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CRYSTALLINE SOLIDS
Idealized Crystal Structure Real Materials

Infinite grid of 
immobile atoms 

with perfect periodicity

cf. Christian Ratsch, Tuesday July 22

Everything moves! 
cf. M. Rossi & L. Ghiringhelli, Friday July 25

Perfect periodicity disturbed!



FAILURES OF THE STATIC LATTICE MODEL
N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).

• Inaccuracies in the equilibrium properties at 0K: 
Lattice Constants, Cohesive Energies, Elastic Constants,...

• Failure to describe thermodynamic equilibrium properties:
Specific Heat, Thermal Lattice Expansion, Phase Transformations, ...

• Failure to describe thermodynamic non-equilibrium properties:
✦ Charge Transport: 

Electrical AC/DC Conductivity, Superconductivity,...
✦ Heat Transport: 

Thermal Conductivity, Transmission of Sound,...
✦ Coupling of Charge & Heat Transport: 

Seebeck and Peltier Effect,...
✦ Interaction with Radiation: 

X-Ray, Infrared, Neutron, ... 



I. THE HARMONIC CRYSTAL



THE HARMONIC APPROXIMATION
The total energy E is a 

3N-dimensional surface:

E = V (R1,R2, · · · ,RN )

Approximate by Taylor 
Expansion around the 
Static Equilibrium Ri0Atomic Coordinate Ri
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Static Equilibrium Energy
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THE HARMONIC APPROXIMATION

 Determine Hessian aka the Harmonic Force Constants Φij:
• from Density-Functional Perturbation Theory

S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) &
S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001).

• from Finite Differences
K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) &
K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).
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Static Equilibrium Energy
from DFT Hessian Φij

⇒ cf.  Christian Carbogno & Manuel Schöttler,  Tutorial 6, Tuesday July 29



THE HARMONIC APPROXIMATION
...in Molecules:

Tuesday July 22:
  ⇒ Björn Lange,  Nuts and Bolts of DFT II

  ⇒ O. Hofmann & L. Nemec, Tutorial 1

N ... Number of atoms
⇓

Degrees of Freedom: 3N
Dimension of Hessian: 9N2

BUT:
N ➝ ∞

...in Crystalline Solids:

N ... Number of atoms
⇓

Degrees of Freedom: 3N
Dimension of Hessian: 9N2



PERIODIC BOUNDARY CONDITIONS 

cf. Christian Ratsch, “Electronic Structure Theory for Periodic Systems: The Concepts”, Tuesday July 22

Unit Cell with 
Np atomsPeriodic Images Periodic Images

Lattice vector:

Real 
Space: 

Hessian Φij 

with i,j ➝ ∞

E0
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Dynamical 
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Reciprocal 
Space: 

Dynamical 
Matrix Di’j’(q) 
with i’,j’  ≤ Np

VIBRATIONS IN A CRYSTAL 101
 K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). 

Real 
Space: 

Hessian Φij 

with i,j ➝ ∞

Fourier Transform can be truncated since 
Φij = 0 for large |Rj0 - Rj’0|

 Hessian Φij 

with finite number 
of non-zero entries

Dynamical Matrix Di’j’(q) 
known for the whole 

reciprocal space

Fourier Transform
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D(q) [⌫(q)] = !2(q) [⌫(q)]

VIBRATIONS IN A CRYSTAL 101
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

also see Björn Lange,  Nuts and Bolts of DFT II, Tuesday July 22

Equation of Motion becomes an Eigenvalue Problem:

Dynamical matrix:

Analytical Solution in Real Space: 
       Superposition of Harmonic Oscillations

Rj(t) = R0
j +Re
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VIBRATIONS IN A CRYSTAL 101
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

. 

� X

!

q

For Np atoms in the unit cell there are:

3 Acoustic modes:

- Atoms in unit cell in-phase
- Acoustic modes vanish at "
- Strong (typically linear) dispersion close to  "

(3Np - 3) Optical modes:

- Atoms in unit cell out-of-phase
- ω > 0 at "#(and everywhere else)
- Weak dispersion



THE HARMONIC APPROXIMATION
Phonon band structure                  & DOS
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THE HARMONIC FREE ENERGY
Static Equilibrium Energy

Zero-point vibration
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THE HARMONIC FREE ENERGY
Static Equilibrium Energy

Zero-point vibration

Thermally induced vibrations
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Quasi-harmonic approximation:

Compute F(T, V) by varying the lattice constants a



THE ASPIRIN “HEADACHE”
Anthony M. Reilly and Alexandre Tkatchenko, Phys. Rev. Lett. (in press).

