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Introduction to Image Segmentation: 

 

Part 1: binary image labeling 

discrete (and other) methods 

 

Yuri Boykov 
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Introduction to Image Segmentation 

 motivation for optimization-based approach 

 active contours, level-sets, graph cut, etc. 

 implicit/explicit representation of boundaries 

 objective functions (energies) 

• physics, geometry, statistics, information theory 

• set functions and submodularity (graph cuts) 

 part II:  from binary to multi-label problems 
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Thresholding 

T 
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Thresholding 

S={ p : Ip < T } 

T 
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Background  
Subtraction 

? 

Thresholding 

- = 
I= Iobj - Ibkg 

Threshold intensities above  T 

segment’s region property S={ p : Ip > T } 
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Region growing 

- = 
I= Iobj - Ibkg 

| Ip| 

Breadth First Search (seeds) : 

| Ip| < T 

seeds 

 p S       | Ip | > T  segment’s boundary property 
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Region growing 

 

“leakage” 
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Good segmentation  S   ? 

 Objective function must be specified 

 

  Quality function 

  Cost function 

     Loss function                 E(S)  :  2P     

  “Energy” 

      Regularization functional 

Segmentation becomes an optimization problem:   S = arg min E(S)       
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Good segmentation  S   ? 

 Objective function must be specified 

 

  Quality function 

  Cost function             E(S) 

  “Energy” 

      Regularization functional 

      

combining different constraints 
e.g. on region and boundary  

= E1(S)+…+ En(S) 
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optimization-based 

Common segmentation techniques 

region-growing 
 

intelligent scissors 

(live-wire) 
 

active contours 

(snakes) 
 

watersheds 

boundary-based                           region-based                 both region & boundary 

thresholding geodesic  

active contours 

(e.g. level-sets) 
 

MRF 

 (e.g. graph-cuts) 
 

random walker 



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

Active contours - snakes 

[Kass, Witkin, Terzopoulos 1987] 

Given: initial contour (model) near desirable object  

Goal: evolve the contour to fit exact object boundary    
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5-12 

Tracking via active contours 

Tracking Heart Ventricles 



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

5-13 

Active contours - snakes  

Parametric Curve Representation (continuous case)  

A curve can be represented by 2 functions  

open curve closed curve 

1s0sy,sxs  ))()(()(ν

 ]}[{ 10ssC ,|)(ν

parameter 
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5-14 

Snake Energy 

)C(E)C(E)C(E exin 

internal energy encourages 
smoothness or any particular shape 

 
external energy encourages curve onto 

image structures (e.g. image edges) 
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5-15 

Active contours - snakes  
(continuous case) 

 internal energy (physics of elastic band) 

 

 

 

 

 external energy (from image) 

elasticity / stretching stiffness / bending 

 

1

0

2

2
21

0

2

in ds
sd

dds
ds
d)C(E νν

 

1

0

2

ex ds|s(I|)C(E ))(v

proximity to image edges 
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Active contours – snakes 
 (discrete case) 

5v

4v
3v

2v

1v
6v

7v

8v

10v

9v

elastic energy 
(elasticity) 

2

11  
 iiv

ds

d 

bending energy 
(stiffness) 

1ii1i1iii1i2

2

2)()(
ds

d
 



)( iii y,xν

2n)(  1n210 ,....,,, ννννC
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5-17 

Basic Elastic Snake 

continuous case 

discrete case 

 

1

0

2

1

0

2 ds|))s(v(I|ds|
ds

dv
|E










 
1n

0i

2

i

1n

0i

2

i1i |)v(I||vv|E 

elastic  smoothness term 
(interior energy) 

image data term 
(exterior energy) 

]}1,0[s|)s({  νC

}ni0|{ i  νC
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5-18 

Snakes - gradient descent 

simple elastic snake energy 

tE'  CC

update equation for the whole snake 
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here, energy is a function of 2n variables 

C 
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Snakes - gradient descent 

simple elastic snake energy 


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here, energy is a function of 2n variables 
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5-20 

