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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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Fig. 9. Dark field image of initially cold worked Pt 14 at.% Cu after heat
treatment at 200 !C for one week.

Fig. 10. Dark field image of initially quenched Pt 14 at.% Cu after heat
treatment at 200 !C for one week.
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evidence of ordering. This is consistent with Schneider
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maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
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in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
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5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
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concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.

Acknowledgements

The authors are grateful to the initial work done by
Nicholas Towle. This work was supported by grants from
the National Research Foundation and the Innovation
Fund.

References

[1] Binary phase diagrams. 2nd ed. Materials Park (OH): ASM Interna-
tional; 1996.

[2] Irani RS, Cahn RW. J Mater Sci 1973;8:1453.
[3] Schneider A, Esch U. Z Electrochem 1944;50:290.
[4] Miida R, Watanabe D. J Appl Cyst 1974;7:50.
[5] Saha K, Shishodo T, Iwasaki H, Oshima K. J Phys Soc Jpn

2003;72:1670.
[6] Cahn RW. Metallurgical Society Conference series 1966;36:179.
[7] Stoloff NS, Davies RG. Prog Mater Sci 1966;13:3.
[8] Tang YC. Acta Cryst 1951;4:377.
[9] www.jcrystal.com/steffenweber/JAVA/JSV/jsv.html.

Fig. 9. Dark field image of initially cold worked Pt 14 at.% Cu after heat
treatment at 200 !C for one week.

Fig. 10. Dark field image of initially quenched Pt 14 at.% Cu after heat
treatment at 200 !C for one week.

M. Carelse, C.I. Lang / Scripta Materialia 54 (2006) 1311–1315 1315



treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].
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in an ordering transformation; where no ordering is
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ness after heat treatment thus arises from the development
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ment below 500 !C resulted in formation of this structure
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 4. Electron diffraction pattern of Pt 14 at.% Cu viewed along the [103] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 4. Electron diffraction pattern of Pt 14 at.% Cu viewed along the [103] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
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A second example

http://en.wikipedia.org/wiki/Superalloy

Nickel superalloy jet engine turbine blade
http://www.tms.org/meetings/specialty/	


superalloys2000/superalloyshistory.html

ordered Ni3(Al,Ti)disordered fcc Ni+(Co,Cr,Mo,W,...)
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If we had a fast  
lattice Hamiltonian...

1. Search for new phases (step through millions 
of candidate configurations) 

2. Apply thermodynamic modeling 
(to identify phase transitions)  

3. Build a kinetic simulation  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These are the “clusters” or 
“figures” (basis functions)

These are the  
“effective cluster interactions”	


(unknown expansion coefficients)

{J0, J1, J2, J3, · · · }
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Compressive sensing: It’s like magic

More info at the end of the talk
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700 A Zunger et al

Figure 11. Ground state search for Cu–Au (see caption of figure 10).

Ground state search for ScS - S

ScS - S

Figure 12. Ground state search for Sc1−x !xS (see caption of figure 10).

A ground state search	


!

Tells us which configurations are lowest	


in energy, but doesn’t tell us anything about	


how the materials behaves as a function of 
temperature...
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Monte Carlo, phase transitions...
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Recap: with a fast lattice 
Hamiltonian we can...

1. Search for new phases (try millions of trial 
configurations) Ground State Search  

2. Apply thermodynamic modeling 
(to identify phase transitions) Monte Carlo  

3. Build a kinetic simulation  
(to model time evolution) Kinetic MC



In a nutshell: Better models, faster

Basic idea: 
!

Instead of adding complexity (terms) to a model 
until it fits the data and predicts well...(normal 
approach)... 
!

...start with an infinite set of models (containing 
all possible terms). Discard all models except 
the simplest one (Compressive Sensing 
approach). Surprisingly perhaps, this is really 
efficient.
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Basic ideas of Compressive Sensing

•Solution must be “sparse” in some basis 
•Numerical application of ell-1 norm is fast 
•Choose a big basis so that you’ve captured 
all the relevant components 
•Like a Fourier Transform...except that you 
can sample way below the Nyquist frequency 
•Sample points must be “uncorrelated”—
selected at random from the domain.
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In three dimensions...
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required for such a fi t. If, on the other hand, we work with 
a smaller number p of MBITs of Fig. 1, we immediately face a 
‘combinatorial explosion’ because selecting p MBITs from the 
possible 2N corresponds to a diffi cult search problem. Thus, in 
practice the problem here is to decide exactly which terms are 
and which are not physically relevant. Chemical and magnetic 
interactions generally become weaker as the separation between 
atoms (or spins) increases8, but popular oversimplifi ed truncations 
to, for example, fi rst nearest-neighbour distance4,10,11 are generally 
unreliable. Traditionally, more distant interactions are introduced 
according to some intuitive or aesthetically appealing design 
principles11–13, but there are well-established cases where such 
principles fail and where long-range interactions are important, 
even in simple alloys3,14.