Electronic Structure Theory predicts 
the two polymorphs to be energetically degenerate.

1

2 Role of Dispersion Interactions in the Polymorphism and
3 Entropic Stabilization of the Aspirin Crystal

4 Anthony M. Reilly* and Alexandre Tkatchenko†

5 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
6 (Received 3 April 2014; revised manuscript received 28 May 2014)

7 Aspirin has been used and studied for over a century but has only recently been shown to have an
8 additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are
9 degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of

10 the less abundant form II. Here, first-principles calculations provide an alternative explanation based on
11 free-energy differences at room temperature. The explicit consideration of many-body van der Waals
12 interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a
13 subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a
14 systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of
15 form II as making it metastable.

DOI:16 PACS numbers: 81.30.Hd, 61.50.Lt, 62.20.−x, 71.15.−m

17 The ability of molecules to yield multiple solid forms, or
18 polymorphs, has significance for diverse applications
19 ranging from drug design and food chemistry to nonlinear
20 optics and hydrogen storage [1]. For example, different
21 solid forms of an active pharmaceutical ingredient can
22 affect its bioavailability and formulation, sometimes in
23 unpredictable ways [2,3]. The computational modeling of
24 polymorphism has seen many advances in recent years, in
25 both generation of reasonable structures [4,5] and optimi-
26 zation and accurate ranking of these polymorphs [6,7].
27 Even when polymorphs can be predicted for a given
28 molecule, theory and experiment often struggle to under-
29 stand why a given polymorph is stable under certain
30 thermodynamic conditions [8].
31 Aspirin (acetylsalicylic acid) is a widely used analgesic
32 that clearly illustrates many of the challenges of under-
33 standing polymorphism. A second less common form of
34 aspirin has only been predicted [9] and characterized [10,11]
35 in recent years. State-of-the-art quantum-chemical calcula-
36 tions predict very small energy differences of the order of
37 !0.1 kJ=mol between the two polymorphs [12,13], making
38 both solid forms essentially degenerate in terms of lattice
39 energy. This raises the question of why the second form took
40 so long to be discovered and why the first form appears to be
41 more abundant. A possible explanation is that kinetic effects,
42 such as slow growth of form II, may play a role, and, indeed,
43 growth of form II can promoted by certain conditions
44 [10,11]. Nanoindentation experiments suggest that, despite
45 their similar structures (Fig. 1), the two polymorphs have

46markedly different mechanical properties, with form II
47appearing to be softer and potentially susceptible to shear
48instability [14]. However, computational studies of their
49elastic properties have also given conflicting results [9,15].
50To accentuate this controversy, form II has been observed to
51revert to form I slowly at room temperature and upon
52grinding [14], suggesting that form I is thermodynamically
53more stable. However, no viable mechanism for its thermo-
54dynamic stability has yet been established.
55Recently, a number of studies have highlighted the
56importance of many-body van der Waals (vdW) interactions
57in condensed molecular systems, especially in the context of
58vdW-inclusive density-functional theory (DFT) [7,16–18].
59The many-body dispersion (MBD) approach [19,20] has
60been shown to systematically improve the accuracy of DFT

F1:1FIG. 1 (color online). 2(Top) The unit-cell structures of form-I
F1:2(left) and form-II (right) aspirin (acetylsalicylic acid). The b
F1:3direction is perpendicular to a and c. (Bottom) View of form-I
F1:4(left) and form-II (right) aspirin showing the different interlayer
F1:5hydrogen-bonding motifs.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

1

PHY S I CA L R EV I EW LE T T ER S

1 Published by the American Physical Society
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BUT: FORM I MUCH MORE ABUNDANT!
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THE ASPIRIN “HEADACHE”
Anthony M. Reilly and Alexandre Tkatchenko, Phys. Rev. Lett. (in press).

Understanding polymorphism 
in organic crystals requires...
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... accurate electronic structure theory

... correct description of many-body dispersion

... to account for nuclear motion

Many-body effects in Aspirin

Aspirin crystal

A. M. Reilly

Anthony
Reilly

Form I Form II

Kinetics or Thermodynamics ??

