Multiscale Modeling

Carlos J. García Cervera
cgarcia@math.ucsb.edu

Mathematics Department
University of California, Santa Barbara

Hands-on Summer School: Electronic Structure Theory for Materials and (Bio)molecules
IPAM, UCLA, July 21 - August 1, 2014

Outline

Introduction to Multiscale Modeling
Types of Multiscale Problems
Multiscale approaches and algorithms
Examples of multiscale phenomena
Complex Fluids
Elasticity

Outline

Introduction to Multiscale Modeling
Types of Multiscale Problems
Multiscale approaches and algorithms
Examples of multiscale phenomena
Complex Fluids
Elasticity
Analytical Methods: Homogenization and Multiple-Scale Asymptotics

Outline

Introduction to Multiscale Modeling
Types of Multiscale Problems
Multiscale approaches and algorithms
Examples of multiscale phenomena
Complex Fluids
Elasticity
Analytical Methods: Homogenization and Multiple-Scale Asymptotics

The Heterogeneous Multiscale Method (HMM)
Complex Fluids
Elasticity: The Cauchy-Born rule The Cauchy-Born rule in Quantum Mechanics

Outline

Introduction to Multiscale Modeling
Types of Multiscale Problems
Multiscale approaches and algorithms
Examples of multiscale phenomena
Complex Fluids
Elasticity
Analytical Methods: Homogenization and Multiple-Scale Asymptotics

The Heterogeneous Multiscale Method (HMM)
Complex Fluids
Elasticity: The Cauchy-Born rule
The Cauchy-Born rule in Quantum Mechanics
Sequential Multiscale Modeling

Outline

Introduction to Multiscale Modeling
Types of Multiscale Problems
Multiscale approaches and algorithms
Examples of multiscale phenomena
Complex Fluids
Elasticity
Analytical Methods: Homogenization and Multiple-Scale Asymptotics

The Heterogeneous Multiscale Method (HMM)
Complex Fluids
Elasticity: The Cauchy-Born rule
The Cauchy-Born rule in Quantum Mechanics
Sequential Multiscale Modeling
Domain Decomposition: Quasicontinuum

Outline

Introduction to Multiscale Modeling
Types of Multiscale Problems
Multiscale approaches and algorithms
Examples of multiscale phenomena
Complex Fluids
Elasticity
Analytical Methods: Homogenization and Multiple-Scale Asymptotics

The Heterogeneous Multiscale Method (HMM)
Complex Fluids
Elasticity: The Cauchy-Born rule
The Cauchy-Born rule in Quantum Mechanics
Sequential Multiscale Modeling
Domain Decomposition: Quasicontinuum
The Mori-Zwanzig Formalism

Introduction

- Physical systems can be modeled at different levels of detail:
- Continuum mechanics, e.g., Navier-Stokes equations, Continuum Elasticity.
- Kinetic Theory, e.g., Boltzmann equation.
- Molecular Dynamics.
- Quantum Mechanics, e.g. Schrödinger equation, DFT, GW, etc.
- Full solution impractical/undesirable.
- Objectives of Multiscale Modeling:
- Analytical connection between different levels.
- Systematic coarse-graining: Error control.
- Development of efficient numerical methodologies.

Types of Multiscale Problems

A. Macroscopic description fails in a localized region.

- Defects in crystals.
- Contact line dynamics.
B. Macroscopic model is not fully known.
- Flow in a porous medium.
- Complex fluids.
- Composite materials.

Multiscale approaches and algorithms

- Classical multiscale algorithms:
- Multigrid method ${ }^{1}$.
- Multiresolution analysis and wavelets ${ }^{2}$
- Domain Decomposition: Quasicontinuum method ${ }^{3}$.
- General frameworks make use of scale separation:
- Homogenization and multiple-scale asymptotics.
- Equation-free approaches ${ }^{4}$.
- Heterogeneous Multiscale Method ${ }^{5}$.

[^0]
Multiscale/Multiphysics Phenomena

- Complex Fluids, e.g., Polymers.

$$
\begin{aligned}
\frac{\partial U}{\partial t}+(U \cdot \nabla) U & =\operatorname{div} \sigma+\nabla P \\
\operatorname{div} U & =0
\end{aligned}
$$

- U is the velocity.
- P is the pressure.
- σ is the stress tensor \longleftrightarrow Interparticle interactions.
- Constitutive relation: $\sigma=\sigma(\nabla U)$.
- What is the microscopic foundation of the constitutive relation?

Multiscale/Multiphysics Phenomena (cont.)

