Practical Implementations: The Nuts and Bolts of DFT Part II

Björn Lange

Outline

- Part I: The Self Consistency Cycle (SCF)
- Density mixing
- Metallic systems: Fermi level broadening
- Preconditioning
- Part II: Structure optimization
- Local structure optimization
" „Forces" in density functional theory
- Vibrations in the harmonic approximation
- Part III: Beyond conventional CPUs
. Calculating with Graphical Processing Units (GPUs)

Recap: Electron Density

- All ground state properties are related to the electron distribution [I]:

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}\right) \Longleftrightarrow n(\mathbf{r})
$$

- Map electron density on effective one-particle orbitals with energy $\varepsilon_{i}[2]$:

$$
n(\mathbf{r}) \Longrightarrow \sum_{i}^{\infty} f_{i}\left|\phi_{i}(\mathbf{r})\right|^{2} \quad H[n] \phi_{i}(\mathbf{r})=\epsilon_{i} \phi_{i}(\mathbf{r})
$$

„Occupation numbers"

$$
f_{i}=\left\{\begin{array}{lr}
0 \ldots 2 & \text { not spin-polarized } \\
0 \ldots 1 & \text { spin-polarized }
\end{array}\right.
$$

[I] P. Hobenberg, W. Kohn, Phys Rev. (1964), B864
[2]: W. Kobn, L.7. Sham, Phys. Rev. (1965), Air33

Fractional Occupation Numbers

- Justified as a statistical average

$$
n(\mathbf{r}) \Longrightarrow \sum_{i}^{\infty} f_{i}\left|\phi_{i}(\mathbf{r})\right|^{2}
$$

- Practical necessity: Brillouin zone integrals for metallic systems (later in this talk)
- Formal necessity: Physics of metals needs statistical mechanics
- Can lead to unexpected occupations for pure state systems

Recap: Kohn-Sham Equations

$$
H[n] \phi_{i}(\mathbf{r})=\epsilon_{i} \phi_{i}(\mathbf{r})
$$

$\left(-\frac{1}{2} \nabla^{2}+\int_{\Omega} \frac{n(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r}^{\prime}+V_{\mathrm{xc}}(\mathbf{r})+V_{\mathrm{ext}}(\mathbf{r})\right) \phi_{i}(\mathbf{r})=\epsilon_{i} \phi_{i}(\mathbf{r})$
kinetic contribution
electron-electron electron-ion interaction interaction
external fields

- We want to determine all solutions Φ_{i} such that
the total energy E[n] is minimized
- H[n] is consistent with $\left\{\Phi_{i}\right\}$

Self Consistent Field Method (S.C.F.)

What kind of initial guess?

The Initial Guess

- Random Numbers?
- mainly in plane-wave based methods

$$
n^{0}\left(\mathbf{r}_{i}\right)=R N D([0 \ldots 1])
$$

* easy to implement
* no chemical motivation (unbiased)
- no chemical motivation (slowe)
- Completely impractical for an all electron code (density is dominated by core electrons close to the nuclei)

The Initial Guess

- Superposition of atomic densities (used in FHI-aims):

$$
n^{\text {at }}(\mathbf{r})=\sum_{i} f_{i}^{\text {occ }}\left|\chi_{i}(\mathbf{r})\right|^{2} \quad n^{0}(\mathbf{r})=\sum_{I}^{N_{\mathrm{at}}} n_{I}^{\mathrm{at}}\left(\mathbf{r}-\mathbf{R}_{I}\right)
$$

* straightforward
to implement
- Can
overemphasise symmetry

- Extended Hückel Theory [I] (in थुantum Chemistry codes)
- not implemented in FHI-aims
- Linear Combination of Atomic Orbitals

$$
\phi_{i}^{0}(\mathbf{r})=\sum_{j} c_{i j} \chi_{j}\left(\mathbf{r}-\mathbf{R}_{j}\right)
$$

- Hamiltonian [2,3]:
$H_{i i}$: parameterized atomic valence ionization energies

$$
H_{i j}=K S_{i j} \frac{H_{i i}+H_{j j}}{2}
$$

- Solve set of linear equations $\hat{H} \mathbf{c}_{i}=\epsilon_{i} \hat{S} \mathbf{c}_{i}$
- Improved flexibility, specific orbitals can be populated

$$
n^{0}(\mathbf{r})=\sum_{i} f_{i}^{\text {occ }}\left|\phi_{i}^{0}(\mathbf{r})\right|^{2}
$$

