongly related to band gap; but ionic part is not!
- "Sweet spot" dominated by NH, CO or CS, and at least one aromatic group

Pilania, et al, J. Chem. Inf. Model 53, 879 (2013); Wang, et al, Phys. Rev. B 87, 035103 (2013)

3D Structure Prediction

Courtesy: Artem Oganov (SUNY, Stony Brook)

Courtesy: Sanat Kumar (Columbia University)

3D Structure & Properties

But none of them is "processable", i.e., flexible thin films cannot be made!

A Processable Variant

$[-NH-CS-NH-C_{6}H_{4}-NH-CS-NH-CH_{2}-CH_{$

Synthesized Film

Predicted Structure

XRD

Dielectric

Courtesy: Greg Sotzing, Yang Cao (UCONN)

The Story So Far

"Rational Design of All-Organic Polymer Dielectrics", Sharma, et al, accepted (Nature Communications)

Can We Do Better?!

Wang, et al, Phys. Rev. B 87, 035103 (2013); Mannodi-Kanakkithodi, et al (under review)

Polymers Based on Group 14 Elements

High-throughput density functional theory + Machine Learning

Blocks: CH₂, SiF₂, GeF₂, SnF₂, SiCl₂, GeCl₂, SnCl₂

"New Group 4 chemical motifs for polymeric dielectrics with high energy density", Pilania, et al, J. Chem. Inf. Model 53, 879 (2013)

"Accelerating materials property predictions using machine learning", Pilania, et al, Sci. Rep. 3, 2810 (2013)

Prediction By Machine Learning

Density Functional Theory

"Accelerating materials property predictions using machine learning", Pilania, et al, Sci. Rep. 3, 2810 (2013)

Correlations & Insights

- Ionic part dominates dielectric constant
- Sn-containing groups occupy "sweet spot"

"Accelerating materials property predictions using machine learning", Pilania, et al, Sci. Rep. 3, 2810 (2013)

Synergy With Synthesis

Organo-tin Ester Polymers

Baldwin, et al (under review)

Deeper into Organo-tin

Tran, et al (in preparation)

Deeper into Organo-tin

• 1D, 2D & 3D motifs, with 4-7 fold coordinated Sn

Mannodi-Kanakkithodi, et al (in preparation)

Organic Versus Organo-tin Polymers

- By carefully choosing organic
 blocks, one can improve upon
 polypropylene
- Organometallic polymers could lead us to an important part of the chemical/property space!
- But, there are other issues to contend with, of course!

Physical & Chemical Complexity

"New perspective on formation energies and energy levels of point defects in non-metals", Ramprasad, et al, Phys Rev. Lett. 108, 066404 (2012) Chen, et al, (in preparation)

Dielectric Breakdown: A New Frontier?!

- The *intrinsic* breakdown field of a crystalline material is controlled by the scattering of charge carriers by phonons.
- How about extrinsic factors?!

"The intrinsic electrical breakdown strength of insulators from first principles" Sun, et al, Appl. Phys. Lett. 101, 132906 (2012) Kim, et al (in preparation)

A Framework For Learning

The Materials Genome Challenges: Handle chemical and physical spaces; accurate property prediction scheme development; synergize with experiments.

Acknowledgments

UCONN: Prof. Greg Sotzing, Prof. Steve Boggs, Prof. Yang Cao, Mr. Aaron Baldwin, Mr. Robert Lorenzini, Ms. Rui Ma, Ms. JoAnne Ronzello

Columbia University: Prof. Sanat Kumar, Dr. Manish Agarwal, Dr. Daniel Sinkovits, Mr. Mayank Misra

University of Akron: Prof. Miko Cakmak, Prof. Bob Weiss, Mr. Sahil Gupta, Mr. Ido Offenbach

Penn State University: Prof. Mike Chung, Dr. Xuepie Yuan

RPI: Prof. Curt Breneman, Mr. Ke Wu

SUNY-StonyBrook: Prof. Artem Oganov, Dr. Qiang Zhu