- Elasticity.

$$
\min \int_{\Omega}(W(u)-f \cdot u) d x
$$

- u represents the displacement.
- f is the external force.
- Constitutive relation, e.g., Hooke's law: $W(u)=\frac{1}{2} \epsilon^{T} \cdot C \cdot \epsilon$, where
- $\epsilon=\frac{1}{2}\left(\nabla u^{T}+\nabla u\right)$ is the strain.
- C is a tensor consisting of elastic constants.
- Can $W(u)$ be derived from microscopic interactions? From quantum mechanics?.

Homogenization: Multiple-scale asymptotics approach

Consider $0<m \leq a(x, y) \leq M$ periodic in y with period p, and

$$
\begin{aligned}
\frac{d}{d x}\left(a\left(x, \frac{x}{\epsilon}\right) \frac{d u^{\epsilon}}{d x}\right) & =f(x), \quad x \in[0,1] \\
u(0) & =0 ; \quad u(1)=0
\end{aligned}
$$

What does the solution look like when $\epsilon \rightarrow 0$?

- Notice that $a\left(x, \frac{x}{\epsilon}\right) \rightharpoonup<a>(x)=\frac{1}{p} \int_{0}^{p} a(x, y) d y$.
- Does u^{ϵ} converge to the solution of $\frac{d}{d x}\left(<a>(x) \frac{d u}{d x}\right)=f$?

Multiple-scale asymptotics (cont.)

Does u^{ϵ} converge to the solution of $\frac{d}{d x}\left(<a>(x) \frac{d u}{d x}\right)=f$? No!

Figure: Left: $a=3+\sin (x)+\cos (x / \epsilon)$; Right: Solution of Averaged Equation.

Multiple-scale asymptotics (cont.)

- Introduce two (independent) scales: $z=x, y=x / \epsilon$.
- $\frac{d}{d x} \Rightarrow \frac{\partial}{\partial z}+\frac{1}{\epsilon} \frac{\partial}{\partial y}$.
- Assume $u=u_{0}(x, y)+\epsilon u_{1}(x, y)+\epsilon^{2} u_{2}(x, y)+O\left(\epsilon^{3}\right)$, periodic in y.

$$
f=\left(\partial_{x}+\frac{1}{\epsilon} \partial_{y}\right)\left(a(x, y)\left(\partial_{x} u_{0}+\epsilon \partial_{x} u_{1}+\frac{1}{\epsilon} \partial_{y} u_{0}+\partial_{y} u_{1}+\epsilon \partial_{y} u_{2}\right)\right)
$$

- Collect terms:

$$
\begin{aligned}
& O\left(\epsilon^{-2}\right): \quad \partial_{y}\left(a(x, y) \partial_{y} u_{0}\right)=0 \Rightarrow u_{0}=u_{0}(x) \\
& O\left(\epsilon^{-1}\right): \\
& \quad \partial_{x}\left(a(x, y) \partial_{y} u_{0}\right)+\partial_{y}\left(a(x, y)\left(\partial_{x} u_{0}+\partial_{y} u_{1}\right)\right)=0 \\
& \\
& \quad \Rightarrow u_{1}(x, y)=u_{1}(x, 0)-\partial_{x} u_{0} y+g(x) \int_{0}^{y} \frac{d z}{a(x, z)}
\end{aligned}
$$

$$
\stackrel{\text { Periodicity }}{\Rightarrow} u_{0}^{\prime}(x)=g(x) \frac{1}{p} \int_{0}^{p} \frac{d z}{a(x, z)}
$$

Multiple-scale asymptotics (cont.)

$O\left(\epsilon^{-1}\right): \quad u_{0}^{\prime}(x)=g(x) \frac{1}{p} \int_{0}^{p} \frac{d z}{a(x, z)}=g(x)<a^{-1}>$
$O(1): \quad \partial_{x}\left(a(x, y)\left(\partial_{x} u_{0}+\partial_{y} u_{1}\right)\right)+\partial_{y}\left(a(x, y)\left(\partial_{x} u_{1}+\partial_{y} u_{2}\right)\right)=f$

$$
\Rightarrow g^{\prime}(x)+\partial_{y}\left(a(x, y)\left(\partial_{x} u_{1}+\partial_{y} u_{2}\right)\right)=f
$$

$\stackrel{\text { Compatibility }}{\Rightarrow} g^{\prime}(x)=f(x)$

$$
\Rightarrow \frac{d}{d x}\left(<a^{-1}>^{-1} \frac{d u_{0}}{d x}\right)=f
$$

Notice that in general,

$$
<a^{-1}>^{-1} \neq<a>!
$$

Multiple-scale asymptotics (cont.)

