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Part 1: binary image labeling
discrete (and other) methods
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Introduction to Image Segmentation

= motivation for optimization-based approach
m active contours, level-sets, graph cut, etc.
m Implicit/explicit representation of boundaries

m objective functions (energies)
* physics, geometry, statistics, information theory
« set functions and submodularity (graph cuts)

m part II: from binary to multi-label problems
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Thresholding

Yuri Boykov, UNO
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FIGURE 10.29

(a) Original
image. (b) Image
histogram.

(c) Result of
segmentation with
the threshold
estimated by
iteration.
(Original courtesy
of the National
[nstitute of
Standards and
Technology.)
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Thresholding
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FIGURE 10.29
(a) Original
image. (b) Image
histogram.
(¢) Result of
segmentation with
the threshold
estimated by
iteration.
(Original courtesy
of the National
[nstitute of
Standards and
Technology.)
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Thresholding

Threshold intensities above T

segment’s region property
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Region growing

seeds

Breadth First Search (seeds) :
IVII<T

segment’s boundary property



IPAM Graduate Summer School: Computer Vision, July 2013 Yuri Boykov, UNO

Region growing
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Good segmentation S ?
m Objective function must be specified

Quality function
Cost function

Loss function ES) : 2P - &

CCEnergy77
Regularization functional

Segmentation becomes an optimization problem: S = alrg min E(S)
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Good segmentation S ?

m ODbjective function must be specified

Quality function

Cost function E(S)=E(S)+...+ E(S)

“Energy” combining different constraints

. _ €.g. on region and boundary
Regularization functional
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Common segmentation techniques

boundary-based region-based both region & boundary

region-growing thresholding geodesic
active contours

Intelligent scissors
(live-wire) (e.9. level-sets)
active contours MRF
(snakes) (e.g. graph-cuts)
watersheds random walker

optimization-based
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Active contours - snakes

[Kass, Witkin, Terzopoulos 1987]

Given: initial contour (model) near desirable object
Goal: evolve the contour to fit exact object boundary
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Tracking via active contours

Tracking Heart Ventricles

5-12
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Active contours - snakes

Parametric Curve Representation (continuous case)

A curve can be represented by 2 functions

parameter

v(S) = (X(s),Vy(s)) 0<s<1

open curve = closed curve

s=10

C={v(s)|s€[0,1]} € R”

5-13



IPAM Graduate Summer School: Computer Vision, July 2013 Yuri Boykov, UNO

Snake Energy

E(C)=E,(C)+E.,(C)

internal energy encourages \

smoothness or any particular shape external energy encourages curve onto
image structures (e.g. image edges)

5-14
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Active contours - snakes

(continuous case)

m Internal energy (physics of elastic band)

2
d* ds

\Y%
d?s

dv
ds

Ein(C)za-j 2ds+[3-j

elasticity / stretching stiffness / bending

m external energy (from image)

E,(C)= [IVI((s))[ ds

proximity to image edges
5-15
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Active contours — snakes
(discrete case)

C—(vo,vl,vz, v, )eR

elastic energy v, = (X. Vi)
(elasticity)
dv Vi
ds
be

nding energy
(stiffness)

QN(V

d 2

1~ Vi) (Vi=Vii ) =Vig —2vi+vi,
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Basic Elastic Snake

1
_ | dS _ jl VI (V( S )) ‘2 dS continuous case
C

C={v(s)|s<[01]}
0

|I
O'-—-;H

n-1 n-1 |
E=a- > Vi~V P = SIVI()E e,
i=0 i=0

elastic smoothness term image data term
(interior energy) (exterior energy)

5-17
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Snakes - gradient descent

<A3 , simple elastic snake energy
r \ -
E(Xprees X 1o YorsYaa) = = 2 ILOGY)E 11,06, y0)F
=0

here, energy is a function of 2n variables

n-1
T a Z(Xm %)+ (Vi —¥i)°
i=0

update equation for the whole snake

C=C-VE-At

' ©OE
X0 X dXo

C : o
Yo Yo Yo

v =1 |- - At

' OE

X n-1 Xn—l OXp_1

y n-1 yn—l %

5-18
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Snakes - gradient descent