[I] R. Hoffmann, 7 Chem. Phys (1963), 1397
[2] R. S. Mulliken, F. Chem. Phys. (1946) 497
[3] M. Wolfsberg and L. Helmboltz, 7. Chem. Phys (1952), 837

Importance of Initial Guess

- Different minima might exist, leading to qualitative different properties
- e.g. O_{2} : singlet vs. triplet
- symmetric solutions can be higher in energy

Density Update

- Evaluate new KS density from current KS orbitals

$$
n_{\mathrm{KS}}^{j}(\mathbf{r})=\sum f_{i}\left|\phi_{i}^{j}(\mathbf{r})\right|^{2}
$$

- Naive way: Replace old density by new density

$$
n^{j}(\mathbf{r})=n_{\mathrm{KS}}^{j}(\mathbf{r})
$$

no convergence

- oscillating total energy

Simple Linear Mixing

- Define difference density

$$
\Delta n(\mathbf{r})=n_{\mathrm{KS}}^{j}(\mathbf{r})-n^{j-1}(\mathbf{r})
$$

- Take only a fraction of this (underrelaxation method):

$$
n^{j}(\mathbf{r})=n^{j-1}(\mathbf{r})+\alpha \Delta n(\mathbf{r})
$$

too bigh α :
unstable SCF behaviour

- too small α :
slow convergence
- optimal α is
system dependent

Pulay mixing (Direct inversion of iterative subspace)

- the residual density: change between $K S$ density and input density

$$
R^{j}(\mathbf{r})=n^{j}(\mathbf{r})-n_{\mathrm{KS}}^{j}(\mathbf{r})
$$

- Try to predict R^{j+1} from N previous residues

$$
R^{j+1}(\mathbf{r})=\sum_{i=0}^{N-1} \beta_{i} R^{j-i}(\mathbf{r})
$$

- find β_{i} by minimizing

$$
F=\left\|R^{j+1}(\mathbf{r})\right\|^{2}-\lambda\left(1-\sum_{i=0}^{N} \beta_{i}\right)
$$

[I] P. Pulay, Chem. Phys. Lett. 73, 393 (1980)

Pulay mixing (Direct inversion of iterative subspace)

Construct „optimal density":

$$
n^{\mathrm{opt}}(\mathbf{r})=n_{\mathrm{KS}}^{j}+R^{j}(\mathbf{r})
$$

be conservative

$$
n^{j}(\mathbf{r})=(1-\alpha) n^{j-1}(\mathbf{r})+\alpha n^{\mathrm{opt}}(\mathbf{r})
$$

increase of convergence speed

- can be nearly independent of α
for insulating systems
$\alpha=0.2-0.6$
for metallic systems
α can be 0.05

Metallic systems

- Metallic systems are more demanding in convergence
- Band crossing at the Fermi level
- Bad convergence of band structure energy in reciprocal space:

$$
E_{\text {Band }}=\sum_{n} \frac{1}{\Omega} \int_{\Omega} \epsilon_{n \mathbf{k}} \Theta\left(\epsilon_{n \mathbf{k}}-\epsilon_{\text {Fermi }}\right) d \mathbf{k}
$$

- We operate with a finite k-mesh

$$
\frac{1}{\Omega} \int_{\Omega} d \mathbf{k} \rightarrow \sum_{N_{k}} w_{\mathbf{k}}
$$

- for metals : $T=o K$ occupancies would jump discontinuously from I to o at the Fermi level

Metallic systems

- Fermi surfaces = collection of k-points with energy $\varepsilon_{\text {Fermi }}$
- related to Fermi level crossing of bands (structure-rich Fermi surface[I])

„level switching" of partially filled orbitals during SCF possible [I] http://wwwre.phys.ufl.edu/fermisurface/periodic_table.html

