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Introduction

I Physical systems can be modeled at different levels of detail:
I Continuum mechanics, e.g., Navier-Stokes equations,

Continuum Elasticity.
I Kinetic Theory, e.g., Boltzmann equation.
I Molecular Dynamics.
I Quantum Mechanics, e.g. Schrödinger equation, DFT, GW,

etc.

I Full solution impractical/undesirable.
I Objectives of Multiscale Modeling:

I Analytical connection between different levels.
I Systematic coarse-graining: Error control.
I Development of efficient numerical methodologies.



Types of Multiscale Problems

A. Macroscopic description fails in a localized region.
I Defects in crystals.
I Contact line dynamics.

B. Macroscopic model is not fully known.
I Flow in a porous medium.
I Complex fluids.
I Composite materials.



Multiscale approaches and algorithms

I Classical multiscale algorithms:
I Multigrid method1.
I Multiresolution analysis and wavelets2
I Domain Decomposition: Quasicontinuum method3.

I General frameworks make use of scale separation:
I Homogenization and multiple-scale asymptotics.
I Equation-free approaches4.
I Heterogeneous Multiscale Method5.

1A. Brandt, Math. Comp., 31 (1977); W. Hackbusch, Computing, 20 (1978)
2A. Harten, J. Appl. Numer. Math., 12 (1993); I. Daubechies, Ten Lectures on Wavelets
3Tadmor, Ortiz, Phillips, Philosophical Magazine A, 73 (1996)
4I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg. C. Theodoropoulos,

Comm. Math. Sci., 1 (2003)
5W. E, B. Engquist, Comm. Math. Sci., 1 (2003); W. E, B. Engquist, X. Li, W. Ren, E.

Vanden-Eijnden, Commun. Comp. Phys., 2 (2007); A. Abdulle, W. E, B. Engquist, E. Vanden-Eijnden,
Acta Numerica, 21 (2012)



Multiscale/Multiphysics Phenomena

I Complex Fluids, e.g., Polymers.

∂U
∂t

+ (U · ∇)U = div σ +∇P,

div U = 0.

I U is the velocity.
I P is the pressure.
I σ is the stress tensor ←→ Interparticle interactions.
I Constitutive relation: σ = σ(∇U).
I What is the microscopic foundation of the constitutive

relation?.



Multiscale/Multiphysics Phenomena (cont.)

I Elasticity.

min
∫

Ω
(W (u)− f · u) dx .

I u represents the displacement.
I f is the external force.
I Constitutive relation, e.g., Hooke’s law: W (u) = 1

2ε
T · C · ε,

where
I ε = 1

2

(
∇uT +∇u

)
is the strain.

I C is a tensor consisting of elastic constants.
I Can W (u) be derived from microscopic interactions? From

quantum mechanics?.



Homogenization: Multiple-scale asymptotics approach

Consider 0 < m ≤ a(x , y) ≤ M periodic in y with period p, and

d
dx

(
a
(
x ,

x
ε

) duε

dx

)
= f (x), x ∈ [0, 1]

u(0) = 0; u(1) = 0.

What does the solution look like when ε→ 0?
I Notice that a

(
x , x

ε

)
⇀< a > (x) = 1

p

∫ p
0 a(x , y) dy .

I Does uε converge to the solution of d
dx

(
< a > (x)du

dx

)
= f ?



Multiple-scale asymptotics (cont.)

Does uε converge to the solution of d
dx

(
< a > (x)du

dx

)
= f ? No!

Figure: Left: a = 3 + sin(x) + cos(x/ε); Right: Solution of Averaged
Equation.



Multiple-scale asymptotics (cont.)
I Introduce two (independent) scales: z = x , y = x/ε.
I d

dx ⇒
∂
∂z + 1

ε
∂
∂y .