C. Ouvrard and S. L. Price, Cryst. Growth Des. (2004).
A. D. Bond, R. Boese, G. R. Desiraju, Angew. Chem. Int. Ed. (2007).
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THE HARMONIC APPROXIMATION
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WARNING:
Harmonic Approximation is 

only valid for small
displacements from R0!

At elevated temperatures the harmonic 
approximation becomes increasingly inaccurate – 

and often terribly misleading!



CFM 56-7 airplane engine

Super
alloy

Bond
coat

Doped 
Zirconia

Gas
phase

T

1200°C

Temperature profile

~400 µm

700°C

THERMAL BARRIER COATINGS
Zirconia-based coatings play a crucial role 

in thermal barrier coatings.



PHASE DIAGRAM OF ZrO2

Monoclinic Tetragonal Cubic

0 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K

„Monoclinic“
Baddeleyite Structure

T < 1200°C 



Monoclinic Tetragonal Cubic

0 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K

„Tetragonal“
P42/nmc Structure

1200°C <  T < 2400°C 

PHASE DIAGRAM OF ZrO2



Monoclinic Tetragonal Cubic

0 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K

„Cubic“
Fluorite Structure

T > 2400°C 

PHASE DIAGRAM OF ZrO2



THE SOFT MODE OF CUBIC ZrO2

„Cubic“
Fluorite Structure

VOLUME 78, NUMBER 21 P HY S I CA L REV I EW LE T T ER S 26 MAY 1997

optimized norm-conserving pseudopotentials according
to the kinetic-energy-optimization scheme [17,18] have
been used to describe the ion-electron interaction. The
atomic configurations 4d25s2 for Zr, and 2s23p4 for O
atoms were used to generate the pseudopotentials in the
Kleinman-Bylander form [19]. The exchange-correlation
potential due to Ceperley and Alder as parametrized
by Perdew and Zunger [20] was employed. Brillouin
zone integrations have been carried out using only the G
point. Checking calculations with the (2, 2, 2) mesh of k
points [21] were also performed and they did not show a
significant difference from the result obtained with the G
point only.
With the 2 3 2 3 2 supecell, the phonons calculated

from Hellmann-Feynman forces are exact at G, X, L, W ,
and two other wave vector points, namely, at the midpoint
between G and X along k1, 0, 0l and k1, 1, 0l directions.
The positions of Zr ≠ s0, 0, 0d, Os1d ≠ s1y4, 1y4, 1y4d,
and Os2d ≠ s3y4, 3y4, 3y4d are fixed by symmetry. The
only free parameter to be found in the optimization is the
lattice constant a0. Figure 1 shows the calculated total
energy as a function of the lattice constant. The minimum
occurs at a0 ≠ 5.13 Å. This may be compared with
the experimental value a0 ≠ 5.256 Å at a temperature of
2600 K [22].
In the direct method the amplitude of the atomic dis-

placements has been limited to u0 ≠ 60.010a0. Four in-
dependent runs of Hellmann-Feynman force fields have
been carried out: two for Zr and two for O atoms, all dis-
placed along z. This gives 1152 force field data. The
symmetry analysis of force constants within the super-
cell leads to 68 independent parameters. Solving Eq. (6),
one finds 59 independent parameters to be nonzero. The
remaining nine parameters vanish due to additional sym-
metry imposed by the choice of a 2 3 2 3 2 supercell.
Each parameter is a result of averaging over 8 to 32 force

FIG. 1. Ground state total energy of cubic ZrO2 per 1 3
1 3 1 supercell, as a function of the lattice constant a0. The
minimum has been set to zero energy.

field data. The nearest neighbor force constants between
Zr and O atoms are strongly negative, supporting the ten-
dency to displace Zr and O. The same behavior is found
for two nearest neighbor O atoms. A pair of oxygen
atoms diminish the energy when they are simultaneously
displaced along the k1, 0, 0l direction. Different force con-
stants are found between oxygen atoms at a0

p
3y2 dis-

tance, depending on the presence of an intermediate Zr
atom. Namely, the O-Zr-O force constants are by one
order of magnitude greater than these of the direct O-O
bond. We checked the translational invariance condition
which has been satisfied within 0.25%.
The phonon frequencies have been calculated using