Fermi level broadening

- Stabilize integration by replacing Θ with a smoother function

$$
f_{\text {Fermi-Dirac }}\left(\frac{\epsilon-\epsilon_{\text {Fermi }}}{\sigma}\right)=\frac{1}{\exp \left(\frac{\epsilon-\epsilon_{\text {Fermi }}}{\sigma}\right)+1} \quad[I]
$$

$$
f_{\text {Gaussian }}\left(\frac{\epsilon-\epsilon_{\text {Fermi }}}{\sigma}\right)=\frac{1}{2} \operatorname{erfc}\left(\frac{\epsilon-\epsilon_{\text {Fermi }}}{\sigma}\right) \quad[2]
$$

$f_{\text {Methfessel-Paxton }}\left(\frac{\epsilon-\epsilon_{\text {Fermi }}}{\sigma}\right)=\frac{1}{2} \operatorname{erfc}\left(\frac{\epsilon-\epsilon_{\text {Fermi }}}{\sigma}\right)$

$$
+\sum_{i=1}^{n} A_{i} H_{2 i-1}\left(\frac{\epsilon-\epsilon_{\text {Fermi }}}{\sigma}\right) \exp \left(-\left(\frac{\epsilon-\epsilon_{\text {Fermi }}}{\sigma}\right)^{2}\right)[3]
$$

[I] Mermin, N. D. (1965), Phys.Rev., 137 (5A), A1441-A1443
[2] Fu, C. L., \& Ho, K. M. (1983), Physical Review B, 28, 5480-5486.
[3] Methfessel, M., \& Paxton, A. T. (1989) Physical Review B, 40(6),3616-362I

Fermi Level Broadening

- electronic smearing avoids discontinuity at the Fermi level
- can be related to electronic temperature in Fermi-Dirac method

Convergence

- Step function approach fails to converge
- Electronic broadening crucial to speed up the convergence

Free Energy

- Total energy depends on variations in f_{i}
- Optimize free energy instead

$$
F=E-\sigma S(\sigma)
$$

- Backextrapolation possible $\sigma \longrightarrow 0$
- Extrapolation Error $\ll 1 \mathrm{meV}$
- Applicable for metals, but not, in general, for atoms or small molecules with discrete electronic levels

Kresse, G., \& Furthmüller, 7. (1996). Computational Materials Science, 6(I), 15-50
M. Weinert and F. W. Davenport. Phys. Rev. B. 45 (1992) 13709.
R.M. Wentzcovitch, F.L. Martins and P.B. Allen, Phys. Rev B 45 (1992) 11372

Surfaces, Interfaces, Defects, Thin Films

e.g. $M o$ (ioo) surface

- difficult electronic structure

- Long range density fluctuations in Surfaces, Interfaces, Defects, and Thin Films can lead to charge sloshing [I]
- Let mixing depend on the density $n^{j}(\mathbf{r})=n^{j-1}(\mathbf{r})+\hat{G} \Delta n(\mathbf{r})$
- Idea: Treat density in Fourier space and damp long range density fluctuations

$$
\Delta n(\mathbf{G})=\frac{1}{\Omega} \int_{\Omega_{0}} \Delta n(\mathbf{r}) e^{-\mathbf{G} \cdot \mathbf{r}} d \mathbf{r}
$$

[I] Kerker, G. P. (1981). Physical Review B, 23(6), ${ }^{\Omega} 082-3084$

Kerker Preconditioning

- Based on Thomas Fermi Theory in reciprocal space[1,2]:

$$
\hat{G}(\mathbf{G})=\beta \frac{|\mathbf{G}|^{2}}{|\mathbf{G}|^{2}+\lambda^{2}} \quad \begin{aligned}
& \beta \text { : mixing parameter } \\
& \lambda: \text { screening constant }
\end{aligned}
$$

- For $G \gg \lambda$
(short-range density fluctuations)
$\hat{G}(\mathbf{G}) \approx \beta$ normal mixing
- For $G \ll \lambda$
(long-range density fluctuations)
$\hat{G}(\mathbf{G}) \approx \beta \frac{|G|^{2}}{\lambda^{2}} \quad$ effective damping

[I] M. Manninen, R. Nieminen, and P. Hautojavri, Phys. Rev. B 12,4012 (1975)
[2] Kerker, G. P. (1981). Physical Review B, 23(6), 3082-3084

Summary SCF

the SCF cycle

approaches of density mixing

$$
n^{j}(\mathbf{r})=(1-\alpha) n^{j-1}(\mathbf{r})+\alpha n^{\mathrm{opt}}(\mathbf{r})
$$

- Fermi level broadening
preconditioner $\hat{G}(\mathbf{G})=\beta \frac{|\mathbf{G}|^{2}}{|\mathbf{G}|^{2}+\lambda^{2}}$

Geometry optimization

Finding Stable Structures

„The space of possible structures is endless, as well as the number of methods to find them":

- Stochastical or Monte Carlo Methods (Talk: Peter Kratzer)
- Molecular Dynamics (Talk: Luca Ghiringhelli, MauroMaggioni)
- Genetic Algorithms
- Diffusion Methods
- Experimental structure determination
- However, once you are near a minimum, you bave to find it...