We propose here instead to choose the leading parameters of 
a model hamiltonian directly by means of a genetic algorithm5. 
We start by constructing a pool of MBITs from which the genetic 
algorithm will be required to select the few most important ones. 
The pool is not subject to special postulated design principles11,13, 
but instead simply consists of a list of all fi gures, with no omissions, 
up to a reasonably large cut-off value for number of vertices and 
vertex distance, and includes larger MBITs than we ever expect to 
be selected. We fi nd after that fact that the fi nal MBITs selected by 
the genetic algorithm do not obey any simple rule11,13 that we could 
have used to design our pool.

Genetic algorithms mimic the ideas of biological evolution, 
roughly ‘survival of the fi ttest’. In materials research, successful 
applications have aimed to determine the values of given physical 

parameters from a known underlying hamiltonian. Such applications 
include the structure of small clusters15–17, the grouping of point 
charges18, the best components for superalloys19 or the magnitude of 
the interactions of a tight-binding electronic structure hamiltonian20. 
In contrast, we use a genetic algorithm to assemble the relevant 
physical pieces forming the model hamiltonian that describes E(σ). 
Also, unlike many optimization problems, instead of optimizing a 
number of continuous numerical variables, we face discrete ‘yes–no’ 
decisions regarding the inclusion of each MBIT. The search space 
quickly becomes astronomic (see below) and is naturally correlated. 
For instance, two MBITs together may provide a particularly good 
cluster expansion even if each one on its own does not. In this 
situation, traditional optimization schemes are either not applicable 
(gradient methods), or will not perform well (simulated annealing). 
In contrast, genetic algorithms juxtapose entire segments of ‘genetic 
information’ (here, binary sequences) and are therefore naturally 
adapted to this correlated problem.

Our approach is based on an ‘outer loop’ in which we iteratively 
select a set of input structures {σ}input and an ‘inner loop’, where 
the genetic algorithm is used to search for the best MBITs to fi t 
the current set of structures. The number of structures used in the 
outer loop is increased iteratively by inspecting whether the current 
cluster expansion, when applied to 2N confi gurations, suggests new 
structures with lower energies than those already included. The 
energies E(σ) of these new structures are computed and the process 
is repeated until no new deep ground states are identifi ed. Thus, we 
can view the cluster expansion as a ‘driver,’ guiding us in a space of 
2N structures to those that need to be computed by fi rst-principles 
methods. In the inner loop, we use a genetic algorithm (Fig. 2). Each 
candidate cluster expansion is represented by a string (‘genome’) 
of Np ones and zeroes (‘genes’), representing whether a particular 
MBIT is or is not included in equation (1). The algorithm is iterative, 
improving a small population of trial genomes over many successive 
‘generations.’ From one generation to the next, new trial genomes are 
generated from previous ones by ‘mating’: Two parent genomes—that 
is, two different sets of MBITs—are chosen fi rst. Then, one by one, 
each MBIT (represented by zero or one) of the new child is chosen 
either from parent 1 or from parent 2. Next, random mutations are 
introduced into the child genome, and fi nally, the mutated child 
genome is adjusted to satisfy external conditions (for example, the 
maximum number of MBITs in a cluster expansion). A new child 
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Figure 1 The fi rst few MBITs for a b.c.c. lattice. a, Pair and multi-site ‘fi gures’ 
(MBIT) of equation (1) on a b.c.c. lattice up to third nearest-neighbour maximum 
vertex separation are shown. b, Combinatorial explosion of the number of 
inequivalent MBITs with increasing spatial extent (maximum vertex separation, nth 
nearest-neighbour).
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Figure 2 Flowchart of a genetic algorithm for choosing the terms to retain in a 
model hamiltonian. Each candidate model is represented by a series of zeros and 
ones, a one indicating that the corresponding term is included.
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Unit of cluster radius Unit of cluster radius Unit of cluster radius

FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.
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vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 7. Comparison between re-weighted Bayesian compressive sensing and genetic algorithm methods for constructing a
cluster expansion model for the binary systems Ag-Pt, (left) Ag-Pd, (center) and Cu-Pt (right). The dashed curves indicate
BCS results and the solid curves indicate GA results. The upper plot show the `0 norm of the solution vector as the training
set increases. The middle plot show the `1 norm of the solution vector, and the lower plot gives the rmse over a holdout
dataset. Approximately 100 BCS fits were performed at each training set size, and the results of these fits are depicted using
box-and-whiskers. Due to it’s high computational cost, only 5 GA fits were performed, and hence GA results are not depicted
using box-and-whiskers.