Eq. (8) and are plotted along high-symmetry directions in
Fig. 2. The G-X, X-W , and L-G lines are along k1, 0, 0l,
k1, 2, 0l, and k1, 1, 1l directions, respectively. At the G
point the Raman active optical mode of T2g symmetry
occurs at 16.49 THz (550.2 cm21) being lower than the
experimental value (640 cm21) [15,23] by 14%. Unfortu-
nately, the phonon dispersion curves, as given in Fig. 2,
cannot be compared directly with experiment, because
such data, to the best of our knowledge, do not exist.
In Fig. 2 imaginary phonon frequencies of unstable

modes are represented as negative values. A nondegener-
ate mode has been found at the X point. Its value reads
i5.86 THz. It stiffens up rapidly away from the X point.
Examination of the soft mode polarization vector reveals
that it is polarized along the k1, 0, 0l direction. It indi-
cates that neighboring chains of oxygen atoms displace in
opposite directions, towards the structure stabilized in the
tetragonal phase.
In summary, we have shown that the direct method

allows for efficient ab initio calculations of the com-
plete phonon dispersions, including the specification of the
soft mode.
The authors thank Dr. K. Esfarjani, Dr. K. Ohno, and

Dr. M. Sluiter for fruitful and numerous discussions, and
Professor E. Wimmer for encouraging us to undertake

FIG. 2. Calculated phonon dispersions of ZrO2 in the cubic
structure at the extremum lattice constant a0 ≠ 5.13 Å.

4065

K. Parlinski, Z. Q. Li, and Y. Kawazoe, 
Phys. Rev. Lett. 78, 4063 (1997).

Cubic Zirconia  exhibits a soft mode (imaginary mode):

D(X) [⌫(X)] = !2(X) [⌫(X)] ) !2
1(X) < 0



The Tetragonal-Cubic Phase Transition
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S. Fabris, A. T. Paxton, and M. W. Finnis, Phys. Rev. B 63, 094101 (2001).
M. Sternik and K. Parlinski, J. Chem. Phys. 123, 204708 (2005).
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Distance from cubic geometry
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p
dx

2 + dy

2 + dz

2 always conserved!

Ferroelastic switches are an intrinsic feature of the dynamics in ZrO2.
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The Dynamics of Zirconia
C. Carbogno, C. G. Levi, C. G. Van de Walle, and M. Scheffler (submitted). 

 ZrO2 exhibits not one,
but six degenerate

equilibrium configurations.

Ferroelastic Switches
between these configurations

occur quite frequently.

⇓

Severe violation of the 
harmonic approximation.

⇓



SUMMARY I
We have introduced the harmonic approximation 

under periodic boundary conditions.

The harmonic approximation can be very useful to 
approximatively asses dynamic and thermodynamic effects 

at low temperatures.

The harmonic approximation becomes 
increasingly inaccurate at elevated temperatures and must be 

handled with care under such thermodynamic conditions. 



III. HEAT TRANSPORT



HEAT TRANSPORT

Fourier‘s Law:

rT

J

J = � rT = �↵⇢ cV rT

 = 
photon

+ 
elec.

+ 
nucl.

Macroscopic 
Effect:

Microscopic 
Mechanisms



BASICS OF MACROSCOPIC TRANSPORT

    Analytic Solution: T (r, t) =
1

(4⇡t)3/2
exp

✓
� r2

4t

◆

    The Diffusion Equation:
 (also applies to mass & charge transport)

@T (r, t)

@t
= r2T (r, t)

    Proportionality of flux 
          and gradient:

j = � rT

    The Continuity Equation:
 (valid for any conserved quantity)

@T

@t
+r · j = 0
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HEAT CONDUCTIVITY 101

ph

ph

ph

E

R

The#phonon&phonon#
interaction#limits the 
vibrational#thermal#

conductivity.

Harmonic approximation

Deviations#from the 
harmonic approximation 

limit the 
vibrational#thermal#

conductivity.
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space

Heat Transport Mechanisms

TIME AND LENGTH SCALES

Semi-empirical potentials:

First-principles approaches:

+ vast experience
+ established methodologies
– accuracy is a question

+ more accurate interactions
– limited time and length scales



BOLTZMANN TRANSPORT EQUATION
R. Peierls, Ann. Phys. 395,1055 (1929). 

D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007).