C simple elastic snake energy

\ n-1
E(XprXo1:YoresYn1) = — 2 ILOGY P +11,06,Y:)F
1=0

here, energy is a function of 2n variables

n-1
T a Z(Xm %)+ (Vi —¥i)°
i=0

update equation for each node B OE _
' — = OXi
E 10I=S

i _ayi |
1 oE
Xo m %o
: E
yO W o
= = =7 |- <7 -At

' oE

X n-1 Xn—l OXp_1

y' y _OE_
n-1 n-1 B

5-19
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Snakes -

gradient descent

E(C)

\ energy function E(C) for contours C

C e R

local minima gradient descent steps

for E(C) Ci+1 _ Ci %
/

step size second derivative of
could be tricky image intensities 220
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Snakes — dynamic programming (DP)

[Amini, Weymouth, Jain, 1990]

optimal state

v, =(%, ;)

possible states for
each control point

Elastic energy - pairwise interactions

BV, Voo Va) = B (V1 V) + By (V) V) ++ B (Vg V)

Energy £ can be minimized via Dynamic Programming
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Snakes — dynamic programming (DP)
[Amini, Weymouth, Jain, 1990]

optimal state

Advantages: no 2"d derivatives
explicit step size control

Elastic energy - pairwise interactions

E (Vs V) = Ey (4, V) + By (Y V) o Ep 3 (Y, 10V,)

Energy £ can be minimized via Dynamic Programming

Iterate... until optimal position for each point is the center of the box,
(local minimum condition)
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Another example of DP

“Live wire” or “intelligent scissors”

[Barrett and Mortensen 1996]
w( vl ,

_/MV_' |
pixels

/ \ image-based edge weights

shortest path algorithm (Dijkstra)
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shortest path on a 2D graph < graph cut

Example:
find the shortest ShOI‘teSt pathS Graph CUtS
closed contour in a given approach approach

domain of a graph

Compute the shortest path Compute the

p->p for a point p. minimum cut that
Repeat for all points on the separates red region
gray line. Then choose the from blue region
optimal contour.
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graph cuts vs. shortest paths

m On 2D grids graph cuts and shortest paths give optimal 1D contours.

IR
LI IR

P TSSO
RIS

N NIV TN TN
bbb DA T

RSSO 20T

A Path connects points A Cut separates regions

m Shortest paths still give optimal 1-D contours on N-D grids

= Min-cuts give optimal hyper-surfaces on N-D grids
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Graph cut

[Boykov and Jolly 2001]

hard t a cut
. constraint
j} o o
O OO
t o O
| hard
s constraint
S
Al
. = XD
Minimum cost cut can be T 20
computed in polynomial time
(max-flow/min-cut algorithms) o A

Pq
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Minimum s-t cuts algorithms

2 Augmenting paths [Ford & Fulkerson, 1962]
- heuristically tuned to grids [Boykov&Kolmogorov 2003]

2 Push-relabel [Goldberg-Tarjan, 1986]

- good choice for denser grids, e.g. in 3D

2 Preflow [Hochbaum, 2003]

- also competitive
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“Augmenting Paths”

“sourc “sink”

A graph with two terminals

Yuri Boykov, UNO

m Find a path from S to
T along non-saturated
edges

m Increase flow along
this path until some
edge saturates
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“Augmenting Paths”

A graph with two terminals

Yuri Boykov, UNO

m Find a path from S to
T along non-saturated
edges

m Increase flow along
this path until some
edge saturates

m Find next path...
m Increase flow...
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“Augmenting Paths”

“sourc “sink”

