Kinetic Monte Carlo modelling of semiconductor growth

CENTER FOR NANO INTEGRATION DUISBURG ESSEN

Peter Kratzer

Faculty of Physics, University Duisburg-Essen, Germany

Time and length scales

Methods of Statistical Physics

Discrete models in Statistical Physics

Ising model (magnetism)

$$H(s) = -J_q \sum_i \sum_{j \in n(i)} s_i s_j - \mu_B B \sum_i s_i$$

-1

- Lattice-gas interpretation $c_1=0,1$ $s_i=2c_i-1$

$$H = -4J_q \sum_i \sum_{j \in n(i)} c_i c_j + 2(qJ_q - \mu_B B) \sum_i c_i - N(qJ_q - \mu_B B)$$

Goal:
 Calculation of thermal averages

A discrete model for epitaxy: solid-on-solid (SOS) model

- Atoms are symbolized by little cubes placed on a lattice.
- The growth surface has no voids, no "overhangs".
- Atoms move by discrete hops with rate $\Gamma = \exp(-E/kT)$.
- The binding energy is determined by the # of neighbors n $E = E_D + n E_B$

Stochastic sampling

- Calculating thermal averages in many-particles systems requires evaluation of high-dimensional integrals.
- Choosing the sampling points in an (almost) random way is a good strategy, in particular in high dimensions !
- Even better: importance sampling -- density of sampling points proportional to local value of the integrand
- Idea: create a stochastic process that achieves importance sampling.

$$\pi/4 = 0.78 .. \approx 20/25 = 0.8$$

Metropolis Sampling

• Solution: Importance Sampling with

$$w(\mathbf{q}) = rac{\exp\left(-V(\mathbf{q})/(k_B T)
ight)}{Z'}$$

- Generate random support points, distributed according to $w(\mathbf{q})$, i.e., out of total K points, $k_i = Kw(\mathbf{q})$ in the unit volume around \mathbf{q}_i
- The expectation value of an observable is calculated as $\langle A \rangle \approx \frac{1}{K} \sum_{i=1}^{K} k_i A(\mathbf{q}_i)$
- The Metropolis algorithm generates, starting from q_0 , successively a sequence of K configurations q_i , distributed according to w(q).
- Even so we don't know Z', this is possible, because it is just the correct **relative** probabilities that matter:

– accept new config.
$$\mathbf{q}_{i+1}$$
 , if $\exp\left(-rac{V(\mathbf{q}_{i+1})-V(\mathbf{q}_i)}{k_BT}
ight)> ext{rnd}$

 $rnd \in [0,1[$

• This assures that
$$\frac{w(\mathbf{q}_{i+1})}{w(\mathbf{q}_i)} = \exp\left(-\frac{V(\mathbf{q}_{i+1}) - V(\mathbf{q}_i)}{k_B T}\right)$$

From MC to kMC: the *N*-fold way

Classification of spins according to their neighborhood

25521255212545362262126225521

class	central spin	neighbors	class members n_i
1	↑	↑,↑	4
2	↑	↑,↓	12
3	↑	\downarrow,\downarrow	1
4	Ļ	\downarrow,\downarrow	1
5	↓	↑ ,↓	8
6	↓	↑, ↑	3

The *N*-fold way algorithm in MC

- processes are chosen with a probability proportional to their rates
- no discarded attempts (in contrast to Metropolis)

pointer steered by random number

class	central	neighbors	class
	spin		members n_i
1	1	↑,↑	4
2	↑	↑,↓	12
3	1	\downarrow,\downarrow	1
4	↓ ↓	\downarrow,\downarrow	1
5	↓ ↓	↑ ,↓	8
6	↓ ↓	↑ ,↑	3

Simulations of non-equilibrium processes: kinetic MC

- While being aware of all processes possible at an instant of time, we need a way of (randomly) selecting one process with the appropriate relative probability.
- An internal clock keeps track of the advancement of physical time.
 - If the processes are clearly separated in time, i.e. processes are uncorrelated on the time scale *during which* the processes takes place, the waiting time for each individual process has Poissonian distribution. (K. A. Fichthorn and W.H. Weinberg, J. Chem. Phys. 95, 1090 (1991))
- We need to update the list of all possible processes according to the new situation after the move.

Specific algorithms:

- process-type list algorithm
- binary-tree algorithm
- time-ordered-list algorithm

Application to a lattice-gas model

- example: lattice L_x x L_y
- tool's algorithm: first select one particle, then select one move of that particle
- the correct solution: cumulated partial rates $r_k = \sum_{i=1}^k \Gamma_i$, normalized to the total rate $R = r_N$
- selection process: draw a random number ρ and compare it to all the r_k/R sequentially; as soon as ρ exceeds r_k/R , execute process k
- problem: we need to compare ρ to many (in the worst case all) of the r_k/R
- note: Selecting a process with the right probability requires that we can enumerate all *N* processes.

for p process types, we need to compare only to the p numbers $N^{(k)} \Gamma^{(k)}$, k=1,p, rather then to **all** r_k/R (which are much more numerous)

flow chart for a kMC algorithm

From molecular dynamics to kinetic Monte Carlo

From molecular dynamics to kinetic Monte Carlo

Transition State Theory (1-dim)

• Kramer's rate theory

$$\Gamma = \frac{\lambda}{\omega_b} \left(\frac{\omega_0}{2\pi} \exp\left(-\frac{E_b}{kT}\right) \right) \qquad \lambda = \left(\frac{\gamma^2}{4} + \omega_b^2\right)^{1/2} - \frac{\gamma}{2}$$

