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Overview 

•  Learning Feature Hierarchies for Vision 
– Mainly for recognition 

•  Many possible titles: 
– Deep Learning 
– Feature Learning 

•  is talk:    Basic concepts 
        Links to existing vision approaches 



Overview 

•  Learning Feature Hierarchies for Vision 
– For object recognition 

•  is talk:    Basic concepts 
        Links to existing vision approaches 



Existing Recognition Approach 

Hand-designed 
Feature 

Extraction 
Trainable 
Classifier 

Image/Video 
Pixels 

•  Features are not learned 

•  Trainable classifier is often generic (e.g. SVM) 

Object 
Class 

Slide: Y.LeCun 



Motivation 
•  Features are key to recent progress in recognition 

•  Multitude of hand-designed features currently in use 
–  SIFT, HOG, LBP, MSER, Color-SIFT…………. 

•  Where next? Better classifiers? Or keep building more features? 

Felzenszwalb,  Girshick,  
McAllester and Ramanan, PAMI 2007 

Yan & Huang  
(Winner of PASCAL 2010 classification competition) 



What Limits Current Performance? 

•  Ablation studies on Deformable Parts Model  
–   Felzenszwalb, Girshick, McAllester, Ramanan, PAMI’10 

•  Replace each part with humans (Amazon Turk): 

•  Also removal of part deformations has small 
(<2%) effect. Are “Deformable Parts” necessary 
in the Deformable Parts Model? Divvala, 
Hebert, Efros, Arxiv 2012 

Parikh & Zitnick, CVPR’10 



Hand-Crafted Features 

•  LP-β  Multiple Kernel Learning 
– Gehler and Nowozin, On Feature Combination 

for Multiclass Object Classification, ICCV’09 
•  39 different kernels 

– PHOG, SIFT, V1S+, 
Region Cov.  Etc.   

•  MKL only gets  
 few % gain over  
 averaging features 

à Features are  
doing the work 



•  Mid-level cues 

 

Mid-Level Representations 

“Tokens”  from Vision by D.Marr: 

Continuation Parallelism Junctions Corners 

•  Object parts: 

•  Difficult to hand-engineer  à What about learning them? 



Why Learn Features? 

•  Better performance 

•  Other domains (unclear how to hand engineer): 
–  Kinect 
–  Video 
–  Multi spectral 

•  Feature computation time 
–  Dozens of features now regularly used 
–  Getting prohibitive for large datasets (10’s sec /image)  



Why Hierarchy? 

eoretical:  
“…well-known depth-breadth tradeoff in circuits 
design [Hastad 1987].  is suggests many functions 
can be much more efficiently represented with deeper 
architectures…”  [Bengio & LeCun 2007] 

 
Biological:  Visual cortex is hierarchical 

[
or

pe
] 



Hierarchies in Vision 

•  Spatial Pyramid Matching 
– Lazebnik et al. CVPR’06 

•  2 layer hierarchy 
– Spatial Pyramid 

Descriptor pools 
VQ’d SIFT 

Image 

SIFT Descriptors 

Spatial Pyramid Descriptor 

Classifier 



Hierarchies in Vision 

•  Lampert et al. CVPR’09 

•  Learn attributes, then classes 
as combination of attributes 

Class 
Labels 

Attributes 

Image  
Features 



•  Each layer of hierarchy extracts features from output 
of previous layer 

•  All the way from pixels à classifier 

•  Layers have the (nearly) same structure 

Learning a Hierarchy  
of Feature Extractors  

Layer 1 Layer 2 Layer 3 Simple  
Classifier 

Image/Video 
Pixels 

•  Train all layers jointly 



Multistage Hubel­Wiesel Architecture  

Slide: Y.LeCun 

•  Stack multiple stages of simple cells / complex cells layers 
•  Higher stages compute more global, more invariant features 
•  Classification layer on top 
 
History: 
•  Neocognitron [Fukushima 1971-1982] 
•  Convolutional Nets [LeCun 1988-2007]  
•  HMAX [Poggio 2002-2006] 
•  Many others… 
 
QUESTION: How do we find (or learn) the filters? 