A graph with two terminals

MAX FLOW <«

Yuri Boykov, UNO

m Find a path from S to
T along non-saturated
edges

m Increase flow along
this path until some
edge saturates

Iterate until ...  all
paths from S to T have at
least one saturated edge
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Optimal boundary in 2D

“max-flow = min-cut”
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Optimal boundary in 3D

3D bone segmentation (real time screen capture)
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Graph cut (region + boundary)

[Boykov and Jolly 2001]

segmentation

assume |°and I' are known
“expected” intensities -
of object and background

_ S
Dp (S) T | I p o I |
. t
Dp (t) T I I P o I |
example of soft regional constraints

NOTE: seeds were hard constrains on segment’s region
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Graph cut (region + boundary)

[Boykov and Jolly 2001]

segmentation

in general, assume known
intensities distributions -
of object and background

D, (s)= —InPr(l |s)
D,(t)= —InPr(l,|t)
example of soft regional constraints

NOTE: seeds were hard constrains on segment’s region
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Graph cut (region + boundary)

Pril}
[} u u [ ﬂ._‘? b
u i |
. " £l
" = " 3 B
H u E 2
[N
H H N E
" i
il /

dark bright

(a) Original image (b} Intensity histograms (c) Optimal segmentation
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Graph cuts as energy optimization for S
[Boykov and Jolly 2001]

segmentation < cut

S, {01}
E(S) = 2.D,(5,) f w8, #S,]
P pgeN
cost of severed t-finks cost of severed n-links
unary terms pair-wise terms

regional properties of S boundary smoothness for S
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Unary potentials as linear term wrt. S, {01}

unary terms

> D,(S,) =§Dp(1)+zes;Dp(0)
|

-3 (D,(®-S, +D,(0)-(1-S,))

= const +> (D, (1) - D, (0)) S, ]
p g(p)
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In general,...

k-arity potentials are k-th order polynomial

pair-wise terms

Zqu'[Sp iSq] - prq'(sp'(1_Sq)+(1_sp)'sq)

pgeN pgeN

quadratic polynomial wrt. S,
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Graph cuts vs Thresholding

E(S) = X dkpy B(S)

PES

thresholdlng grah cut [BJ, 2001]

Pr(I|Fg)  Pr(1]Bg)

g(p):_,ntpr(l(pnfg)]

Pr(I(p)| bg)
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Graph cuts vs Region Growing

like “region growing”
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Graph cuts vs Region Growing

like “region growing”
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Graph cuts vs Region Growing

-

like “region growing”
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Graph cuts vs Region Growing

-

n

like ' INg
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Graph cuts




Yuri Boykov, UNO

Graph cuts 2
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Graph cuts 2

Any paths would work, but
shorter paths give faster algorithms
(in theory and practice)
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Graph cuts 3

{
TN

Finds optimal boundary
(least number of Aoles)

=> Energy minimization
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‘Smoothness’ of segmentation boundary

snakes (physics-based contours)
geodesic contours
graph cuts

Note: many common distance-based methods do not optimize segmentation boundary directly
(fuzzy connectivity, geodesic Voronoi cells, random walker)
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Discrete vs. continuous energies

Geodesic contours Graph cuts
E(S)=[g(p)dp+ [w, ds E(S)=2.0, + 2 Wyed(S, #S,)
S oS pes p.g

. .. U,
XXX

K
X

XX S e {03
DRIXIXIXINDL

X DRIIXIX D
XIXDAEXIX XD

[Caselles, Kimmel, Sapiro, 1997] (level-sets)
[Chan, Esidoglu, Nikolova, 2006] (convex) [Boykov and Jolly 2001]

Both incorporate segmentation cues:
 Regional bias
« Boundary smoothness and alignment to image edges



Graph cuts on a complex and boundary of S
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Graph cuts on a grid and boundary of S

. . W,
XIRIR DS

S, {01

”