 γ : friction due to coupling to the heat bath

• high-friction limit

$$\Gamma = \frac{\omega_0 \omega_b}{2\pi\gamma} \exp\left(-\frac{E_b}{kT}\right)$$

• 'medium' friction → transition state theory

$$\Gamma = \frac{\omega_0}{2\pi} \exp\left(-\frac{E_b}{kT}\right)$$

P. Hänggi, P. Talkner & M. Borkovec, Rev. Mod. Phys. **62**, 251 (1990)

 ω_{c}

 ω_{b}

 $E_{\rm h}$

From the PES to rate constants Γ (multi-dimensional)

 $\Gamma = kT/h Z_{TS}/Z_i =$ (harmonic & classical approximation)

 $= \prod_{N} v_{k,i} / \prod_{N-1} v_{k,TS} exp(-\Delta E/kT)$

Temperature-accelerated dynamics (TAD)

M.R. Sørensen and A.F. Voter, J. Chem. Phys. **112**, 9599 (2000) **1/T**

TAD: Collective processes

F. Montalenti, M.R. Sørensen and A.F. Voter, Phys. Rev. Lett. **87**, 126101 (2001)

Application I:

GaAs nanowire growth

Gold-catalysed nanowire growth

- much higher growth speed in a particular crystallographic direction [GaAs(111)B] compared to extended substrate
- liquid Au droplet used to store Ga (as Au-Ga alloy), but inefficient for As species
- role of material transport along the wire side walls ?

Polytypism in GaAs nanowires

 segments of zincblende (ZB, which is the ground state in bulk) and wurtzite (WZ) crystal structure, depending on growth conditions
 2 types of structurally different facets !

Arsenic supply to the interface

• arsenic vacancy emission into the solid $D_{V_{As}}(T) = \Gamma_0 \exp\left(-\frac{\Delta E}{k_B T}\right)$ alognent specific XEDS analysis

10

5

0

0

20

element-specific XEDS analysis A.I. Persson et al., Nature Materials **3**, 667 (2004)

A.I. P Natu

or

 diffusion of As dissolved in the liquid Stokes-Einstein relation

$$D_{\mathrm{As}@\mathrm{Au}}(T) = \frac{k_B T}{6\pi r_{\mathrm{As}} \eta_{\mathrm{Au}}(T)}$$

60

40

80

100

120

Arsenic vacancies

- unstable as neutral vacancy (a so-called "negative-U" system)
- strong contraction of the vacancy tetrahedron for negatively charged vacancy, as bonding linear combination of Ga dangling bonds becomes occupied

VAs diffusion in wurtzite

• in wurtzite *ab*-plane, barriers are lower as compared to zincblende case

V_{As} diffusion in wurtzite

along the c-axis, V_{As} needs to go a detour to avoid crossing the Ga-Ga coordination line → higher barrier than in zincblende

Facet-dependent Ga diffusion

 \rightarrow type 2 wurtzite wires support faster diffusion on the side wall.

As diffusion is much slower !

impingement on the Au particle, rather than via diffusion on the side facets.

Side wall nucleation and radial growth

- type-II wires: immobile surface GaAs species leads to nucleation
- type-I wires: critical nucleus of more than one Ga atom (+ some As), critical adatom density nc

Tapering of the wires after sidewall nucleation if *L* exceeds the collection length

V. Pankoke, S. Sakong and P. Kratzer, PRB **86**, 085425 (2012)

Application II:

Molecular beam epitaxy on GaAs(001) β2(2x4)

Rates from first-principles calculations

Surface diffusion on GaAs(001): mapping of PES to network graph

PES from DFT calculations \rightarrow network of hops

kMC with explicit list of process types

Voter's lattice kMC:

A.F. Voter PRB 34, 6819 (1986)

- simulation on a lattice •
- group possible transitions $\Gamma(f,i)$ • from i to f into classes, each class is characterized by a rate
- classification of initial and final state by 'atomic neighborhoods' e.g., the number and relative position of neighbors define a process type

DFT-based kMC:

possible hops .. modified rates in the trench... due to neighbors.

kinetic Monte Carlo simulations for GaAs epitaxy

- 32 microscopically different Ga diffusion processes, and As₂ adsorption/desorption are included explicitly
- computational challenge: widely different time scales (10⁻¹² sec to 10 sec)
- simulation cell
 160 x 320 sites
 (64 nm x 128 nm)

kinetics of island nucleation and growth

Ga

side view As top 0 view

1/60 of the full simulation cell As_2 pressure = 0.85 x 10⁻⁸ bar Ga deposition rate = 0.1 ML/s T = 700 K

island density

scaling with temperature ?

Summary: Bridging the time-scale gap

- molecular dynamics (Car-Parrinello method)
- accelerated molecular dynamics
 - using a boost potential (Voter, Fichthorn,...)
 - temperature-accelerated MD (Montalenti et al. PRL 87, 126101 (2001))
- kinetic Monte Carlo with transition state search on the fly (avoids both lattice approximation and predefined rate table)
- lattice kinetic Monte Carlo, N -fold way (Voter PRB 34, 6819 (1986))

computational effort

risk of oversimplification

"Keep things as simple as possible, but not simpler .."

Thank you for your attention ! Summary: arXiv:0904.2556