Figure: Left: Averaged equation; Right: Homogenized Equation.

Multiple-scale asymptotics (cont.)

- In higher dimensions: Homogenized coefficients obtained by solving a cell problem (more on this later).
- Intuitive; Leads to effective macroscopic equations and provides systematic improvement.
- In some cases it can be formalized ${ }^{1}$.
- Widely used in the study of composite materials, photonics, etc....

[^1]
Heterogeneous Multiscale Method (HMM) ${ }^{1}$

- Systematic procedure for multiscale modeling.
- Main ingredients:
- Macroscopic Model: $U_{t}=F(U, D), D$ is unknown.
- A way to estimate D from microscopic data.
- Microscopic Model: $u_{t}=f(u)$.
- Reconstruction Operator: $u=R(U)$.
- Compression Operator: $U=Q(u)$.

[^2]
Example: Complex Fluids ${ }^{1}$

- Macroscopic model: Navier-Stokes equations.

$$
\begin{aligned}
\partial_{t} U+(U \cdot \nabla) U-\nabla P & =\operatorname{div} \sigma \\
\operatorname{div} U & =0
\end{aligned}
$$

where U is the velocity, P is the pressure, and σ is the viscous stress.

- Constitutive relation:

$$
\sigma=\mu\left(\nabla U+(\nabla U)^{T}\right)
$$

- Very successful for Newtonian fluids.
- Inaccurate for complex fluids, e.g. polymers.

[^3]
Example: Complex fluids (cont.)

- At the microscale, the system can be modeled by molecular dynamics:

$$
m_{i} \ddot{x}_{i}=F_{i}=-\nabla_{x_{i}} V\left(x_{1}, x_{2}, \ldots, x_{N}\right), i=1,2, \ldots, N
$$

- Large number of degrees of freedom: $N=O\left(10^{23}\right)$.
- Small time step required, $\delta t=O\left(10^{-15}\right)$.

Macro solver: Projection Method ${ }^{1}$

Denote the velocity field at time t^{n} by U^{n}, then U^{n+1} is computed following the two-step procedure:

- Compute intermediate value U^{*} :

$$
\frac{U^{*}-U^{n}}{\Delta t}+\nabla \cdot\left(U^{n} \otimes U^{n}\right)=\nabla \cdot \sigma
$$

- Project U^{*} onto the divergence-free space:

$$
\frac{U^{n+1}-U^{*}}{\Delta t}+\nabla P^{n+1}=0
$$

where P^{n+1} solves

$$
\Delta P^{n+1}=\frac{1}{\Delta t} \nabla \cdot U^{*}
$$

with Neumann boundary conditions.

[^4]
Spatial discretization: Staggered grid

Spatial derivatives are discretized using finite difference on staggered grid:

Figure: Staggered grid (courtesy of W. Ren)

Denote the two components of U by (u, v).

- u defined at $\left(x_{i}, y_{j+1 / 2}\right), v$ at $\left(x_{i}, y_{j+1 / 2}\right)$; normal stress at $\left(x_{i+1 / 2}, y_{j+1 / 2}\right)$, and shear stress at $\left(x_{i}, y_{j}\right)$.

Computing stress from MD

Figure: Local computation (courtesy of W. Ren)

- Each point where stress is needed is associated with an MD system.
- Assume stress depends only on local velocity gradient ∇U. Then the MDs are constrained by ∇U.

The HMM algorithm for fluids

Figure: The HMM schematically (courtesy of W. Ren)

- Compute the velocity gradient $A^{n}=\nabla U^{n}$ at each point where the stress is needed.
- Initialize an MD at each point where stress is needed.
- Evolve each MD constrained by A^{n} for M steps with a micro time step $\delta \tau$.
- Compute the stress from the MD results.
- Evolve the macro model using the estimated stress for one macro time step Δt, to obtain U^{n+1}.

Constrained molecular dynamics

- Set up MD whose averaged velocity coincides with local macroscale velocity field.
- The MD box deforms according to the given velocity gradient:

$$
\dot{X}=A X, \quad A=\nabla U .
$$

Figure: Constrained MD (courtesy of W. Ren)

- Periodic boundary conditions on the deforming box.
- Temperature controlled using Langevin thermostat.

Stress estimation

- Compute stress using the Irving-Kirkwood formula:

$$
\begin{gather*}
\left.\tilde{\sigma}(x, n \delta \tau)=-\sum_{i} m v_{i}(\tau) \otimes v_{i}(\tau) \delta\left(x-q_{i} * \tau\right)\right) \\
-\frac{1}{2} \sum_{j \neq i}\left(q_{j}(\tau)-q_{i}(\tau)\right) \otimes f_{i j}(\tau) \int_{0}^{1} \delta\left(x-(1-\lambda) q_{j}(\tau)-\lambda q_{i}(\tau)\right) d \lambda, \tag{1}
\end{gather*}
$$

where $\left\{v_{i}\right\}$ are the thermal velocity of the particles.