N\ 8
XIRIXIXIX

m Severed n-links can approximate geometric length of contour C
[Boykov&Kolmogorov, ICCV 2003]
m This result fundamentally relies on ideas of Integral Geometry (also
known as Probabilistic Geometry) originally developed in 1930’s.
 e.g. Blaschke, Santalo, Gelfand
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Integral geometry approach to length

~asubset of lines L
N ¢ Intersecting contour C

C 27

a set of all
lines L

probability that a “randomly drown” line intersects C

Euclidean length of C : ” C ”g — %J‘nL dp d¢
N

Cauchy-Crofton formula \

the number of times
line L intersects C
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Graph cuts and integral geometry

{]

Ly e L1
e VIO
IO

X

Graph nodes are imbedded
In R2 in a grid-like fashion

e
\<

Edges of any regular
neighborhood system
generate families of lines

= 1N}

e

S

A

‘Q‘ “\.
S0 IO

IC], = %Z Tk'Apk'A¢k = ”C“gc
K

Euclidean graph cut cost A O, A¢k

length the number of edges of for edge weights: | W, =
family k intersecting C 2

Length can be estimated without computing any derivatives

R
S

\\¢
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I\/Ietrication errors

Euclidean
metric

“standard”
4-neighborhoods
(Manhattan metric)

Riemannian
metric

8-neighborhoods larger-neighborhoods



IPAM Graduate Summer School: Computer Vision, July 2013 Yuri Boykov, UNO

Metrication errors

4-neighborhood 8-neighborhood
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Differential vs. integral approach to length

1 Parametric
_ [ (explicit)
8 H C H — Ct y dt contour
= 5 & 0 representation
g g Level-set
£ 9 H C ” — |VU ‘ dx function
o & representation

Q)

ICl, = %jnL'dp°d¢

Cauchy-Crofton formula

Integral
geometry

implicit (region-based) representation of contours
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Implicit (region-based) surface
representation via level-sets

Z=U(XY)

C={(x,y):u(x,y) =0}

(implicit contour representation)
[Dervieux, Thomasset, 79, 81] [Osher, Sethian, 89]

Note: 0.5-level set for v : R"—[0,1] in convex formulations
[Chan, Esidoglu, Nikolova, 2006] (convex)
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Implicit (region-based) surface
representation via level-sets

dC =B-N du, =—4,-|Vu, |

[Dervieux, Thomasset, 79, 81] [Osher, Sethian, 89]

u(x) The scaling by — | VU | is easily
i verified in one dimension

@\@ O du=—|Vu|-dC

dc L/ x
ya
For example, /evel sets can compute contour’s gradient descent dC = —dt . VE

for geometric energies of contour C where VE is collinear with normal N
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Implicit (region-based) surface
representation via level-sets

Geometric measures commonly used in segmentation

gradient descent evolution

dC=/-N
G weighted length E(C):jg() ds IB ~ g-K—<Vg,N>

Functional £/ C )

‘ weighted area E(C):Hf da L~ f
Q

% ali?fllwun;n(c)ent (C) j<\7 N> IB ~ dIV(V)
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Note: physic-based energy of snake
depends on contour parameterization

—

N

P

VE

P

®
o)
Q: in what applilcations ®

tangential motion of o)
segment boundary matters?

Gradient descent of snake C produces
tangential motion, which is “invisible” in segmentation.

—

In contrast, geometric energies give VE collinear with N
can be minimized via level-sets



Implicit (region-based) surface
representation via level-sets

e Level set function v(p) is normally stored on image pixels
e Values of v(p)can be interpreted as distances or heights of image pixels

&)

u(p) =u(x.y)

/ ............



Implicit (region-based) surface
representation via graph-cuts

e Graph cuts represent surfaces via binary labeling 5, of each graph node
e Binary values of 5, indicate interior or exterior points; (e.g. pixel centers)

® © @ NG

interior
S, =3(X,Yy)

©® © | ©/C

Question: Is this a contour
to be reconstructed from
binary labeling S, ?