I Assume u = u0(x , y) + εu1(x , y) + ε2u2(x , y) + O(ε3),
periodic in y .

f =

(
∂x +

1
ε
∂y

)(
a(x , y)

(
∂xu0+ε∂xu1+

1
ε
∂yu0+∂yu1+ε∂yu2

))
I Collect terms:

O
(
ε−2) : ∂y (a(x , y)∂yu0) = 0⇒ u0 = u0(x)

O
(
ε−1) : ∂x (a(x , y)∂yu0) + ∂y (a(x , y)(∂xu0 + ∂yu1)) = 0

⇒ u1(x , y) = u1(x , 0)− ∂xu0y + g(x)
∫ y
0

dz
a(x ,z)

Periodicity⇒ u′0(x) = g(x) 1
p

∫ p
0

dz
a(x ,z)



Multiple-scale asymptotics (cont.)

O
(
ε−1) : u′0(x) = g(x) 1

p

∫ p
0

dz
a(x ,z) = g(x) < a−1 >

O (1) : ∂x (a(x , y) (∂xu0 + ∂yu1)) + ∂y (a(x , y)(∂xu1 + ∂yu2)) = f

⇒ g ′(x) + ∂y (a(x , y)(∂xu1 + ∂yu2)) = f

Compatibility⇒ g ′(x) = f (x)

⇒ d
dx

(
< a−1 >−1 du0

dx

)
= f

Notice that in general,

< a−1 >−1 6=< a >!



Multiple-scale asymptotics (cont.)

Figure: Left: Averaged equation; Right: Homogenized Equation.



Multiple-scale asymptotics (cont.)

I In higher dimensions: Homogenized coefficients obtained by
solving a cell problem (more on this later).

I Intuitive; Leads to effective macroscopic equations and
provides systematic improvement.

I In some cases it can be formalized1.
I Widely used in the study of composite materials, photonics,

etc....

1Asymptotic Analysis for Periodic Structures, A. Bensoussan, J.-L. Lions, G. Papanicolaou



Heterogeneous Multiscale Method (HMM)1

I Systematic procedure for multiscale modeling.
I Main ingredients:

I Macroscopic Model: Ut = F (U,D), D is unknown.
I A way to estimate D from microscopic data.

I Microscopic Model: ut = f (u).
I Reconstruction Operator: u = R(U).
I Compression Operator: U = Q(u).

1E, Engquist, Comm. Math. Sci. 1(1), 2003



Example: Complex Fluids1

I Macroscopic model: Navier-Stokes equations.

∂tU + (U · ∇)U −∇P = div σ,
div U = 0,

where U is the velocity, P is the pressure, and σ is the viscous
stress.

I Constitutive relation:

σ = µ
(
∇U + (∇U)T

)
.

I Very successful for Newtonian fluids.
I Inaccurate for complex fluids, e.g. polymers.

1Weiqing Ren, National University of Singapore



Example: Complex fluids (cont.)

I At the microscale, the system can be modeled by molecular
dynamics:

mi ẍi = Fi = −∇xi V (x1, x2, . . . , xN), i = 1, 2, . . . ,N

I Large number of degrees of freedom: N = O(1023).
I Small time step required, δt = O(10−15).



Macro solver: Projection Method1

Denote the velocity field at time tn by Un, then Un+1 is computed
following the two-step procedure:

I Compute intermediate value U∗:

U∗ − Un

∆t
+∇ · (Un ⊗ Un) = ∇ · σ.

I Project U∗ onto the divergence-free space:

Un+1 − U∗

∆t
+∇Pn+1 = 0,

where Pn+1 solves

∆Pn+1 =
1

∆t
∇ · U∗

with Neumann boundary conditions.
1A.J. Chorin, Math. Comp., 22 (1968); ....



Spatial discretization: Staggered grid
Spatial derivatives are discretized using finite difference on
staggered grid:

Figure: Staggered grid (courtesy of W. Ren)

Denote the two components of U by (u, v).
I u defined at (xi , yj+1/2), v at (xi , yj+1/2); normal stress at

(xi+1/2, yj+1/2), and shear stress at (xi , yj).



Computing stress from MD

Figure: Local computation (courtesy of W. Ren)

I Each point where stress is needed is associated with an MD
system.