Boltzmann-Peierls-Transport-Equation describes the 
evolution of the phonon phase space distribution f(ω,q,t).

f(ω,q,t) f(ω,q,t+dt)Boltzmann
Transport
Equation



Boltzmann-Peierls-Transport-Equation describes the 
evolution of the phonon phase space distribution f(ω,q,t).

f(x,p,t) f(x,p,t+dt)Boltzmann
Transport
Equation

Single-mode relaxation time approximation

Harmonic phonon theory

Group velocity Frequency Equilibrium 
population

phonon 
lifetime

?

(A) BOLTZMANN TRANSPORT EQUATION
R. Peierls, Ann. Phys. 395,1055 (1929). 

D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007).

 ⇠
X

s

v2s !2
s ns(ns + 1) ⌧s



Phonon Lifetimes from First Principles

• from Density Functional Perturbation Theory
D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007). 
J. Garg et al., Phys. Rev. Lett. 106, 045901 (2011).

• from fitting the forces in ab initio MD
K. Esfarjani, and H. T. Stokes, Phys. Rev. B 77, 144112 (2008).

• from fitting the phonon line width determined via ab initio MD 
N. De Koker,  Phys. Rev. Lett. 103,125902 (2009).

All these approaches give very accurate results for good 
thermal conductors at low temperatures.

Results are questionable at high levels of anharmonicity!



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~�(r3) low T Minute Parameter

Non-Equilib. 
MD

Laser-flash 
MD

Green-Kubo 
MD

Boltzmann-Transport-Eq. gives very accurate results 
for perfect crystals at low temperatures.



NON-EQUILIBRIUM MD
S. Stackhouse, L. Stixrude, and B. B. Karki, Phys. Rev. Lett. 104, 208501(2010).

heat
source

heat
sink

•Temperature gradient ∇T 
•Stationary heat flux J

⇓
Thermal conductivity can be calculated 

by applying Fourier‘ s Law.

J = � rT
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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Effects
Disorder

Boltzmann-
Transport Eq.

~�(r3) low T Minute Parameter

Non-Equilib. 
MD

Full all T Huge as in 
supercell

Laser-flash 
MD

Green-Kubo 
MD

Non-Equilibrium MD approaches are in principle exact,
in DFT however prohibitively costly to converge accurately. 



Heat

T = TcoldT = Thot

„LASER FLASH“ MEASUREMENTS
W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).
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Heat Diffusion Equation:

Extract the heat diffusivity α by fitting T(x,t)

„LASER FLASH“ MEASUREMENTS
W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).



„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

(A) Prepare two supercells: a small hot one and a large cold one.

Mimic the „Laser-Flash Measurements“ 
in ab initio MD simulations:



In the harmonic approximation, the
positions ri and the velocities vi are related to the
vibrational eigenfrequencies ωs and -vectors es.

Maxwell-Boltzmann 
distributed amplitudes

random
phase

harmonic 
approximation
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Setup of the Cell in Non-Equilibrium



„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

(A) Prepare two supercells: a small hot one and a large cold one.
(B) Let the heat diffuse via ab initio MD 

and monitor the temperature profile T(x,t).

Mimic the „Laser-Flash Measurements“ 
in ab initio MD simulations:
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The finite number of atoms leads to large 
temperature fluctuations.

„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).
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„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).



APPLICATION TO IMPURITIES IN SI
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

3

In this paper, we extend our earlier work [4] in sev-
eral ways. In Sec. II, we describe our theoretical method
in detail, including the specifics of supercell preparation,
the normal-mode phase matching at the hot/cold inter-
face, and the averaging required to obtain κ. In Sec. III,
we discuss the changes introduced by impurities in the
phonon density of states and the specific heat, predict
the temperature-dependence of the thermal conductivity
in the Si192 supercell, the dependence of κ on the con-
centration of impurities, and then focus on the change
in κ(T = 125 K) when the supercell contains 5.2 atomic
percent of vacancies or various isotopes of C, Si, Fe, or
Ge. The strong variation of κ with the impurity isotope
is correlated to the localization of some impurity-related
modes. The key results are discussed in Sec. IV.

II. METHODOLOGY

A. Supercell construction

The host crystal is represented by periodic supercells
constructed by stacking slices along a specific crystalline
direction. Most of our calculations are done with twelve
16-Si atoms slices stacked along the <100> direction to
create a parallelepiped which is 33 Å long and has a di-
ameter of 15 Å. We have also used [4] the Si384 and Si768

supercells to investigate the impact of the cross-sectional
area on the thermal conductivity (Fig. 1). A similar con-
struction can be performed for Si nanowires to investigate
the impact of the surface conditions or impurity content
on the thermal conductivity [31]. Because the thermal
conductivity calculations are highly computer intensive,
we restrict the Brillouin-zone sampling to the Γ point.