——e S T @
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Contour/surface representations

(summary)
Implicit (area-based) Explicit (boundary-based)
Snakes
Level sets (physics-based band model)
(geodesic active contours,
convex geometric energies) Live-wire
(shortest paths on graphs)
Graph cuts

(grids or complexes) Graph cuts on complexes
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Different ways to look at
energy of graph cuts

1: Posterior energy (MAP-MRF)
E(S) = > —InPr(D,|S,) + D> V,.(S,.S,)

P pgeN
log-likelihoods log of prior

2. Approximating continuous surface functional

E(S):jg(-) ds + j(N,vs>ds +jw(s) ds

0S

regional term flux boundary length
3. Submodular set function
E(S) = Z EA(SA) for S, :{Sp | pe A}
A

factors
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Submodular functions

m Edmonds 1970

Lattice ([,,/\ ,\/) - set of elements with Inf and sup operations

STer = SAT el SvT er

Function E: £ —R scalled submodular ifforany S, T € [

E(SAT)+E(SvT)<E(S)+E(T)



IPAM Graduate Summer School: Computer Vision, July 2013 Yuri Boykov, UNO

Lattice of sets and set functions

Assume set Q, then (2°*,N,U) is a lattice of subsets

COD

NOTE: if Q is a set of pixels then *
any (binary) segmentation energy E(S)

is a set function E: 2 — R

Q
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Submodular set functions

Set function E:2% — R issubmodularifforany S,T < Q
E(SOT)+E(SUT)<E(S)+E(T)

GOD |

Significance: any submodular set function can be )
globally optimized in polynomial time O(\ Q] )
[ Grotschel et al.1981,88, Schrijver 2000]
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Submodular set functions

Sets are conveniently represented by binary indicator variables

ScQ © {S,e{01}/peQ | Q

S, =0

Thus, set functions E : 2> — R can be represented as

E(S)=E(S1,S,,S0)

Define S, = {Sp lpeA } a restriction of S to any subset A < ()

and consider projections E(S, | Sy, ,) of energy E onto subsets A

Set function E(S) IS submodular iff for any pair p,qe(2
E(0,0|Sq,,,) + E(L1]Sg, ) <E(L0] Sy, ) + E(0,1] S, )

Q\pq Q\pg Q\pq
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Graph cuts for minimization of
submodular set functions

Assume set Q and 2nd-order (quadratic) function

E(S) = Zqu(Sp’ q S, S, €10,1}

(Pa)eN Indicator variables
Function E(S) is submodular if forany (p,q) € N
qu(0,0) + qu(l,l) <E, (1,0) + E, (0,1)

Significance: submodular 2"-order boolean (set) function
can be globally optimized in polynomial time by graph cuts

[Hammer 1968, Pickard&Ratliff 1973] O(| N |-|Q|2)
[Boros&Hammer 2000, Kolmogorov&Zabin2003]
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Graph cuts for approximating
continuous surface functionals

Submodular quadratic boolean functions on a grid
can approximate continuous geometric functionals

E(S):jg(-) ds |+ j(N,vx>ds +jf(p) dp

0S

Geometric length Flux Regional bias

any convex, any vector field v any scalar function f
symmetric metric ¢

e.g. Riemannian

[Boykov&Kolmogorov, ICCV 2003]
[Kolmogorov&Boykov, ICCV 2005]
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Graph cuts for minimization of
posterior energy (MRF)

Assume Gibbs distribution over binary variables S €{0,1}

Pr(S,,...S,) o exp[—Z EA<5A>j Sp={S,IpeA}

factors

Theorem [Boykov, Delong, Kolmogorov, Veksler in unpublished book 20137]

Any pair of random variables Sp and Sp are positively correlated iff function

boolean (set) function E(S) = Z E,(S,) is submodular
A

That is, submodularity implies MRF with “"smoothness” prior
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Graph cuts for minimization of
posterior energy (MRF)