Supervised Learning 

•  Convolutional Neural Networks 
–  Back-propagation 

 
 
 

•  Problems:  
–  Can be difficult to train deep models: 

•  Vanishing gradients 
•  Highly non-convex (local minima) 

–  Getting enough labels 

[LeCun et al. 1998] 



Unsupervised Learning 

•  Model distribution of input data 
 

•  Can use unlabeled data (unlimited) 

•  Refine with standard supervised techniques 
(e.g. backprop) 



Single Layer Architecture  

Filter 

Normalize 

Pool 

Input:  Image Pixels / Features 

Output:     Features / Classifier 

Details in the 
boxes matter 

(especially in a hierarchy) 

Not an 
exact 
separation 

Layer n 



Example Feature Learning Architectures 

Pixels / 
Features 

Filter with  
Dictionary 
(patch/tiled/
convolutional) 

Spatial/Feature  
(Sum or Max)  

Normalization 
between  
feature responses 

Features 

  + Non-linearity  

Local Contrast 
Normalization  
(Subtractive & 

Divisive) 

(Group) 
 
Sparsity 

Max  
/  

Softmax Not an 
exact 
separation 



SIFT Descriptor 

Image  
Pixels Apply 

Gabor filters 

Spatial pool  
(Sum)  

Normalize to 
unit length 

Feature  
Vector 



SIFT 
Features 

Filter with  
Visual Words 

Multi-scale 
spatial pool  
(Sum)  

Max 

Classifier 

Spatial Pyramid Matching 
Lazebnik,  

Schmid,  
Ponce  

[CVPR 2006] 



Filtering 

•  Patch 
–   Image as a set of patches 

Input 

#patches 
#fi

lte
rs 

Filters 



Filtering 

•  Convolutional 
– Translation equivariance 
– Tied filter weights  
(same at each position à few parameters) 

Input Feature Map 

.

.

.



Translation Equivariance 

•  Input translation à translation of features 
– Fewer filters needed: no translated replications 
– But still need to cover orientation/frequency 

Patch-based Convolutional 



Filtering 

•  Tiled 
–  Filters repeat every n 
–  More filters than 

convolution for given 
# features 

Input 

Filters Feature maps 



Filtering 

•  Non-linearity 
– Per-feature independent 
– Tanh 
– Sigmoid: 1/(1+exp(-x)) 
– Rectified linear 



Normalization 

Filters Input 

•  Contrast normalization 
•  See Divisive Normalization in Neuroscience  



•  Contrast normalization (across feature maps) 
– Local mean = 0, local std. = 1, “Local” à 7x7 Gaussian  
– Equalizes the features maps 

Normalization 

Feature Maps 
 

Feature Maps 
After Contrast Normalization 



Normalization 

Filters Features K-means Sparse Coding 

•  Sparsity 
– Constrain L0 or L1 norm of features 
– Iterate with filtering operation (ISTA sparse coding) 

Input  
Patch 



Role of Normalization  

•  Induces local competition between features  
to explain input 
–   “Explaining away” in graphical models 

–    Just like top-down models 
–    But more local mechanism 

•  Filtering alone cannot  
do this! 

 
 
 
  

* * * *

Reconstructed
Image

Input 
Image 

Sparse Feature Maps

Example:  
Convolutional Sparse Coding 

Filters 
Convolution 

|.|1 |.|1 |.|1 |.|1 

from Zeiler et al. [CVPR’10/ICCV’11] 



Pooling 

•  Spatial Pooling 
– Non-overlapping / overlapping regions 
– Sum or max 
– Boureau et al. ICML’10 for theoretical analysis 

Max 

Sum 



Role of Pooling  

•  Spatial pooling 
–  Invariance to small transformations 
– Larger receptive fields  

(see more of input) 

Zeiler, Taylor, Fergus [ICCV 2011] [K
av

uk
cu

og
lu

 et
 al

., ‘
09

] 
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Translation 
 
Videos from: http://ai.stanford.edu/~quocle/TCNNweb 

Q.V. Le, J. Ngiam, Z. Chen, D. Chia, P. 
Koh, A.Y. Ng  
Tiled Convolutional Neural Networks. 
NIPS, 2010 

Visualization technique from 
[Le et al. NIPS’10]: 



Role of Pooling  

Chen, Zhu, Lin, Yuille, Zhang [NIPS 2007] 