B. Electronic structure method

The first-principles DF calculations are carried out us-
ing the SIESTA package [32, 33], but our method is not
restricted to this particular electronic structure code. In-
deed, it has also been successfully used to calculate the
thermal conductivity of oxides [34] using the all-electron
simulation package FHI-aims [35].

In the SIESTA approach, the electronic core re-
gions are removed from the calculations using ab-initio
norm-conserving pseudopotentials with the Troullier-
Martins parameterization [36] in the Kleinman-Bylander
form [37]. The SIESTA pseudopotentials have been opti-
mized using the experimental bulk properties of the per-
fect solids and/or first-principles calculations [38] as well
as vibrational properties of free molecules or known de-
fects, when such experimental data are available.

The valence regions are treated using first-principles
spin-DF theory with the exchange-correlation poten-
tial of Ceperley-Alder [39] as parameterized by Perdew-
Zunger [40]. The calculations involving heavy elements

FIG. 1. (Color online) The Si192, Si384, and Si768 super-
cells consist of twelve Si16, Si32, and Si64 slices, respectively,
aligned along the <100> direction. The supercells are shown
with a random distribution of 5.2 atomic percent of substitu-
tional impurities (red atoms). The three supercells are 3.3 nm
long. Their diameters are 1.54, 2.44, and 4.50 nm, respec-
tively.

such as Fe or Ge are treated within the generalized gra-
dient approximation for the exchange-correlation poten-
tial [41]. The basis sets for the valence states are linear
combinations of numerical atomic orbitals [42, 43]. We
use a double-zeta basis set for H, C, and Si, and add po-
larizations functions for Ge. The basis set for Fe consists
of two sets of valence s and d’s and one set of p’s. The
charge density is projected on a real-space grid with an
equivalent cutoff of 350 Ryd to calculate the exchange-
correlation and Hartree potentials.

C. Vibrational spectra

The defect configurations must be optimized with care
using a conjugate gradient algorithm. Our standard re-
quirement is that the maximum force component be 0.003
to 0.001 eV/Å. Supercell preparation relies on accurate
dynamical matrices (see below) and unphysical negative
frequencies come up when the geometries are insuffi-

Si192 supercell containing ~5.2% impurities 

How do the 
properties of the impurities 

affect the 
thermal conductivity of the system?



Vacancies

Thermal conductivity can be controlled via the impurities‘ mass!

28Si

56Si

APPLICATION TO IMPURITIES IN SI
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).



APPLICATION TO IMPURITIES IN SI
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

Carbon

Iron

Germanium

Not all impurities are created equal!

12C

55Fe
74Ge



SiGe, Stillinger-Weber Potential,
Courtesy of Philip Howell, Siemens AG

FINITE SIZE EFFECTS
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FINITE SIZE EFFECTS

Laser-flash approach exhibits strong finite-size artifacts 
in supercells typically accessible within DFT/AIMD.
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FINITE SIZE EFFECTS

Preparation of the supercell in non-equilibrium via the harmonic 
approximation allows to use rather small thermal gradients.

unphysically large ∇T ≫ 109K/m
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FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~�(r3) low T Minute Parameter

Non-Equilib. 
MD

Full all T Huge as in 
supercell

Laser-flash 
MD

Full low T Medium-
Large

as in 
supercell

Green-Kubo 
MD

Laser-flash MD yields accurate qualitative results 
at low temperatures within moderate computational costs. 

Quantitative predictions require finite size corrections, though.



FLUCTUATION-DISSIPATION 
THEOREM

The fluctuations of the forces in thermodynamic equilibrium is 
related to the generalized resistance in non-equilibrium 

for linear dissipative systems.
H. B. Callen, and T. A. Welton, Phys. Rev. 83, 34 (1951).

Brownian Motion:
A. Einstein,  Ann. Phys. 322, 549 (1905).

The erratic motion of the particles
is closely related to

frictional force under perturbation.

Random walk in 2D



GREEN-KUBO METHOD
R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Japan 12,1203 (1957).