E(L) = > (1,-L ) + YV, (L,L) L, €(0,1]

pgeN

Log-Likelihood Spatial prior
(data term) (regularization)

el [

binary image restoration
[Greig at. al., IJRSSB, 1989]
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Graph cuts for minimization of
posterior energy (MRF)

E(L|0,,0,)
[

Z mPr(1,16, ) + D Wy /L, #L,]
pgeN
Log-Likelihood Spatial prior
(data term) (regularization)

assuming known

image segmentation, graph cut
[Boykov&Jolly, ICCV2001]

Yuri Boykov, UNO

L, {01}
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Beyond given appearance models

E(L6,,0,) = Y —mPr(1,10, )+ Yw [L =L ]
17 : b

geN
Log-Likelihood Spatial prior
(data term) (regularization)

extra variables

iterative image segmentation, Grabcut
(block coordinate descent L < 60,,0,)

[Rother, et al. SIGGRAPH2006]

Yuri Boykov, UNO

L, {01}

Models 0,,0,
can be iteratively
re-estimated



IPAM Graduate Summer School: Computer Vision, July 2013 Yuri Boykov, UNO

Beyond submodularity

m Many useful non-submodular set functions E(S)

* In binary segmentation with learned interaction potentials
* In the context of binary moves for multi-label (later)

O QPBO (partial Optimality) [survey Kolmogorov&Rother, 2007]
m LP relaxations [Schlezinger, Komodakis, Kolmogorov, Savchinsky,...]
m Message passing, e.g. TRWS  [kolmogorov]

B active area of research...
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Beyond submodularity

Deconvolution

image I blurred with mean kernel

1ICCV

E(L)=)> (I,-&- D L)+ Y wlL L]

qeB, pgeN

non-submodular submodular .
quadratic term quadratic term ;

“'secret method”
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Beyond loglikelihoods and
length-based smoothness

= Shape bias EO)= a5+ £5)

« star-shape (one click) [Veksler 2008]
« shape statistics [Cremers 2003]
* box prior [Lempitsky 2009]

m Curvature of the boundary (like bending in snakes)
m Cardinality constraints

m Distribution constraints

m Sparsity or MDL prior, label costs

m Many others....
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Beyond linear combination of terms

E,(S)

m Ratios are also used E(S)=
E,(S)

« Normalized cuts [Shi, Malik, 2000]

« Minimum Ratio cycles [Jarmin Ishkawa, 2001]
 Ratio regions [Cox et al, 1996]

« Parametric max-flow applications [Kolmogorov et al 2007]
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Yuri Boykov, UNO

Segmentation principles

interactive
m Boundary seeds
 Livewire (intelligent scissors)

m Region seeds
 Graph cuts (intelligent paint)
» Distance (VVoronoi-like cells)
= Bounding box
 Grabcut [Rother et al]

m Center seeds
« Star shape [Veksler]

m Many other options...

VS.

unsupervised

m Normalized cuts [Shi Malik]
m Mean-shift [Comaniciu]
m MDL [Zhu&Yuille]
m Entropy of appearance
= Add enough constraints:
m Saliency
m Shape
= Known appearance
m Texture
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Differences maybe minor
interactive ? unsupervised
E(S,00,08,) = > —mPr(1,]0s ) + Y W, /S, #S,]
P

pgeN
Grabcut energy [Rother et al]

E(S) = [S|'H(S) + [S|H(S) + > W, [S,#S,]

entropy entropy pgeEN

unsupervised image segmentation energy

NOTE: Grabcut converges to a local minima near the initial box.
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Summary

Covered basics of: Not-Covered:
m Thresholding, region growing m Ratio functionals
m Snakes, active contours = Normalized cuts
m (Geodesic contours m \Watersheds

m Graph cuts (binary labeling, MRF) = Random walker

Implicit surface representation
Global optimization is possible

m Many others...
To be covered later:

m High-order models

= Multi-label segmentation

= Model fitting