Local Structure Optimization

- gradient free methods („total energy only" approach)
- evaluate a ferw points
- construct new point, e.g. assume barmonicity
- repeat
until self-consistency

Coordinate

Local Structure Optimization

gradient based method („Forces") $\quad \mathbf{F}_{i}=-\frac{\delta E_{\mathrm{tot}}}{\delta \mathbf{R}_{i}}$

- evaluate Force(s) on the atoms analytically
- use standard scheme to optimize the structure
- steepest descent (SD) just for illustration
- conjugate gradient (CG) better than SD
- (थuasi-) Neroton approaches (BFGS) state-of-the-art approach
- How to evaluate the forces?

Forces (light version)

- Energy

$$
E=\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

- Forces

$$
\mathbf{F}_{i}=-\frac{d E}{d \mathbf{R}_{i}}
$$

- factor rule:

$$
\frac{d E}{d \mathbf{R}_{i}}=\frac{d}{d \mathbf{R}_{i}} \frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

$$
=\frac{\frac{d}{d \mathbf{R}_{i}}\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}-\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \frac{\frac{d}{d \mathbf{R}_{i}}\langle\Psi \mid \Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

$=\frac{1}{\langle\Psi \mid \Psi\rangle}\left(\langle\Psi| \frac{d \hat{H}}{d \mathbf{R}_{i}}|\Psi\rangle+\left\langle\frac{d \Psi}{d \mathbf{R}_{i}}\right| \hat{H}-E|\Psi\rangle+\langle\Psi| \hat{H}-E\left|\frac{d \Psi}{d \mathbf{R}_{i}}\right\rangle\right)$

Hellman-Feynman Forces

- Analyze first term

$$
\mathbf{F}_{i}=-\frac{1}{\langle\Psi \mid \Psi\rangle}\left(\langle\Psi| \frac{d \hat{H}}{d \mathbf{R}_{i}}|\Psi\rangle+\left\langle\frac{d \Psi}{d \mathbf{R}_{i}}\right| \hat{H}-E|\Psi\rangle+\langle\Psi| \hat{H}-E\left|\frac{d \Psi}{d \mathbf{R}_{i}}\right\rangle\right)
$$

- affects only electron-nucleon and nucleon-nucleon interaction[I]

$$
\mathbf{F}_{i}^{\text {Hellman-Feynman }}=\sum_{j} \frac{\delta}{\delta \mathbf{R}_{i}} \frac{Z_{i} Z_{j}}{\left|\mathbf{R}_{i}-\mathbf{R}_{j}\right|}-\int_{\Omega} n(\mathbf{r}) \frac{\delta}{\delta \mathbf{R}_{i}} \frac{Z_{i}}{\left|\mathbf{R}_{i}-\mathbf{r}\right|} d \mathbf{r}
$$

[II Feynman, R. P. (1939). "Forces in Molecules". Phys. Rev. 56 (4):340

Pulay Forces

What about the second term?

$$
\mathbf{F}_{i}=-\frac{1}{\langle\Psi \mid \Psi\rangle}\left(\langle\Psi| \frac{d \hat{H}}{d \mathbf{R}_{i}}|\Psi\rangle+\left\langle\frac{d \Psi}{d \mathbf{R}_{i}}\right| \hat{H}-E|\Psi\rangle+\langle\Psi| \hat{H}-E\left|\frac{d \Psi}{d \mathbf{R}_{i}}\right\rangle\right)
$$