Snakes - gradient descent 

energy function   E(C) for contours C  E(C) 

0c

EtCC i1i 

gradient descent steps 

1c2c

local minima  

for E(C) 

ĉ

n2C 

second derivative of 
image intensities 

step size  
could be tricky 
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Snakes – dynamic programming (DP) 

Energy E  can be minimized via Dynamic Programming 

[Amini, Weymouth, Jain, 1990] 

),(...),(),(),...,,( 1132221121 nnnn vvEvvEvvEvvvE 
Elastic energy - pairwise interactions 

)( iii y,xν

possible states for 
each control point 

Energy E  can be minimized via Dynamic Programming 

),(...),(),(),...,,( 1132221121 nnnn vvEvvEvvEvvvE 
Elastic energy - pairwise interactions 

optimal state  
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Snakes – dynamic programming (DP) 

Energy E  can be minimized via Dynamic Programming 

),(...),(),(),...,,( 1132221121 nnnn vvEvvEvvEvvvE 
Elastic energy - pairwise interactions 

Iterate… until optimal position for each point is the center of the box,  

(local minimum condition) 

optimal state  

[Amini, Weymouth, Jain, 1990] 

Advantages:          no 2nd derivatives 
  explicit step size control 
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Another example of DP 
“Live wire” or “intelligent scissors” 

[Barrett and Mortensen 1996] 

| I|  

)( |I|w 

|I|

image-based edge weights 
pixels 

A 

B 

shortest path algorithm (Dijkstra) 
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Shortest paths 
approach 

shortest path on a 2D graph        graph cut 

Example:  
find the shortest  

closed contour in a given 
domain of a graph 

Compute the shortest path  
p ->p  for a point p.  

p 

Graph Cuts 
approach 

Compute the 
minimum cut  that 

separates red region 
from blue region 

Repeat for all points on the 
gray line. Then choose the 

optimal contour. 


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graph cuts   vs.   shortest paths 

 On 2D grids graph cuts and shortest paths give optimal 1D contours.  

 

 

 

A Cut  separates regions  

A 

B 

A Path  connects points 

 Shortest paths still give optimal 1-D contours on N-D grids 
 

 Min-cuts give optimal hyper-surfaces on N-D grids 
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Graph cut 

n-links 

s 

t a cut hard  
constraint 

hard  
constraint 

Minimum cost cut can be 
computed in polynomial time 

(max-flow/min-cut algorithms) 







 


22

exp


pq

pq

I
w

pqI



[Boykov and Jolly 2001] 
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Minimum s-t cuts algorithms 

 

  Augmenting paths [Ford & Fulkerson, 1962] 

 - heuristically tuned to grids [Boykov&Kolmogorov 2003] 

 

  Push-relabel [Goldberg-Tarjan, 1986] 
        - good choice for denser grids, e.g. in 3D 

 

  Preflow [Hochbaum, 2003] 
 - also competitive 
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“Augmenting Paths” 

 Find a path from S to 

T along non-saturated 

edges 

 
“source” 

A graph with two terminals 

S T 

“sink” 

 Increase flow along 

this path until some 

edge saturates 
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“Augmenting Paths” 

 Find a path from S to 

T along non-saturated 

edges 

 
“source” 

A graph with two terminals 

S T 

“sink” 

 Increase flow along 

this path until some 

edge saturates 

 Find next path… 

  Increase flow… 
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“Augmenting Paths” 

 Find a path from S to 

T along non-saturated 

edges 

 
“source” 

A graph with two terminals 

S T 

“sink” 

 Increase flow along 

this path until some 

edge saturates 

               Iterate until …      all 

paths from S to T have at 

least one saturated edge 
MAX FLOW  MIN CUT 
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Optimal boundary in 2D 

“max-flow = min-cut” 
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Optimal boundary in 3D 

3D bone segmentation (real time screen capture) 