It is curious that the BCS and GA models achieve sim-
ilar predictive capacities but di↵er wildly in the nature of
their solutions. One possible explanation for this is that
since the GA does not limit the `1 norm of the solution
vector, its solutions are dense and encompass an approx-
imate null space. Hence, approximate linear dependen-
cies will exist between ECIs of a dense solution, but are
much less likely for sparse solutions, like those found by
compressive sensing. This could explain how contribu-
tions from large ECI coe�cients may cancel each other
and result in relatively small RMS errors, but this issue
certainly needs to be investigated further.

Another key feature of BCS is the e�ciency of the
algorithm. For the three systems discussed here BCS fits
were constructed in a fraction of the time needed for the
GA. BCS required on the order of minutes to construct
100 fits, whereas the GA needed ⇠ 24 hours for a single
fit.

VI. CONCLUSION

It has been shown that the CS paradigm is uniquely
well-suited to building CE lattice models. Re-weighted
BCS-based provides a fast, e�cient, and parameterless
framework for constructing CE models. These models are
constructed in a fraction of the time required by current
state-of-the art techniques and with minimal time and
e↵ort required by the user. BCS-constructed CE mod-
els converge to solutions which agree with widely-held
intuition about the nature of physically relevant interac-
tions and predict more accurately than other modern CE
construction methods.

From a broader perspective, the CS paradigm is poised
to have a big impact on computational physics problems
of all types. The CS-paradigm is well suited to tackle any
highly-underdetermined linear problem: A~x = ~

b where ~x

is known to be sparse. One possible application is the ex-
pansion of high-throughput databases to include lattice
models. This approach relies heavily on being able to
automatically perform first-principles calculations, and

Bayesian Compressive Sensing vs. GA

47
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BCS results and the solid curves indicate GA results. The upper plot show the `0 norm of the solution vector as the training
set increases. The middle plot show the `1 norm of the solution vector, and the lower plot gives the rmse over a holdout
dataset. Approximately 100 BCS fits were performed at each training set size, and the results of these fits are depicted using
box-and-whiskers. Due to it’s high computational cost, only 5 GA fits were performed, and hence GA results are not depicted
using box-and-whiskers.
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their solutions. One possible explanation for this is that
since the GA does not limit the `1 norm of the solution
vector, its solutions are dense and encompass an approx-
imate null space. Hence, approximate linear dependen-
cies will exist between ECIs of a dense solution, but are
much less likely for sparse solutions, like those found by
compressive sensing. This could explain how contribu-
tions from large ECI coe�cients may cancel each other
and result in relatively small RMS errors, but this issue
certainly needs to be investigated further.

Another key feature of BCS is the e�ciency of the
algorithm. For the three systems discussed here BCS fits
were constructed in a fraction of the time needed for the
GA. BCS required on the order of minutes to construct
100 fits, whereas the GA needed ⇠ 24 hours for a single
fit.

VI. CONCLUSION

It has been shown that the CS paradigm is uniquely
well-suited to building CE lattice models. Re-weighted
BCS-based provides a fast, e�cient, and parameterless
framework for constructing CE models. These models are
constructed in a fraction of the time required by current
state-of-the art techniques and with minimal time and
e↵ort required by the user. BCS-constructed CE mod-
els converge to solutions which agree with widely-held
intuition about the nature of physically relevant interac-
tions and predict more accurately than other modern CE
construction methods.

From a broader perspective, the CS paradigm is poised
to have a big impact on computational physics problems
of all types. The CS-paradigm is well suited to tackle any
highly-underdetermined linear problem: A~x = ~

b where ~x

is known to be sparse. One possible application is the ex-
pansion of high-throughput databases to include lattice
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box-and-whiskers. Due to it’s high computational cost, only 5 GA fits were performed, and hence GA results are not depicted
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It is curious that the BCS and GA models achieve sim-
ilar predictive capacities but di↵er wildly in the nature of
their solutions. One possible explanation for this is that
since the GA does not limit the `1 norm of the solution
vector, its solutions are dense and encompass an approx-
imate null space. Hence, approximate linear dependen-
cies will exist between ECIs of a dense solution, but are
much less likely for sparse solutions, like those found by
compressive sensing. This could explain how contribu-
tions from large ECI coe�cients may cancel each other
and result in relatively small RMS errors, but this issue
certainly needs to be investigated further.

Another key feature of BCS is the e�ciency of the
algorithm. For the three systems discussed here BCS fits
were constructed in a fraction of the time needed for the
GA. BCS required on the order of minutes to construct
100 fits, whereas the GA needed ⇠ 24 hours for a single
fit.