- The stress is obtained by averaging $\widetilde{\sigma}$ over the MD box:

$$
\sigma\left(n \Delta^{\prime} t\right)=\frac{1}{|\omega|} \int_{\omega} \tilde{\sigma}(x, n \delta \tau) d x
$$

where ω is the MD simulation box.

Driven-cavity flow ${ }^{1}$

Figure: Velocity field at steady state in the driven cavity flow. Inset in the figure is one of the normal stress as a function of $2 d$ velocity gradient.

[^5]
Cauchy-Born rule for a simple lattice ${ }^{1}$

$$
\mathbf{A} \in \mathbb{R}^{3 \times 3} \quad W(\mathbf{A})=?
$$

- The microscopic state is determined by the macroscopic deformation.
- $W_{C B}(\mathbf{A})$ is computed by first deforming an infinite crystal uniformly with displacement gradient A, and then setting $W_{C B}(A)$ to be the energy of the deformed unit cell:

[^6]
Cauchy-Born rule for a simple lattice (cont.)

- Example: 1d simple lattice with Lennard-Jones potential

$$
W_{C B}(A)=\frac{\zeta^{2}(6)}{\zeta(12)}\left(|1+A|^{-12}-2|1+A|^{-6}\right)
$$

$\zeta=$ Riemann-zeta function

- Validity of Cauchy-Born: Under certain lattice stability conditions ${ }^{1}$

$$
\left\|u_{\mathrm{CB}}-\mathbf{y}\right\| \leq C \epsilon^{2}
$$

where $\epsilon=$ lattice constant $/ \operatorname{diam}(\Omega)$.

[^7]
Thermodynamic limit

- More generally: How does one define the energy of a crystal? Thermodynamic limit ${ }^{1}$.
- Quantum mechanical description:
- Does there exist a limit for the energy per unit volume $\frac{1}{N} E_{N}$ as $N \rightarrow \infty$?
- Does the minimizing electronic density ρ_{N} approach a limit ρ_{∞} in some sense?
- Does the limit density ρ_{∞} have the same periodicity as the assumed periodicity of the nuclei?
- Proved in the context of Thomas-Fermi ${ }^{2}$, Thomas-Fermi-von Weiszacker and Hartree-Fock ${ }^{3}$.

[^8]
Cauchy-Born in Quantum Mechanics ${ }^{1}$

Consider the electronic density around a vacancy in an Aluminium crystal:

- The effect of the vacancy is very localized (more on this later).
- Two scales:
- Fast scale: Interatomic distance (lattice constant).
- Slow scale: Elastic deformation
- Multiple-scale behavior motivates the use of asymptotic analysis: homogenization.
${ }^{1}$ Lu, E, Comm. Math. Sci., 5 (2007); García-Cervera, Lu, E, Comm. Math. Sci., 5 (2007); Lu, E, Memoirs AMS, (2012)

Cauchy-Born: Orbital-Free DFT case

We choose units so that the diameter of the domain is $O(1)$, and introduce $\varepsilon=$ Lattice constant $/ \operatorname{diam}(\Omega)$. The energy becomes:

$$
\begin{aligned}
E[u]=\frac{\varepsilon^{2}}{2} \int_{\Omega}|\nabla u|^{2}+\varepsilon^{2} C_{T F} \int_{\Omega} & u^{10 / 3}+F_{X C}\left[\varepsilon^{3} u^{2}\right] \\
& +\frac{\varepsilon}{2} \int_{\Omega} \int_{\Omega} \frac{\left(u^{2}-m\right) \cdot\left(u^{2}-m\right)}{|x-y|} .
\end{aligned}
$$

Euler-Lagrange equations:

$$
\begin{aligned}
-\varepsilon^{2} \Delta u+\frac{5}{3} \varepsilon^{2} u^{7 / 3}-\phi u+\varepsilon^{2} V_{X C}\left[\varepsilon^{3} u\right]+\lambda u & =0 \\
-\Delta \phi & =4 \pi \varepsilon\left(m-u^{2}\right)
\end{aligned}
$$

- λ is a Lagrange multiplier for the normalization constraint.
- ϕ is the Coulomb potential generated by the electrons and the ions.
- Equation set in $\varphi(\Omega)$, with $\varphi: \Omega \rightarrow \mathbb{R}^{3}$ elastic deformation.