I Assume stress depends only on local velocity gradient ∇U.
Then the MDs are constrained by ∇U.



The HMM algorithm for fluids

t

t
δ t

HMM

Micro

Macro
Δ t’

Figure: The HMM schematically (courtesy of W. Ren)

I Compute the velocity gradient An = ∇Un at each point where
the stress is needed.

I Initialize an MD at each point where stress is needed.
I Evolve each MD constrained by An for M steps with a micro

time step δτ .
I Compute the stress from the MD results.
I Evolve the macro model using the estimated stress for one

macro time step ∆t, to obtain Un+1.



Constrained molecular dynamics
I Set up MD whose averaged velocity coincides with local

macroscale velocity field.
I The MD box deforms according to the given velocity gradient:

Ẋ = AX , A = ∇U.

Figure: Constrained MD (courtesy of W. Ren)

I Periodic boundary conditions on the deforming box.
I Temperature controlled using Langevin thermostat.



Stress estimation

I Compute stress using the Irving-Kirkwood formula:

σ̃(x , nδτ) = −
∑

i

mvi (τ)⊗ vi (τ)δ(x − qi ∗ τ))

−1
2

∑
j 6=i

(qj(τ)−qi (τ))⊗fij(τ)

∫ 1

0
δ(x−(1−λ)qj(τ)−λqi (τ)) dλ,

(1)

where {vi} are the thermal velocity of the particles.
I The stress is obtained by averaging σ̃ over the MD box:

σ(n∆′t) =
1
|ω|

∫
ω
σ̃(x , nδτ) dx ,

where ω is the MD simulation box.



Driven-cavity flow1
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Figure: Velocity field at steady state in the driven cavity flow. Inset in
the figure is one of the normal stress as a function of 2d velocity gradient.

1W. Ren, W. E, J. Comp. Phys., 204 (2005); CJGC, W. Ren, J. Lu, W. E, Commun. Comput.
Phys., 4 (2008); W. E, W. Ren, E. Vanden-Eijnden, J. Comput. Phys. (2009)



Cauchy-Born rule for a simple lattice1

A ∈ R3×3 W (A) =?

y=x+Ax

I The microscopic state is determined by the macroscopic
deformation.

I WCB(A) is computed by first deforming an infinite crystal
uniformly with displacement gradient A, and then setting
WCB(A) to be the energy of the deformed unit cell:

1M. Born and K. Huang, Oxford University Press, Oxford, 1954



Cauchy-Born rule for a simple lattice (cont.)

I Example: 1d simple lattice with Lennard-Jones potential

WCB(A) =
ζ2(6)

ζ(12)

(
|1 + A|−12 − 2|1 + A|−6

)
ζ = Riemann-zeta function

I Validity of Cauchy-Born: Under certain lattice stability
conditions1

‖uCB − y‖ ≤ Cε2,

where ε = lattice constant/diam(Ω).

1Theil and Friesecke, J. Nonl. Sci, 12, (2002); E, Ming, Arch. Rat. Mech. Anal., 183 (2006); Van
Koten and Ortner (2012)



Thermodynamic limit

I More generally: How does one define the energy of a crystal?
Thermodynamic limit1.

I Quantum mechanical description:
I Does there exist a limit for the energy per unit volume 1

N EN as
N →∞?

I Does the minimizing electronic density ρN approach a limit ρ∞
in some sense?

I Does the limit density ρ∞ have the same periodicity as the
assumed periodicity of the nuclei?

I Proved in the context of Thomas-Fermi2, Thomas-Fermi-von
Weiszacker and Hartree-Fock3.

1Blanc, Le Bris, Lions, Arch. Rat. Mech. Anal., 164 (2002)
2Lieb, Simon, Adv. Math., 23 (1977)
3Catto, Le Bris, Lions (2001), Cancès, Lahbabi, Lewin (2012)



Cauchy-Born in Quantum Mechanics1
Consider the electronic density around a vacancy in an Aluminium
crystal:
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I The effect of the vacancy is very localized (more on this later).
I Two scales:

I Fast scale: Interatomic distance (lattice constant).
I Slow scale: Elastic deformation

I Multiple-scale behavior motivates the use of asymptotic
analysis: homogenization.