Feature
Map 1 

Pooled
Map 1

Feature
Map 4

Pooled
Map 2

•  Pooling across feature groups 
•  Additional form of inter-feature competition 
•  Gives AND/OR type behavior via (sum / max) 
•  Compositional models of Zhu, Yuille 

[Zeiler et al., ‘11] 



Unsupervised Learning 

•  Only have class labels at top layer 
•  Intermediate layers have to be trained 

unsupervised 

•  Reconstruct input 
– 1st layer: image 
– Subsequent layers: features from layer beneath 
– Need constraint to avoid learning identity 



Auto-Encoder 

Encoder Decoder 

Input (Image/ Features) 

Output Features 

e.g. Feed-back / 
generative / 
top-down 
path 

Feed-forward / 
bottom-up path 



Auto-Encoder Example 1 

σ(Wx) σ(WTz) 

(Binary) Input x 

(Binary) Features z 

e.g. 

•  Restricted Boltzmann Machine [Hinton ’02] 

Encoder 
filters W 
 
Sigmoid 
function σ(.) 

Decoder 
filters WT 

 
Sigmoid 

function σ(.) 



Auto-Encoder Example 2 

σ(Wx) Dz 

Input Patch x 

Sparse Features z 

e.g. 

•  Predictive Sparse Decomposition  [Ranzato et al., ‘07] 

Encoder 
filters W 
 
Sigmoid 
function σ(.) 

Decoder 
filters D 

 
 

L1 
Sparsity 



Auto-Encoder Example 2 

σ(Wx) Dz 

Input Patch x 

Sparse Features z 

e.g. 

•  Predictive Sparse Decomposition  [Kavukcuoglu et al., ‘09] 

Encoder 
filters W 
 
Sigmoid 
function σ(.) 

Decoder 
filters D 

 
 

L1 
Sparsity 

Training 



Taxonomy of Approaches 

•  Autoencoder (most Deep Learning methods) 
– RBMs / DBMs    
– Denoising autoencoders   
– Predictive sparse decomposition   

•  Decoder-only 
– Sparse coding    
– Deconvolutional Nets    

•  Encoder-only  
– Neural nets (supervised)   



Stacked Auto-Encoders 

Encoder Decoder 

Input Image 

Class label 

e.g. 

Features 

Encoder Decoder 

Features 

Encoder Decoder 

[Hinton & Salakhutdinov  
Science ‘06]  



At Test Time 

Encoder 

Input Image 

Class label 

e.g. 

Features 

Encoder 

Features 

Encoder 
•  Remove decoders 
•  Use feed-forward path 

•  Gives standard
(Convolutional) 
Neural Network 

•  Can refine with  
backpropagation 

[Hinton & Salakhutdinov  
Science ‘06]  



Semi-Supervised Training (2 phases) 

1. Unsupervised pre-training 
-  Get parameters into 

 right ball-park  
 
2.  en supervised refinement  
    (backpropagation) 

-  Find local optima 

•  Helps to avoid local minima 
-  Highly non-convex cost 

•  Most common training 
paradigm in Deep Learning  

[Hinton & Salakhutdinov, Science ‘06]  

Deep Network Shallow Network 



Information Flow in Vision Models 

•  Top-down (TD) vs bottom-up (BU) 

•  In Vision typically: 
 BU appearance + TD shape 
–  Example 1: MRF’s 
–  Example 2: Parts & Structure  

         models 

•  TD context models 
–  E.g. Torralba et al. NIPS’05 

Input Image 

Class label 

Top 
Down  

Bottom 
Up 



Deep Boltzmann Machines 

Encoder Decoder 

Input Image 

Class label 

e.g. 

Features 

Encoder Decoder 

Features 

Encoder Decoder 
Both pathways 
use at train & 
test time 
 
 
 
 
TD modulation 
of 
BU features 

Salakhutdinov & Hinton 
AISTATS’09 

See also: 
 

Eslami et al. 
CVPR’12 

 
 



Deep Boltzmann Machines 

•  Shape Boltzmann Machine 
–  Eslami et al. CVPR’12   

  

•  2 Hidden layers 
–  Layer 1: tiled 
–  Layer 2: densely connected 

•  Joint training of all layers 
–  Only layer 2 can see whole image 
–  Layer 2 crucial for training layer 1  

Model samples 
 for fixed h2 



Why is Top-Down important? 