Cauchy-Born (cont.)

For smooth elastic deformations:
$u=u\left(y, \frac{x}{\varepsilon}\right)=\frac{1}{\varepsilon^{3 / 2}} u_{0}\left(y, \frac{x}{\varepsilon}\right)+\frac{1}{\varepsilon^{1 / 2}} u_{1}\left(y, \frac{x}{\varepsilon}\right)+\varepsilon^{1 / 2} u_{2}\left(y, \frac{x}{\varepsilon}\right)+\cdots$
$\phi=\phi\left(y, \frac{x}{\varepsilon}\right)=\phi_{0}\left(y, \frac{x}{\varepsilon}\right)+\varepsilon \phi_{1}\left(y, \frac{x}{\varepsilon}\right)+\varepsilon^{2} \phi_{2}\left(y, \frac{x}{\varepsilon}\right)+\cdots$,
$\lambda=\lambda_{0}+\varepsilon \lambda_{1}+\varepsilon^{2} \lambda_{2}+\cdots$

- $x=x(y)=\varphi^{-1}(y)$ is the Euler-Lagrange map: It gives the Lagrangian coordinate corresponding to y.
- $u(y, z)$ and $\phi(y, z)$ are functions defined on $\mathbb{R}^{3} \times \Gamma$ and are periodic in the second variable on Γ (unit cell).
Leading order equations:

$$
\begin{aligned}
-\Delta_{2}^{\times} u_{0}+\frac{5}{3} u_{0}^{7 / 3}-\phi_{0} u_{0}+\lambda_{0} u_{0} & =0 \\
-\Delta_{2}^{x} \phi_{0} & =4 \pi\left(m_{0}-u_{0}^{2}\right) .
\end{aligned}
$$

These are the Euler-Lagrange equations for the periodic problem, on the deformed cell $\mathbf{A} \Gamma$, with $\mathbf{A}=\nabla \varphi(x)$: Cauchy-Born rule.

Kohn-Sham Density Functional Theory

$$
\begin{aligned}
E_{K S}\left[\left\{\psi_{j}\right\}\right]= & 2 \sum_{j=1}^{N}\left(-\frac{1}{2}\right) \int \psi_{j}\left(\Delta \psi_{j}\right) d x+\frac{1}{2} \iint \frac{\rho(x) \rho(y)}{|x-y|} d x d y \\
& +\int V_{e x t}(x) \rho(x) d x+\int \rho \varepsilon(\rho)+\frac{1}{2} \sum_{i \neq j} \frac{Z_{i} Z_{j}}{\left|\mathbf{R}_{i}-\mathbf{R}_{j}\right|},
\end{aligned}
$$

where

$$
\rho(x)=2 \sum_{j=1}^{N}\left|\psi_{j}(x)\right|^{2}
$$

Kohn-Sham DFT:

$$
\min _{\left(\psi_{i}, \psi_{j}\right)=\delta_{i j}} E_{K S}\left[\left\{\psi_{j}\right\}\right]
$$

Asymptotics in the Kohn-Sham framework
Euler-Lagrange equations:
$\varepsilon=$ Lattice Constant/Diameter of the domain.

$$
\begin{align*}
&-\frac{\varepsilon^{2}}{2} \Delta \psi_{k}+V_{X C}\left(\varepsilon^{3} \rho\right) \psi_{k}-\phi \psi_{k}=\lambda_{k} \psi_{k} \\
&-\Delta \phi=4 \pi \varepsilon(m-\rho) \\
& \rho(\times)=2 \sum_{j=1}^{N}\left|\psi_{j}(\times)\right|^{2} \tag{2}
\end{align*}
$$

Asymptotic expansion for $\varepsilon \ll 1$:
$\psi_{\alpha}\left(y, \frac{x}{\varepsilon}\right)=\frac{1}{\varepsilon^{3 / 2}} \psi_{\alpha, 0}\left(y, \frac{x}{\varepsilon}\right)+\frac{1}{\varepsilon^{1 / 2}} \psi_{\alpha, 1}\left(y, \frac{x}{\varepsilon}\right)+\varepsilon^{1 / 2} \psi_{\alpha, 2}\left(y, \frac{x}{\varepsilon}\right)+$
$\rho\left(y, \frac{x}{\varepsilon}\right)=\frac{1}{\varepsilon^{3}} \rho_{0}\left(y, \frac{x}{\varepsilon}\right)+\frac{1}{\varepsilon^{2}} \rho_{1}\left(y, \frac{x}{\varepsilon}\right)+\frac{1}{\varepsilon^{1}} \rho_{2}\left(y, \frac{x}{\varepsilon}\right)+\cdots$
$\phi\left(y, \frac{x}{\varepsilon}\right)=\phi_{0}\left(y, \frac{x}{\varepsilon}\right)+\varepsilon \phi_{1}\left(y, \frac{x}{\varepsilon}\right)+\varepsilon^{2} \phi_{2}\left(y, \frac{x}{\varepsilon}\right)+\cdots$.