VI. CONCLUSION

It has been shown that the CS paradigm is uniquely
well-suited to building CE lattice models. Re-weighted
BCS-based provides a fast, e�cient, and parameterless
framework for constructing CE models. These models are
constructed in a fraction of the time required by current
state-of-the art techniques and with minimal time and
e↵ort required by the user. BCS-constructed CE mod-
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to have a big impact on computational physics problems
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BCS results and the solid curves indicate GA results. The upper plot show the `0 norm of the solution vector as the training
set increases. The middle plot show the `1 norm of the solution vector, and the lower plot gives the rmse over a holdout
dataset. Approximately 100 BCS fits were performed at each training set size, and the results of these fits are depicted using
box-and-whiskers. Due to it’s high computational cost, only 5 GA fits were performed, and hence GA results are not depicted
using box-and-whiskers.

It is curious that the BCS and GA models achieve sim-
ilar predictive capacities but di↵er wildly in the nature of
their solutions. One possible explanation for this is that
since the GA does not limit the `1 norm of the solution
vector, its solutions are dense and encompass an approx-
imate null space. Hence, approximate linear dependen-
cies will exist between ECIs of a dense solution, but are
much less likely for sparse solutions, like those found by
compressive sensing. This could explain how contribu-
tions from large ECI coe�cients may cancel each other
and result in relatively small RMS errors, but this issue
certainly needs to be investigated further.

Another key feature of BCS is the e�ciency of the
algorithm. For the three systems discussed here BCS fits
were constructed in a fraction of the time needed for the
GA. BCS required on the order of minutes to construct
100 fits, whereas the GA needed ⇠ 24 hours for a single
fit.

VI. CONCLUSION

It has been shown that the CS paradigm is uniquely
well-suited to building CE lattice models. Re-weighted
BCS-based provides a fast, e�cient, and parameterless
framework for constructing CE models. These models are
constructed in a fraction of the time required by current
state-of-the art techniques and with minimal time and
e↵ort required by the user. BCS-constructed CE mod-
els converge to solutions which agree with widely-held
intuition about the nature of physically relevant interac-
tions and predict more accurately than other modern CE
construction methods.

From a broader perspective, the CS paradigm is poised
to have a big impact on computational physics problems
of all types. The CS-paradigm is well suited to tackle any
highly-underdetermined linear problem: A~x = ~

b where ~x

is known to be sparse. One possible application is the ex-
pansion of high-throughput databases to include lattice
models. This approach relies heavily on being able to
automatically perform first-principles calculations, and
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compressive sensing. This could explain how contribu-
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and result in relatively small RMS errors, but this issue
certainly needs to be investigated further.

Another key feature of BCS is the e�ciency of the
algorithm. For the three systems discussed here BCS fits
were constructed in a fraction of the time needed for the
GA. BCS required on the order of minutes to construct
100 fits, whereas the GA needed ⇠ 24 hours for a single
fit.
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It has been shown that the CS paradigm is uniquely
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using box-and-whiskers.

It is curious that the BCS and GA models achieve sim-
ilar predictive capacities but di↵er wildly in the nature of
their solutions. One possible explanation for this is that
since the GA does not limit the `1 norm of the solution
vector, its solutions are dense and encompass an approx-
imate null space. Hence, approximate linear dependen-
cies will exist between ECIs of a dense solution, but are
much less likely for sparse solutions, like those found by
compressive sensing. This could explain how contribu-
tions from large ECI coe�cients may cancel each other
and result in relatively small RMS errors, but this issue
certainly needs to be investigated further.

Another key feature of BCS is the e�ciency of the
algorithm. For the three systems discussed here BCS fits
were constructed in a fraction of the time needed for the
GA. BCS required on the order of minutes to construct
100 fits, whereas the GA needed ⇠ 24 hours for a single
fit.

VI. CONCLUSION

It has been shown that the CS paradigm is uniquely
well-suited to building CE lattice models. Re-weighted
BCS-based provides a fast, e�cient, and parameterless
framework for constructing CE models. These models are
constructed in a fraction of the time required by current
state-of-the art techniques and with minimal time and
e↵ort required by the user. BCS-constructed CE mod-
els converge to solutions which agree with widely-held
intuition about the nature of physically relevant interac-
tions and predict more accurately than other modern CE
construction methods.

From a broader perspective, the CS paradigm is poised
to have a big impact on computational physics problems
of all types. The CS-paradigm is well suited to tackle any
highly-underdetermined linear problem: A~x = ~

b where ~x

is known to be sparse. One possible application is the ex-
pansion of high-throughput databases to include lattice
models. This approach relies heavily on being able to
automatically perform first-principles calculations, and
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