1Lu, E, Comm. Math. Sci., 5 (2007); García-Cervera, Lu, E, Comm. Math. Sci., 5 (2007); Lu, E,
Memoirs AMS, (2012)



Cauchy-Born: Orbital-Free DFT case
We choose units so that the diameter of the domain is O(1), and
introduce ε = Lattice constant/diam(Ω). The energy becomes:

E [u] =
ε2

2

∫
Ω
|∇u|2 + ε2CTF

∫
Ω

u10/3 + FXC [ε3u2]

+
ε

2

∫
Ω

∫
Ω

(u2 −m) · (u2 −m)

|x − y |
.

Euler-Lagrange equations:

−ε2∆u +
5
3
ε2u7/3 − φu + ε2VXC [ε3u] + λu = 0,

−∆φ = 4πε(m − u2),

I λ is a Lagrange multiplier for the normalization constraint.
I φ is the Coulomb potential generated by the electrons and the

ions.
I Equation set in ϕ(Ω), with ϕ : Ω→ R3 elastic deformation.



Cauchy-Born (cont.)
For smooth elastic deformations:

u = u(y ,
x
ε

) =
1
ε3/2

u0

(
y ,

x
ε

)
+

1
ε1/2

u1

(
y ,

x
ε

)
+ ε1/2u2

(
y ,

x
ε

)
+ · · · ,

φ = φ
(
y ,

x
ε

)
= φ0

(
y ,

x
ε

)
+ εφ1

(
y ,

x
ε

)
+ ε2φ2

(
y ,

x
ε

)
+ · · · ,

λ = λ0 + ελ1 + ε2λ2 + · · ·

I x = x(y) = ϕ−1(y) is the Euler-Lagrange map: It gives the
Lagrangian coordinate corresponding to y .

I u(y , z) and φ(y , z) are functions defined on R3 × Γ and are
periodic in the second variable on Γ (unit cell).

Leading order equations:

−∆x
2u0 +

5
3
u7/3
0 − φ0u0 + λ0u0 = 0,

−∆x
2φ0 = 4π(m0 − u2

0).

These are the Euler-Lagrange equations for the periodic problem,
on the deformed cell AΓ, with A = ∇ϕ(x): Cauchy-Born rule.



Kohn-Sham Density Functional Theory

EKS [{ψj}] = 2
N∑

j=1

(−1
2

)

∫
ψj (∆ψj) dx +

1
2

∫ ∫
ρ(x)ρ(y)

|x − y |
dx dy

+

∫
Vext(x)ρ(x) dx +

∫
ρε(ρ) +

1
2

∑
i 6=j

ZiZj

|Ri − Rj |
,

where

ρ(x) = 2
N∑

j=1

|ψj(x)|2

Kohn-Sham DFT:
min

(ψi ,ψj )=δij
EKS [{ψj}]



Asymptotics in the Kohn-Sham framework
Euler-Lagrange equations:
ε = Lattice Constant/Diameter of the domain.

−ε
2

2
∆ψk + VXC (ε3ρ)ψk − φψk = λkψk ;

−∆φ = 4πε(m − ρ),

ρ(×) = 2
N∑

j=1

|ψj(×)|2. (2)

Asymptotic expansion for ε� 1:

ψα

(
y ,

x
ε

)
=

1
ε3/2

ψα,0

(
y ,

x
ε

)
+

1
ε1/2

ψα,1

(
y ,

x
ε

)
+ ε1/2ψα,2

(
y ,

x
ε

)
+ · · ·

ρ
(
y ,

x
ε

)
=

1
ε3
ρ0

(
y ,

x
ε

)
+

1
ε2
ρ1

(
y ,

x
ε

)
+

1
ε1
ρ2

(
y ,

x
ε

)
+ · · ·

φ
(
y ,

x
ε

)
= φ0

(
y ,

x
ε

)
+ εφ1

(
y ,

x
ε

)
+ ε2φ2

(
y ,

x
ε

)
+ · · · .