Asymptotics in the Kohn-Sham framework (cont.)
Leading order:

$$
\begin{gathered}
\rho_{0}(y, z)=2 \sum_{\alpha} \sum_{z_{j} \in L}\left|\psi_{\alpha, 0}\left(y, z-z_{j}\right)\right|^{2} \\
\int_{\mathbb{R}^{3}} \psi_{\alpha, 0}^{*}\left(y, z-z_{i}\right) \psi_{\alpha^{\prime}, 0}\left(y, z-z_{j}\right) d z=\delta_{\alpha \alpha^{\prime}} \delta_{i j} / \operatorname{det}(\nabla \varphi(x)) . \\
-\frac{1}{2} \Delta_{2}^{x} \psi_{\alpha, 0}(y, z)+V_{X C}\left(\rho_{0}\right) \psi_{\alpha, 0}(y, z)-\phi_{0}(y, z) \psi_{\alpha, 0}(y, z) \\
+\sum_{\alpha^{\prime}, z_{j} \in L} \lambda_{\alpha \alpha^{\prime}, z_{j} 0} \psi_{\alpha^{\prime}, 0}\left(y, z-z_{j}\right)=0 ; \\
-\Delta_{2}^{x} \phi_{0}(y, z)=4 \pi\left(m_{0}-\rho_{0}\right)(y, z) .
\end{gathered}
$$

These are the Euler-Lagrange equations for the periodic problem, on the deformed cell: Cauchy-Born rule.

Precomputing $W_{C B}{ }^{3}$

- Concurrent computation of the electronic density is impractical.
- Stress is a function of the strain: This is a function of six variables.
- This can be precomputed and stored in a table from where we can interpolate, in the context of the Heterogeneous Multiscale Method (HMM) ${ }^{1}$.
- An effective way of doing this is using a sparse representation.
- Can be used to assess accuracy of empirical potentials ${ }^{2}$.

[^9]
Sparse representation

- If we attempt to represent a function of d variables using a uniform grid, we would need $O\left(2^{\text {nd }}\right)$ grid points.
- Using sparse grids, we need only $O\left(n^{d-1} 2^{n}\right)$ points ${ }^{1}$.

[^10]
Elastic deformation of a solid

Given a deformation $u: \Omega \rightarrow \mathbb{R}^{3}$, we denote by $F=\nabla u$ the deformation tensor, and define the elastic energy density as

$$
\begin{equation*}
\omega[F]=\frac{1}{\left|V_{0}\right|} W_{\mathrm{CB}}[F] \tag{3}
\end{equation*}
$$

where the Cauchy-Born energy, $W_{\mathrm{CB}}[F]$, is the energy of the deformed unit cell, obtained by transforming the basis vectors as $b_{i}=F a_{i}, i=1,2,3$. Due to frame indifference, the elastic energy depends only on the right Cauchy-Green strain tensor (RCGST), $C=F^{T} F$.

Computational Cost

- $2,572,288$ grid points were used, which provided up to four digits of accuracy.
- To achieve the same accuracy with a regular grid, $128^{6} \geq 4 \times 10^{12}$ grid points would be required.

Figure: Elastic energy for the shear and expansion deformation. We plot the energy interpolated to a uniform grid. The sparse grid nodes are superimposed.

Domain Decomposition: Quasicontinuum

- Domain decomposition: Quasicontinuum ${ }^{1}$
- Domain decomposed into a local and nonlocal region.
- Local region: Cauchy-Born elasticity.
- Nonlocal region: Fully atomistic.
- Interface matching: Can produce ghost forces ${ }^{2}$.
- Extended to Quantum-Mechanical models ${ }^{3}$.

[^11]
The Quasicontinuum Method ${ }^{1}$

- Consider a material sample with a defect, e.g., a crack, vacancy, dislocation, etc.
- Decompose the domain into a nonlocal region containing the defect, and a local region, containing the rest.
- In the nonlocal region, atoms are treated directly.
- In the local region, representative atoms (rep-atoms) and Cauchy-Born elasticity is used.

[^12]
The Quasicontinuum Method (cont.)