- applying basis expansion results in
- Pulay Forces = artificial force due to moving basis:

$$
\mathbf{F}_{i}^{\text {Pulay }}=-2 \sum_{j, j^{\prime}, n} f_{n}^{\text {occ }} c_{j n}^{*}\left\langle\frac{\delta \chi_{j}}{\delta \mathbf{R}_{\mathbf{i}}}\right| \hat{H}-\epsilon_{n}\left|\chi_{j^{\prime}}\right\rangle c_{j^{\prime} n}
$$

- vanishes if basis set is stationary, e.g. plane waves
(Talk: Anderson Fanotti)

Steepest Descent

- Naive approach: Follow gradient in negative direction

$$
\mathbf{R}^{n}=\mathbf{R}^{n-1}-\alpha \mathbf{F}\left[\mathbf{R}^{n-1}\right]
$$

- Step length as parameter
- Convergence depends on the step length
- Slow, oscillates around path
- Improvements:
- Line minimization for optimal step length
- Conjugate Gradient method

(Quasi-) Newton Method

- Approximate energy surface as quadratic form

$$
E(\mathbf{R}+\Delta \mathbf{R}) \approx E(\mathbf{R})+\mathbf{F}^{T}(\mathbf{R}) \Delta \mathbf{R}+\frac{1}{2}(\Delta \mathbf{R})^{T} \mathbf{H}(\Delta \mathbf{R})
$$

- with Hesse matrix

$$
H_{i j}=\frac{d E}{d \mathbf{R}_{i} d \mathbf{R}_{j}}
$$

- Minimum:

$$
\Delta \mathbf{R}=\mathbf{H}^{-1} \mathbf{F}(\mathbf{R})
$$

- But H is unknown / expensive:
- cheaper construction of Hesse matrix needed

Hessian construction „on the fly"

- Make a guess for the Hessematrix
- scaled unity

$$
\tilde{\mathbf{H}}^{0}=\beta \mathbf{1}
$$

- force field model based on internal coordinates [I] (e.g. Lindh initialization)
- update H during optimization
- Broyden-Fletcher-Goldfarb-Shanno update (BFGS) [2-5]

$$
\tilde{\mathbf{H}}^{n}=\tilde{\mathbf{H}}^{n-1}+\frac{\Delta \mathbf{F} \Delta \mathbf{F}^{T}}{\Delta \mathbf{F}^{T} \Delta \mathbf{R}}-\frac{\left(\tilde{\mathbf{H}}^{n-1} \Delta \mathbf{R}\right)\left(\tilde{\mathbf{H}}^{n-1} \Delta \mathbf{R}\right)^{T}}{\Delta \mathbf{R}^{T} \tilde{\mathbf{H}}^{n-1} \Delta \mathbf{R}}
$$

- H stays positive definite
[I] Lindh, Bernhardsson, Karlström, Malmqvist, Chem. Phys. Lett. 24I, 423 (1995)
[2] Broyden, C. G. (1970), Fournal of the Institute of Mathematics and Its Applications 6: 76-90
[3] Fletcher, R. (1970), Computer Fournal 13 (3): 317-322
[4] Goldfarb, D. (1970), Mathematics of Computation 24 (I09): 23-26
[5] Shanno, David F. (1970), Math. Comput. 24 (III): 647-656

Stability and Improvements

- Hesse Matrix is an approximation
- Step control: Allow only finite step sizes to avoid overshooting

$$
\Delta \mathbf{R}=\alpha H^{-1} \mathbf{F}(\mathbf{R})
$$

- Trust radius method:
- Evaluate quality of quadratic model

$$
q=\frac{E_{\text {true }}}{E_{\text {model }}}
$$

- Adjust maximal step size based on q
- Introduce internal coordinates like rotations rather the cartesian steps

Performance

α-helical peptide
Ac-LysH ${ }^{+}$-Ala ${ }_{19}, 220$ atoms initial guess:
MD snapshot

Implementation by Jürgen Wieferink

Trust-radius enhanced BFGS, Lindh initial Hessian [I]
BFGS, Lindh initial
Hessian [I]
BFGS, diagonal initial
Hessian (x4)
conservative
BFGS (few missteps)

[I] Lindh, Bernhardsson, Karlström, Malmqvist, Chem. Phys. Lett. 24I, 423 (1995)

Vibrations

- Based on harmonic approximation (Harmonic oscillator)
- Perform Taylor expansion of energy up to second order