Asymptotics in the Kohn-Sham framework (cont.)
Leading order:

ρ0(y , z) = 2
∑
α

∑
zj∈L

|ψα,0(y , z − zj)|2.

∫
R3
ψ∗α,0(y , z − zi )ψα′,0(y , z − zj) dz = δαα′δij/ det(∇ϕ(x)).

− 1
2

∆x
2ψα,0(y , z) + VXC (ρ0)ψα,0(y , z)− φ0(y , z)ψα,0(y , z)

+
∑

α′,zj∈L

λαα′,zj0ψα′,0(y , z − zj) = 0;

−∆x
2φ0(y , z) = 4π(m0 − ρ0)(y , z).

These are the Euler-Lagrange equations for the periodic problem,
on the deformed cell: Cauchy-Born rule.



Precomputing WCB
3

I Concurrent computation of the electronic density is
impractical.

I Stress is a function of the strain: This is a function of six
variables.

I This can be precomputed and stored in a table from where we
can interpolate, in the context of the Heterogeneous
Multiscale Method (HMM)1.

I An effective way of doing this is using a sparse
representation.

I Can be used to assess accuracy of empirical potentials2.

1W. E, B. Engquist, Comm. Math. Sci., 1 (2003)
2G. Wu, G. Lu, CJGC, and W. E, Phys. Rev. B, 79 (2009)
3CJGC, Ren, Lu, and E, Comm. Comp. Phys., 4 (2008)



Sparse representation

I If we attempt to represent a function of d variables using a
uniform grid, we would need O(2nd ) grid points.

I Using sparse grids, we need only O(nd−12n) points1.
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1Bungartz and Griebel, Acta Numerica (2004)



Elastic deformation of a solid

Given a deformation u : Ω→ R3, we denote by F = ∇u the
deformation tensor, and define the elastic energy density as

ω[F ] =
1
|V0|

WCB[F ], (3)

where the Cauchy-Born energy, WCB[F ], is the energy of the
deformed unit cell, obtained by transforming the basis vectors as
bi = Fai , i = 1, 2, 3. Due to frame indifference, the elastic energy
depends only on the right Cauchy-Green strain tensor (RCGST),
C = FTF .



Computational Cost

I 2, 572, 288 grid points were used, which provided up to four
digits of accuracy.

I To achieve the same accuracy with a regular grid,
1286 ≥ 4× 1012 grid points would be required.
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Figure: Elastic energy for the shear and expansion deformation. We plot
the energy interpolated to a uniform grid. The sparse grid nodes are
superimposed.



Domain Decomposition: Quasicontinuum

I Domain decomposition: Quasicontinuum1

I Domain decomposed into a local and nonlocal region.
I Local region: Cauchy-Born elasticity.
I Nonlocal region: Fully atomistic.
I Interface matching: Can produce ghost forces2.
I Extended to Quantum-Mechanical models3.

1Tadmor, Ortiz, Phillips, Philosophical Magazine A, 73 (1996)
2Tadmor, Phillips, Ortiz (’96), E, Ming (’05), E, Lu, Yang (’06), Dobson and Luskin (’07)
3E, Lu, Kaxiras (’06), Hayes, Ho, Ortiz, and Carter (’06), G-C, Lu, E (’07), Gavini, Bhattacharya

and Ortiz (’07), Peng, Zhang, Hung, Carter, Lu (’08)



The Quasicontinuum Method1

I Consider a material sample with a defect, e.g., a crack,
vacancy, dislocation, etc.

I Decompose the domain into a nonlocal region containing the
defect, and a local region, containing the rest.

I In the nonlocal region, atoms are treated directly.
I In the local region, representative atoms (rep-atoms) and

Cauchy-Born elasticity is used.