- Overcomes some limitations of Cauchy-Born.
- Matching at the atomistic/continuum interface is difficult: Ghost forces ${ }^{1}$ (Nonzero force for equilibrium configuration).

- Energy-based correction ${ }^{2}$, Force-based correction ${ }^{3}$.
- No general method to remove ghost forces is available to date.

[^13]
The Mori-Zwanzig Formalism ${ }^{1}$

- General strategy to eliminate degrees of freedom.
- Produces an exact reduced model.

[^14]
Example: Collision of a gas atom with a surface ${ }^{1}$

FIG. 1. Schematic representation of a gas atom (particle O) collidin with a one-dimensional harmonic chain. The mass of the incident particle is M and that of the chain atoms is unity. The chain's harmonic interaction is of frequency ω_{0}. The number of atoms in the chain, N , is generally assumed to tend to infinity.

$$
H(P, Q, p, q)=\frac{P^{2}}{2}+U(Q)+\sum_{j} \frac{1}{2} p_{j}^{2}+\sum_{j} \frac{1}{2} \omega_{j}^{2}\left(q_{j}-\frac{\gamma_{j}}{\omega_{j}^{2}} Q\right)^{2}
$$

The Hamilton equations are

$$
\begin{aligned}
& \frac{d Q}{d t}=P ; \quad \frac{d P}{d t}=-U^{\prime}(Q)+\sum_{j} \gamma_{j}^{2}\left(q_{j}-\frac{\gamma_{j}}{\omega_{j}^{2}} Q\right), \\
& \frac{d q_{j}}{d t}=p_{j} ; \quad \frac{d p_{j}}{d t}=-\omega_{j}^{2} q_{j}+\gamma_{j} Q .
\end{aligned}
$$

[^15]Example: Collision of a gas atom with a surface (cont.)

- Integrating the equations for q_{j} and p_{j},

$$
q_{j}(t)=q_{j}(0) \cos \left(w_{j} t\right)+\frac{p_{j}(0)}{\omega_{j}} \sin \left(\omega_{j} t\right)-\frac{\gamma_{j}^{2}}{\omega_{j}} \int_{0}^{t} \sin \left(\omega_{j}(t-s)\right) Q(s) d s
$$

- We can therefore eliminate q_{j} :

$$
\begin{aligned}
\frac{d Q}{d t} & =P \\
\frac{d P}{d t} & =-U^{\prime}(Q)+\int_{0}^{t} \xi(t-s) P(s) d s+F(t)
\end{aligned}
$$

where
$\xi(t)=-\sum_{j} \frac{\gamma_{j}^{2}}{\omega_{j}^{2}} \cos \left(\omega_{j}(t)\right)$,
$F(t)=\sum_{j}\left(\gamma_{j}\left(q_{j}(0)-\frac{\gamma_{j}}{\omega_{j}^{2}} Q(0)\right) \cos \left(\omega_{j} t\right)+\frac{\gamma_{j}}{\omega_{j}} p_{j}(0) \sin \left(\omega_{j} t\right)\right)$

Example: Collision of a gas atom with a surface (cont.)

- The procedure is exact.
- $\xi(t)$ is a memory kernel:
- Describes dissipation in the system.
- Dynamics are not Markovian.
- $\left\{q_{j}(0)\right\},\left\{p_{j}(0)\right\}$ appear only in $F(t)$.
- Assume system is initially in equilibrium, with initial positions and momenta sampled from a Gibbs distribution

$$
G\left(P, Q,\left\{q_{j}\right\},\left\{p_{j}\right\}\right) \sim \exp \left\{-H\left(P, Q,\left\{q_{j}\right\},\left\{p_{j}\right\}\right) / k_{B} T\right\}
$$

then $F(t)$ is a random term.

- Fluctuation-dissipation theorem:

$$
\begin{aligned}
<F(t)> & =0 \\
<F(t) F(s)> & =k_{B} T \xi(t-s)
\end{aligned}
$$

- Generalized Langevin equation.

Mori-Zwanzig Formalism: Applications

- In general, the random noise and memory terms are extremely complicated.
- Approximations are needed to simplify the model
- Can be used to find effective boundary conditions for MD simulations ${ }^{1}$
- Atomistic/Continuum coupling.
- Avoid phonon reflection.
- Atoms removed should act as a thermal bath.

Figure: MD Setup for Mori-Zwanzig approach (courtesy of X. Li)

[^16]
Mori-Zwanzig Formalism: Applications (cont.)

Figure: Phonons generated from a crack (courtesy of X . Li)

Mori-Zwanzig Formalism: Applications (cont.)