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

example of soft regional constraints 

Graph cut (region + boundary) 

pqw

n-links 

s 

t a cut )(sDp

)(tDp

NOTE: seeds were hard constrains on segment’s region 

assume                are known  
“expected” intensities  

of object and background 

ts II   and

|II|tD t

pp )(

|II|sD s

pp )(

S

S 

segmentation 

[Boykov and Jolly 2001] 



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

example of soft regional constraints 

Graph cut (region + boundary) 

pqw

n-links 

s 

t a cut )(sDp

)(tDp

in general, assume known  
intensities distributions   

of object and background )()( t|IPrlntD pp 

)()( s|IPrlnsD pp 

S

S 

segmentation 

[Boykov and Jolly 2001] 

NOTE: seeds were hard constrains on segment’s region 
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Graph cut (region + boundary) 
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Graph cuts as energy optimization for S  

pqw

n-links 

s 

t a cut )(sDp

)(tDp

segmentation  cut 

S

S 

cost of severed t-links 





Sp

p

Sp

p DD )0()1(cost(cut) =                                             + E(S) 

}10{ ,S p 

unary terms pair-wise terms 

cost of severed n-links 





Npq

pq SSw ][ qp
p

pp SD )(

regional properties of S boundary smoothness for S 

[Boykov and Jolly 2001] 
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Unary potentials as linear term wrt. 


p

pp SD )(

unary terms 





Sp

p

Sp

p DD )0()1(

)( pg

S,g
  p

p

pp SDDconst   )0()1(

}10{ ,S p 

  
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ppp SDSD )-(1)0()1( p
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In general,… 

pS





Npq

pq SSw ][ qp

pair-wise terms 

 



Npq

pq SSSSw qpqp )1()1(

quadratic polynomial wrt. 

k-arity potentials are k-th order polynomial 
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Sg,E(S)  B(S)Sg,E(S) 

Graph cuts vs Thresholding 

I

Fg)|Pr(I Bg)|Pr(I





Sp

g(p)E(S)











bg)|Pr(I(p)

fg)|Pr(I(p)
lng(p)

  S 

thresholding graph cut [BJ, 2001] 
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Graph cuts vs Region Growing 

like “region growing” 
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Graph cuts vs Region Growing 

like “region growing” 
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Graph cuts vs Region Growing 

like “region growing” 
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Graph cuts vs Region Growing 

like “region growing” 
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Graph cuts 
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Graph cuts 2 
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Graph cuts 2 

Any paths would work, but 
shorter paths give faster algorithms  

(in theory and practice) 
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Graph cuts 3 
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Graph cuts 3 

Finds optimal boundary  
(least number of holes) 

=> Energy minimization 
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‘Smoothness’ of segmentation boundary 

 

   snakes (physics-based contours) 

                  geodesic contours  

                  graph cuts 

                

                  
Note: many common distance-based methods do not optimize segmentation boundary directly 

(fuzzy connectivity, geodesic Voronoi cells, random walker)  
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Discrete vs. continuous energies 

Geodesic contours 





S

s

S

dswdppgSE  )()(

Both incorporate segmentation cues:  

• Regional bias 

• Boundary smoothness and alignment to image edges 

 
 q,p

qppq

Sp

p SSwgSE )()(

Graph cuts 

}10{ ,S p 

[Caselles, Kimmel, Sapiro, 1997] (level-sets) 
[Boykov and Jolly 2001] 

C 

[Chan, Esidoglu, Nikolova, 2006] (convex) 
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Graph cuts on a complex and boundary of  S 

John Sullivan’90,  Kirsanov&Gortler’04 
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Graph cuts on a grid and boundary of  S 

 Severed n-links can approximate geometric length of contour C  
[Boykov&Kolmogorov, ICCV 2003] 

 This result fundamentally relies on ideas of Integral Geometry (also 

known as Probabilistic Geometry) originally developed in 1930’s. 