The thermal conductivity is 
related to the autocorrelation 

function of the heat flux

 ⇠
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THE ATOMISTIC HEAT FLUX
E. Helfand, Phys. Rev. 119, 1 (1960).

J(t) =
d

dt

 
X

i

ri(t)"i(t)

!
ri · · · Position of atom i

"i · · · Energy of atom i

Energy contribution εi of the individual atoms required!

⇒ Green-Kubo Method hitherto only 
used with classical potentials!



THE AB INITIO HEAT FLUX

J(t) =
d

dt

Z
r · "(r, t) dr "(r, t) · · · Energy density

Energy Density in Density Functional Theory:
B. Delley et al., Phys. Rev. B 27, 2132 (1983).

N. Chetty, and R. M. Martin, Phys. Rev. B 45, 6074 (1992).

Z
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ASSESSING THE THERMAL CONDUCTIVITY

 =
V

3kBT 2

1Z

0

d⌧ h J(0) J(⌧)i
eq

Fourier Trans.
 =
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AIMD data

2x2x2 t-ZrO2 - T=1800 K

Finite Size Artifacts

Finite Size Artifacts 
artificially reduce the 
thermal conductivity 
at low frequencies!

J. L. Feldman et al., 
Phys. Rev. B 48, 12589 (1993).



PERIODIC BOUNDARY CONDITIONS
J J



PERIODIC BOUNDARY CONDITIONS
J J

J(t) =
d

dt

Z
r · "(r, t) dr

Small heat flux through boundaries 
leads to huge change in energy barycenter.



J(t) =
d

dt

Z
r · "(r, t) dr =

Z
v · "(r, t) dr+

Z
r · d"(r, t)

dt
dr

Convective 
Heat Flux

Virial Heat Flux

Jv =

Z
r · d"(r, t)

dt
dr =

Z
v · �(r) dr

Helfands’ Heat Flux Hardys’ Heat Flux

ELIMINATING THE FINITE SIZE ARTIFACTS
R. J. Hardy,  Phys. Rev. 132,168 (1963).

σ(r) ... Stress density



J(t) =
d

dt

Z
r · "(r, t) dr =

Z
v · "(r, t) dr+

Z
r · d"(r, t)

dt
dr

Convective 
Heat Flux

Virial Heat Flux

Jv =

Z
r · d"(r, t)

dt
dr =

Z
v · �(r) dr

Helfands’ Heat Flux Hardys’ Heat Flux

ELIMINATING THE FINITE SIZE ARTIFACTS
R. J. Hardy,  Phys. Rev. 132,168 (1963).

σ(r) ... Stress density

Formulas for analytical stress
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FINITE SIZE ARTIFACTS ELIMINATED!

Hardys’ Heat Flux

Helfands’ Heat Flux

ELIMINATING THE FINITE SIZE ARTIFACTS
R. J. Hardy,  Phys. Rev. 132,168 (1963).

2x2x2 ZrO2 - T=1800K 
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APPLICATION TO ZIRCONIA

Experiment

Classical MD

DFT-LDA-V(T)

2x2x2 Supercell, > 30ps AIMD / data point

Experiment:
  J.-F. Bisson et al., J. Am. Cer. Soc. 83, 1993 (2000).
  G. E. Youngblood et al., J. Am. Cer. Soc. 71, 255 (1988).
  S. Raghavan et al., Scripta Materialia 39, 1119 (1998).

Classical MD:
  P. K. Schelling, and S. R. Phillpot, 
    J. Am. Cer. Soc. 84, 2997 (2001).

DFT-LDA-V(0K)
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Heat Transport Mechanisms

TIME AND LENGTH SCALES

First-principles approaches:
+ more accurate interactions
– limited time and length scales

Zirconia ZrO2:
Thermal Insulator



time

m 

mm

µm

nm

fs             ps             ns            µs            ms           

space

Heat Transport Mechanisms

TIME AND LENGTH SCALES

First-principles approaches:
+ more accurate interactions
– limited time and length scales

pristine Silicon:
good conductor



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~�(r3) low T Minute Parameter

Non-Equilib. 
MD

Full all T Huge as in 
supercell

Laser-flash 
MD

Full low T Medium-
Large

as in 
supercell

Green-Kubo 
MD

Full all T Small as in 
supercell

Ab initio Green-Kubo approach allows the accurate and 
predictive computation of lattice thermal conductivities κ 

at arbitrarily high temperatures!