Figure: Phonons generated from a crack (courtesy of X . Li)

Additional Literature on Mori-Zwanzig

- A.J. Chorin, O.H, Hald, R. Kupferman, PNAS, 97 (2000).
- X. Li, J. Comp. Phys., 227 (2008).
- C. Hijón, P. Español, E. Vanden-Eijnden, R. Delgado-Buscalioni, Faraday Discussions, 144 (2010).
- M. Chen, X. Li, C. Liu, arXiv:1403. 6543 (2014).

Thank you!

[^0]: ${ }^{1}$ A. Brandt, Math. Comp., 31 (1977); W. Hackbusch, Computing, 20 (1978)
 ${ }^{2}$ A. Harten, J. Appl. Numer. Math., 12 (1993); I. Daubechies, Ten Lectures on Wavelets
 ${ }^{3}$ Tadmor, Ortiz, Phillips, Philosophical Magazine A, 73 (1996)
 ${ }^{4}$ I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg. C. Theodoropoulos, Comm. Math. Sci., 1 (2003)
 ${ }^{5}$ W. E, B. Engquist, Comm. Math. Sci., 1 (2003); W. E, B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden, Commun. Comp. Phys., 2 (2007); A. Abdulle, W. E, B. Engquist, E. Vanden-Eijnden, Acta Numerica, 21 (2012)

[^1]: ${ }^{1}$ Asymptotic Analysis for Periodic Structures, A. Bensoussan, J.-L. Lions, G. Papanicolaoū

[^2]: ${ }^{1}$ E, Engquist, Comm. Math. Sci. 1(1), 2003

[^3]: ${ }^{1}$ Weiqing Ren, National University of Singapore

[^4]: ${ }^{1}$ A.J. Chorin, Math. Comp., 22 (1968);

[^5]: ${ }^{1}$ W. Ren, W. E, J. Comp. Phys., 204 (2005); CJGC, W. Ren, J. Lu, W. E, Commun. Comput. Phys., 4 (2008); W. E, W. Ren, E. Vanden-Eijnden, J. Comput. Phys. (2009)

[^6]: ${ }^{1}$ M. Born and K. Huang, Oxford University Press, Oxford, 1954

[^7]: ${ }^{1}$ Theil and Friesecke, J. Nonl. Sci, 12, (2002); E, Ming, Arch. Rat. Mech. Anal., 183 (2006); Van Koten and Ortner (2012)

[^8]: ${ }^{1}$ Blanc, Le Bris, Lions, Arch. Rat. Mech. Anal., 164 (2002)
 ${ }^{2}$ Lieb, Simon, Adv. Math., 23 (1977)
 ${ }^{3}$ Catto, Le Bris, Lions (2001), Cancès, Lahbabi, Lewin (2012)

[^9]: ${ }^{1}$ W. E, B. Engquist, Comm. Math. Sci., 1 (2003)
 ${ }_{3}^{2}$ G. Wu, G. Lu, CJGC, and W. E, Phys. Rev. B, 79 (2009)
 ${ }^{3}$ CJGC, Ren, Lu, and E, Comm. Comp. Phys., 4 (2008)

[^10]: ${ }^{1}$ Bungartz and Griebel, Acta Numerica (2004)

[^11]: ${ }^{1}$ Tadmor, Ortiz, Phillips, Philosophical Magazine A, 73 (1996)
 ${ }^{2}$ Tadmor, Phillips, Ortiz ('96), E, Ming ('05), E, Lu, Yang ('06), Dobson and Luskin ('07)
 ${ }^{3}$ E, Lu, Kaxiras ('06), Hayes, Ho, Ortiz, and Carter ('06), G-C, Lu, E ('07), Gavini, Bhattacharya and Ortiz ('07), Peng, Zhang, Hung, Carter, Lu ('08)

[^12]: ${ }^{1}$ Tadmor, Ortiz, Phillips, Philosophical Magazine A, 73 (1996)

[^13]: ${ }^{1}$ Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz, J. Mech. Phys. Solids, 47 (1999)
 ${ }_{3}^{2}$ E, Lu, Yang Phys. Rev. B 74 (2006).
 ${ }^{3}$ Luskin, Dobson, Math. Modelling Num. Anal. 42 (2008).

[^14]: ${ }^{1}$ Mori, Prog. Theor. Phys. 33(3) 1965; Zwanzig, J. Stat. Phys. 9(3) 1973

[^15]: ${ }^{1}$ S.A. Adelman, J.D. Doll, J. Chem. Phys., 61(10) 1974

[^16]: ${ }^{1}$ X. Li, W. E, Phys. Rev. B 76, 104107 (2007)