• e.g. Blaschke, Santalo, Gelfand  

}10{ ,S p 





Ce

|e|SB )(
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Integral geometry approach to length   

C 2

0







a set of all  
lines L  

CL

a subset of lines L  
intersecting contour C 

   ddnC L2
1||||Euclidean length of C :  

   the number of times 
  line L intersects C 

Cauchy-Crofton formula 

probability that a “randomly drown” line intersects C 
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Graph cuts and integral geometry 

C 

 
k

kkknC  2
1||||

Euclidean  

length 
2

kk
kw

 


gcC ||||

graph cut cost  

for edge weights: the number of edges of 
family k intersecting C 

Edges of any regular 

neighborhood system 

generate families of lines 

{    ,    ,    ,    } 
 

Graph nodes are imbedded 

in R2 in a grid-like fashion 

Length can be estimated without computing any derivatives 
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Metrication errors 

“standard”  

4-neighborhoods 

(Manhattan metric) 

larger-neighborhoods 8-neighborhoods 

Euclidean  
metric 

Riemannian 
metric 
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Metrication errors 

4-neighborhood 8-neighborhood 
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implicit (region-based) representation of contours 

Differential vs. integral approach to length 

   ddnC L2
1||||

Cauchy-Crofton formula 

 
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Parametric 
(explicit) 
contour 

representation 
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Level-set 
function 

representation 
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Implicit (region-based) surface  

representation via level-sets 

),( yxuz 

}0),(:),{(  yxuyxC
(implicit contour representation)  

[Dervieux, Thomasset, 79, 81] [Osher, Sethian, 89] 

Note: 0.5-level set for u : n[0,1] in convex formulations  
[Chan, Esidoglu, Nikolova, 2006] (convex) 
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Implicit (region-based) surface  

representation via level-sets 

|| ppp udu  NCd




For example, level sets can compute contour’s gradient descent 

      for geometric energies of contour  C  where E  is collinear with normal   

EdtCd 


[Dervieux, Thomasset, 79, 81] [Osher, Sethian, 89] 

The scaling by                 is easily 

verified in one dimension  

dC

dCudu  ||

x

)(xu || u

p

N

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Implicit (region-based) surface  

representation via level-sets 

weighted length  
C

dsgCE  )()(

Functional E( C )  
gradient descent evolution 

 ,~ Ngg




weighted area 


 dafCE  )(  ~ f

alignment 
(flux) 

C

dsNCE  ,)(


v )div(~ v




 

Geometric measures commonly used in segmentation 

NdC


 
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pE
pN


Gradient descent of snake C produces  

tangential motion, which is “invisible” in segmentation. 

Note: physic-based energy of snake  

depends on contour parameterization 

In contrast, geometric energies give E  collinear with 

can be minimized via level-sets   

N


Q: in what applilcations  
tangential motion of  
segment boundary matters? 
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A contour may be 
approximated from 

u(x,y) with sub-
pixel accuracy  

C 

-0.8 0.2 

0.5 

0.7 0.3 0.6 -0.2 

-1.7 

-0.6 

-0.8 

-0.4 -0.5 

)()( y,xupu 

• Level set function u(p)  is normally stored on image pixels 

• Values of u(p) can be interpreted as distances or heights of image pixels 

Implicit (region-based) surface  

representation via level-sets 
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Implicit (region-based) surface  

representation via graph-cuts 

)( y,xSS p 

• Graph cuts represent surfaces via binary labeling  Sp  of each graph node 

• Binary values of Sp indicate interior or exterior points  (e.g. pixel centers) 

There are many 
contours satisfying 

interior/exterior 
labeling of points  

Question: Is this a contour 
to be reconstructed from 
binary labeling Sp ?  