- Forces vanish for optimized geometries:

$$
E(r) \approx E_{0}+\frac{1}{2} \omega^{2} r^{2}
$$

Vibrations

- Assume barmonic approximation in ${ }_{3} N$ space:

$$
E(\mathbf{R}) \approx E_{0}+\frac{1}{2} \Delta \mathbf{R}^{T} \mathbf{H} \Delta \mathbf{R}
$$

- Hesse matrix H needed

- Numerical evaluation of Hessian via finite differences (BFGS Hessian not accurate enough)

$$
H_{\alpha \beta}=\frac{d^{2} E}{d R_{\alpha} d R_{\beta}} \approx-\frac{\mathbf{F}_{\alpha}\left(\mathbf{R}+h \mathbf{e}_{\beta}\right)-\mathbf{F}_{\alpha}\left(\mathbf{R}-h \mathbf{e}_{\beta}\right)}{2 h}
$$

Vibrations

- Exponential Ansatz to solve Nerotons equations

$$
\mathbf{M} \frac{d^{2}}{d t^{2}} \Delta \mathbf{R}=-\mathbf{H} \Delta \mathbf{R}
$$

$$
\Delta \mathbf{R}=\mathbf{u} e^{-\mathrm{i} \omega t}
$$

- Generalized eigenvalue problem:

$$
\mathbf{H} \mathbf{u}_{n}=\omega_{n}^{2} \mathbf{M} \mathbf{u}_{n}
$$

- Solution gives eigenmodes and eigenfrequencies

$$
\mathbf{R}=\mathbf{R}_{0}+\sum_{n}^{3 N-6} c_{n} \mathbf{u}_{n} \cos \left(\omega_{n} t+\varphi_{n}\right)
$$

- 3 modes describe translations
- 3 modes describe rotations

Interpreting Vibrations

- hard modes
bigh ω
e.g. stretching

- soft modes
low ω
e.g wagging
- imaginary modes indicates sattle point, e.g. flat NH_{3}

Reaction coordinate

Beyond classical nuclei

- Free energy for $T>0$ with quantum vibrational effects [I]

$$
F(T)=E_{0}+\sum_{i} \frac{\hbar \omega_{i}}{2}+k_{b} T \sum_{i} \ln \left(1-e^{-\hbar \omega_{i} / k_{b} T}\right)
$$

- Zero-point vibrational energy correction

$$
F(0)=E_{0}+\sum_{i} \frac{\hbar \omega_{i}}{2}
$$

- Connect to experimental data
- Infrared spectroscopy
- Raman spectroscopy
- More details (Tutorial: Christian Carbogno)
[I] F. Fensen, Introduction to Computational Chemistry

Summary Geometry Optimization

- Forces in electronic structure theory
- Hellman-Feynman and Pulay Forces

$$
\mathbf{F}_{i}=-\frac{\delta E_{\mathrm{tot}}}{\delta \mathbf{R}_{i}}
$$

- Minimization techniques
- Steepest descent
- थuasi-Neroton (BFGS)
- Atomic Vibrations
- structure stability
- zero-point energy
one first step to go beyond $T=o K$

Beyond conventional CPUs

http://wwrev.futuretimeline.net/21stcentury/2019.htm\#.U8RgGagmAZs

Every 24 months ...

- Moore's observation

Moore's Law

Towards the ExaFLOP scale

- Moore's observation for $\boldsymbol{F L}$ oating-point $\boldsymbol{O P}$ erations per second
- Prediction: Overcome ExaFLOP barrier in 2018

AMD

(9e010 Advanced Mirio Devices, inc. All ifights reserved. AMD, the AMD Arrow logo, combinations thereof, are trademerks of Ackvanced Micro Devices, inc. Al other trademarks are the property of their respective owners.

Are we ready for the ExaScale?