1Tadmor, Ortiz, Phillips, Philosophical Magazine A, 73 (1996)



The Quasicontinuum Method (cont.)
I Overcomes some limitations of Cauchy-Born.
I Matching at the atomistic/continuum interface is difficult:

Ghost forces1 (Nonzero force for equilibrium configuration).

I Energy-based correction2, Force-based correction 3.
I No general method to remove ghost forces is available to date.
1Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz, J. Mech. Phys. Solids, 47 (1999)
2E, Lu, Yang Phys. Rev. B 74 (2006).
3Luskin, Dobson, Math. Modelling Num. Anal. 42 (2008).



The Mori-Zwanzig Formalism1

I General strategy to eliminate degrees of freedom.
I Produces an exact reduced model.

1Mori, Prog. Theor. Phys. 33(3) 1965; Zwanzig, J. Stat. Phys. 9(3) 1973



Example: Collision of a gas atom with a surface1

H(P,Q, p, q) =
P2

2
+ U(Q) +

∑
j

1
2
p2
j +

∑
j

1
2
ω2

j (qj −
γj

ω2
j
Q)2

The Hamilton equations are

dQ
dt

= P;
dP
dt

= −U ′(Q) +
∑

j

γ2
j (qj −

γj

ω2
j
Q),

dqj

dt
= pj ;

dpj

dt
= −ω2

j qj + γjQ.

1S.A. Adelman, J.D. Doll, J. Chem. Phys., 61(10) 1974



Example: Collision of a gas atom with a surface (cont.)
I Integrating the equations for qj and pj ,

qj(t) = qj(0) cos(wj t)+
pj(0)

ωj
sin(ωj t)−

γ2
j

ωj

∫ t

0
sin(ωj(t−s))Q(s) ds.

I We can therefore eliminate qj :

dQ
dt

= P,

dP
dt

= −U ′(Q) +

∫ t

0
ξ(t − s)P(s) ds + F (t),

where

ξ(t) = −
∑

j

γ2
j

ω2
j
cos(ωj(t)),

F (t) =
∑

j

(
γj

(
qj(0)−

γj

ω2
j
Q(0)

)
cos(ωj t) +

γj

ωj
pj(0) sin(ωj t)

)
.



Example: Collision of a gas atom with a surface (cont.)
I The procedure is exact.
I ξ(t) is a memory kernel:

I Describes dissipation in the system.
I Dynamics are not Markovian.

I {qj(0)}, {pj(0)} appear only in F (t).
I Assume system is initially in equilibrium, with initial positions

and momenta sampled from a Gibbs distribution

G (P,Q, {qj}, {pj}) ∼ exp{−H(P,Q, {qj}, {pj})/kBT}.

then F (t) is a random term.
I Fluctuation-dissipation theorem:

< F (t) > = 0,
< F (t)F (s) > = kBT ξ(t − s).

I Generalized Langevin equation.



Mori-Zwanzig Formalism: Applications
I In general, the random noise and memory terms are extremely

complicated.
I Approximations are needed to simplify the model
I Can be used to find effective boundary conditions for MD

simulations1
I Atomistic/Continuum coupling.
I Avoid phonon reflection.
I Atoms removed should act as a thermal bath.

Figure: MD Setup for Mori-Zwanzig approach (courtesy of X. Li)

1X. Li, W. E, Phys. Rev. B 76, 104107 (2007)



Mori-Zwanzig Formalism: Applications (cont.)

Figure: Phonons generated from a crack (courtesy of X. Li)



Mori-Zwanzig Formalism: Applications (cont.)

Figure: Phonons generated from a crack (courtesy of X. Li)



Additional Literature on Mori-Zwanzig

I A.J. Chorin, O.H, Hald, R. Kupferman, PNAS, 97 (2000).
I X. Li, J. Comp. Phys., 227 (2008).
I C. Hijón, P. Español, E. Vanden-Eijnden, R.

Delgado-Buscalioni, Faraday Discussions, 144 (2010).
I M. Chen, X. Li, C. Liu, arXiv:1403.6543 (2014).



Thank you!
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