Answer:  NO 

   0   1 

  1 

  1   1   1    0 

   0 

   0 

   0 

  0    0 

C 



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

Contour/surface representations 
(summary) 

Implicit (area-based) Explicit (boundary-based) 

Level sets  
(geodesic active contours, 

convex geometric energies) 

Graph cuts  
(grids or complexes)  

Graph cuts on complexes 

Live-wire 
(shortest paths on graphs) 

Snakes  
(physics-based band model) 
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Different ways to look at 

energy of graph cuts 

1: Posterior energy (MAP-MRF) 

 

2: Approximating continuous surface functional 

 

3: Submodular set function  

)()()( 



Npq

qppq

p

pp S,SVS|DPrlnSE





SS

s

S

dsswds,dsgSE )()()( vN


log-likelihoods log of prior  

regional term flux boundary length 


A

AA SESE )()( }{ Ap|SS pA for 

factors 
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Submodular functions 

 Edmonds 1970 

LLL,  TSTSTS

Lattice                         - set of elements with inf and sup operations )( ,L,

Function                           s called submodular if for any L:E

)()()()( TESETSETSE 

L, TS
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Lattice of sets and set functions 

Assume set  Ω, then                 is a lattice of subsets 

S T 

Ω 

)( ,,2

2

NOTE: if Ω is a set of pixels then 

 any (binary) segmentation energy E(S)  

is a set function E:  

S 

Ω 
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Submodular set functions 

Set function                            is submodular if for any 2:E

)()()()( TESETSETSE  

TS,

Significance: any submodular set function can be  
globally optimized in polynomial time  

[Grotschel et al.1981,88, Schrijver 2000] 
 9O ||

S T 

Ω 
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Submodular set functions 

Sets are conveniently represented by binary indicator variables 

  pSS p |,1}{0

2:EThus, set functions                          can be represented as 

)()( ||,...,,  SSSESE 21

 ApSS pA  | ADefine                                  ,  a restriction of  S  to any subset 

and consider projections                          of energy  E  onto subsets  A )( AA SSE \| 

Ω 

1pS

0pS

Set function  E(S) is submodular iff  for any pair  

),(),(),(),( pqpqpqpq SESESESE \\\\ ||||   10011100

qp,
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Graph cuts for minimization of 

submodular set functions 

Assume set  Ω  and 2nd-order (quadratic) function 

 Function E(S)  is submodular if for any 

)()()()( 10011100 ,,,, pqpqpqpq EEEE 

Nqp )( ,

Significance: submodular 2nd-order boolean (set) function  
can be globally optimized in polynomial time by graph cuts  

[Hammer 1968, Pickard&Ratliff 1973] 

 

 2NO |||| 





Npq

qppq SSESE
)(

, )()( }{ 10SS qp ,, 
Indicator variables 

[Boros&Hammer 2000, Kolmogorov&Zabih2003] 
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Graph cuts for approximating 

continuous surface functionals                 

[Kolmogorov&Boykov, ICCV 2005] 

[Boykov&Kolmogorov, ICCV 2003] 

 
 SS

x

S

dppfdsdsgSE )()()( vN

,

Geometric length  
any convex,  

symmetric metric g  
e.g. Riemannian 

Flux  

any vector field v 

Regional bias  

any scalar function f 

Submodular quadratic boolean functions on a grid 

can approximate continuous geometric functionals 



IPAM Graduate Summer School: Computer Vision, July 2013                                                                                                          Yuri Boykov, UWO 

Graph cuts for minimization of 

posterior energy (MRF)                                        

}{ 10Sp ,

}{ Ap|SS pA 
factors 









 

A

AAn1 SEexpSSPr )(),...,(

Assume Gibbs distribution over binary variables 


A

AA SESE )()(

Theorem  [Boykov, Delong, Kolmogorov, Veksler   in unpublished book 2013?] 
 