- Current ExaScale model predicts a machine with I billion cores
- If I billion cores would be typical CPUs then the predicted energy consumption would be more than $I^{G} W$

Modern Compute Architectures

- New architectures: GPU computing
- Power consumption:
10.5 Watt / CPU core
o.o8 Watt / GPU core
0.77 \% Watt / core
- GPUs are a possibility towards exaFLOP scaling
- ... and are available

The TOP io Supercomputers

1) Tianhe-2 (Heavenrider-2) China 32,ooo Intel Xeon E5 I2 Cores

43 ${ }^{\text {rd }}$ List: The TOP10

*	sin	Mrnexatirer	Cormputer	Cxuntr	Cors	$\begin{array}{\|l\|} \hline \frac{s . a n}{} \\ \hline \end{array}$	Amoin
1	Hesional University of Deferse Tecinology	nuot	Tianhe-2 NUDT THFVB-FEP, 	Chins	3.120,000	33.9	178
2	Cok Rispe Mational Laboratory	Cray		USA	500,600	17.6	821
3	Lasrence Unernore Notonal Laboratory	вм	Saquala BlueGene/0. Puwer BOC 10C 18CHiz, Cusitem	USA	1,572,864	172	1.89
4	Hexen Adranced institutefor Computational Science	Fu\|tw	SPARCEA VITF 20610 . Tofly interconnect	Japm	70.020	10.5	127
5	Argome National Laboratory	вm		usa	706.428	*sso	196
*	Salas Wational Supercompling Cerife (cscs)	Cry		Smeretiand	115, 3 ec	627	233
7	Terss Advanced Computing Center UT	Dell	Stimpede Powerlidpe Cazas. Xean ES AC 2.RaHz, Irtal Xeen Wai	USA	462,422	5.17	451
*	Forsehungueminm Jueleh (FZA)	м ${ }^{\text {m }}$		Oermany	4seme	6.91	230
9	Lasrence Unemmere Natonal Laboratiory	вм		usa	30,210	4.29	1.97
10	Goverment	Cray	Cray \times C30. Xeon ES 120 C 270320, Alics	USA	235,964	3.14	

48,000 Intel Xeon Pbi 33.86 PFLOPS
2) Titan USA

18,688 AMD Opteron 6274 I6 Cores 18,688 Nvidia Tesla KzoX GPUs 17.59 PFLOPS (27 theoretical)
6) Piz Daint Switzerland 5272 Intel Xeon E5 8Core 5272 Nvidia Tesla KıoX GPUs 7.78 PFLOPS

Modern Computer Architectures

CPU	,classiall CPU Part		Data Commanication	Accelerator Part	
	CPU	RAM	PCIe	GPU-Memory	GPU
CPU	CPU				
CPU	QPU				
			PCIe	GPU-Memory	GPU
CPU	CPU				

- distinct memory for CPUs and GPUs
- data has to be copied using (slow) PCIe bus
- GPU memory (4-ı GB / GPU) < CPU RAM (2-4 GB / CPU)

Program structure

typically suggested way:

- What about the the CPU cores, while the GPU is working
- CPUs should be working as well
- One GPU „beating" io - 20 CPU cores is a much barder task

Example: Construct Hamiltonian matrix

- The Hamilton matrix construction is a compute intense operation

$$
H_{i j}=\int_{\Omega} \chi_{i}^{*}(\mathbf{r}) \hat{H} \chi_{j}(\mathbf{r}) d \mathbf{r}
$$

- Operation is performed point-wise in real space
- Operation is organised in batches = collection of points in real space

Parallelization + Loadbalancing

e.g. space integration

Load Balancing Hamiltonian

- Ongoing work: Example C (diamond) - Gamma point only 8000 basis functions, 512 batches a 70 points
- Speedup:

$$
S=\frac{t_{\mathrm{CPU}}}{t_{\mathrm{GPU}}}
$$

- Speedup on entire node

$$
S_{\mathrm{node}}=\frac{S}{N_{\mathrm{CPU}}}+\frac{N_{\mathrm{CPU}}-1}{N_{\mathrm{CPU}}}
$$

- We have to aim for a Speedup of 2I to achieve a node speedup of 2.

Summary

- CPUs cannot be the way for ExaFLOP scale (Energy consumption)
- Accelerator cards such as GPUs are a promising architecture

- Accelerator cards are available on compute facilities

- GPUs and CPUs have to work together (Load balancing)
- Ongoing work

Thank you!

Part I: The Self Consistency Cycle (SCF)

- Density mixing
- Metallic systems: Fermi level broadening
- Preconditioning
- Part II: Structure optimization
- Local structure optimization
"Forces" in density functional theory
- Vibrations in the harmonic approximation
- Part III: Beyond conventional CPUs
. Calculating with Graphical Processing Units (GPUs)