Any pair of random variables Sp and Sp are positively correlated iff function 

 
        boolean (set) function                                       is submodular 

That is, submodularity implies MRF with “smoothness” prior  
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Graph cuts for minimization of 

posterior energy (MRF)                                        

),()()( 



Npq

qppq

p

2

pp LLVLILE },{ 10Lp 

binary image restoration 

Spatial prior 
(regularization) 

Log-Likelihood 
(data term) 

[Greig at. al., IJRSSB, 1989] 

},{ 10I p 
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Graph cuts for minimization of 

posterior energy (MRF)  

][)|(ln),|( 



Npq

qppq

p

Lp10 LLwILE
p

Pr },{ 10Lp 

Spatial prior 
(regularization) 

assuming known 

[Boykov&Jolly, ICCV2001] 

image segmentation, graph cut 

RGBI p 

Log-Likelihood 
(data term) 
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Beyond given appearance models 

][)|(ln),,( 



Npq

qppq

p

Lp10 LLwILE
p

Pr },{ 10Lp 

Spatial prior 
(regularization) 

extra variables 

[Rother, et al. SIGGRAPH2006] 

iterative image segmentation, Grabcut 
(block coordinate descent  L            ) 

RGBI p 

Log-Likelihood 
(data term) 

10  ,

Models       .     
can be iteratively 

re-estimated 

10  ,
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Beyond submodularity 

 Many useful non-submodular set functions E(S) 
• in binary segmentation with learned interaction potentials 

• in the context of binary moves for multi-label (later) 

 

 QPBO (partial optimality) [survey Kolmogorov&Rother, 2007] 

 LP relaxations [Schlezinger, Komodakis, Kolmogorov, Savchinsky,…] 

 Message passing, e.g. TRWS   [Kolmogorov] 

  active area of research… 
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Beyond submodularity 

          Deconvolution 

][)( ||  



Npq

qp

p

2

Bq

qB
1

p LLwLILE
p

)(

image I blurred with mean kernel 

QPBO 

TRWS 

“secret method” 

submodular  
quadratic term 

non-submodular  
quadratic term 
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Beyond loglikelihoods and  

length-based smoothness 

 Shape bias 
• star-shape (one click)  [Veksler 2008] 

• shape statistics  [Cremers 2003] 

• box prior [Lempitsky 2009] 

 Curvature of the boundary (like bending in snakes) 

 Cardinality constraints 

 Distribution constraints 

 Sparsity or MDL prior, label costs 

 Many others…. 

 

E(S)= E1(S)+…+ En(S) 
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Beyond linear combination of terms 

 Ratios are also used 

• Normalized cuts [Shi, Malik, 2000] 

• Minimum Ratio cycles [Jarmin Ishkawa, 2001] 

• Ratio regions [Cox et al, 1996] 

• Parametric max-flow applications [Kolmogorov et al 2007] 

 

)(

)(
)(

SE

SE
SE

2

1
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Segmentation principles 

 Boundary seeds 

• Livewire (intelligent scissors) 

 Region seeds 

• Graph cuts (intelligent paint) 

• Distance (Voronoi-like cells) 

 Bounding box 

• Grabcut [Rother et al] 

 Center seeds 

• Star shape [Veksler] 

 Many other options… 

 

 Normalized cuts  [Shi Malik] 

 Mean-shift   [Comaniciu] 

 MDL    [Zhu&Yuille] 

 Entropy of appearance 

 Add enough constraints: 

 Saliency 

 Shape 

 Known appearance 

 Texture 

 

interactive              vs.           unsupervised 
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Differences maybe minor 

interactive                ?            unsupervised 

NOTE: Grabcut converges to a local minima near the initial box. 

][)|(ln),,( 



Npq

qppq

p

Sp10 SSwISE
p

Pr

Grabcut energy  [Rother et al] 

][||||)( 



Npq

qppq SSwSHSSHSSE )()(

unsupervised image segmentation energy 

entropy entropy 
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Implicit surface representation 
Global optimization is possible 

Summary 

 Thresholding, region growing 

 Snakes, active contours 

 Geodesic contours 

 Graph cuts (binary labeling, MRF) 

 

Covered basics of: Not-Covered: 

 Ratio functionals 

 Normalized cuts 

 Watersheds 

 Random walker 

 Many others… 

 

 

 

 High-order models 

 Multi-label segmentation 

 Model fitting 

To be covered later: 