•  Example: Occlusion 

•  BU alone can’t separate sofa from cabinet 

•  Need TD information to focus on relevant part of region 



Multi-Scale Models 

HOG	
  Pyramid	
  

Root 

Parts 

Sub- 
parts 

•  E.g. Deformable Parts Model     
•  [Felzenszwalb et al. PAMI’10], [Zhu et al. CVPR’10] 
•  Note: Shape part is hierarchical 

[Felzenszwalb et al. PAMI’10] 



Hierarchical Model 

Input	
  Image/	
  Features	
  

[Zeiler et al. ICCV’11] 
Input	
  Image/	
  Features	
  

•  Most Deep Learning models are hierarchical 



Multi-scale    vs    Hierarchical 

Input	
  Image/	
  Features	
  

Appearance term of each part 
is independent of others 

Feature	
  Pyramid	
  

Root 

Parts 

Sub- 
parts 

Parts at one layer of hierarchy  
depend on others 



Structure Spectrum 

•  Learn everything 
– Homogenous architecture 
– Same for all modalities 
– Only concession topology (2D vs 1D) 

•  Build vision knowledge into structure 
– Shape, occlusion etc. 
– Stochastic grammars, parts and structure models 

How much learning? 



Structure Spectrum 

•  Stochastic Grammar Models 
– Set of production rules for objects 
– Zhu & Mumford, Stochastic Grammar of 

Images, F&T 2006 

Learn 

Hand 
specify [S
.C

. Z
hu

 et
 al

.] 



Structure Spectrum 

•  R. Girshick, P. Felzenszwalb, D. McAllester,  
Object Detection with Grammar Models, 
NIPS 2011 

•  Learn local appearance 
& shape 

Learn 

Hand 
specify 



Structure Spectrum 

•  Parts and Structure models 
– Defined connectivity graph 
– Learn appearance / relative position 

Learn 

Hand 
specify [Felzenszwalb & Huttenlocher CVPR’00 ] [Fischler and R. Elschlager 1973 ] 



Structure Spectrum 

Learn 

Hand 
specify 

•  Fidler et al. ECCV’10 
•  Fidler & Leonardis CVPR’07 

•  Hierarchy 
of parts 
and structure 
models 



Structure Spectrum 

•  Leo Zhu, Yuanhao Chen, Alan Yuille & 
collaborators 
–  Recursive composition, AND/OR graph 
–  Learn # units at layer 

Learn 

Hand 
specify 



Structure Spectrum 

Learn 

Hand 
specify 

•  Transforming Auto-Encoders 
–   [Hinton et al. ICANN’11]  

•  Deconvolutional Networks  
–  [Zeiler et al. ICCV’11] 

•  Explicit representation of what/where 



Structure Spectrum 

•  Neural Nets / Auto-encoders 
– Dedicated  

pooling / LCN 
layers 

– No separation of  
what/where 

– Modality  
independent  
(e.g. speech,  
images) 

Learn 

Hand 
specify [L

e e
t a

l., 
IC

M
L’

12
] 



Structure Spectrum 

•  Boltzmann Machines 
– Homogenous  

architecture 
– No separation of  

what/where 
– Modality  

independent  
(e.g. speech, images) 

Learn 

Hand 
specify [Salakhutdinov & Hinton AISTATS’09] 



Performance of Deep Learning 

•  State-of-the-art on some (simpler) datasets 
•  Classification 

–  ILSVRC 2010 (~1.4M images) 
•  NEC/UIUC Winners (Sparse coding)   

–  Full ImageNet (~16M images @ 2011) 
•  Le et al. ICML’12  15.8%  (vs 9.3% Weston et al.) 

•  Video  
–  Holywood 2 (Action Recognition): Le et al. CVPR’11  53.3%  (vs 50.9%) 

•  Detection 
–  INRIA Pedestrians: Sermanet & LeCun (6.6% vs 8.6% miss rate @ 1FPPI) 

•  Not yet state-of-the-art on more challenging 
ones (e.g. PASCAL VOC Detection) 



NIPS 2012: The Return of Convnets 
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Summary 

•  Unsupervised Learning of Feature Hierarchies 
– Detailed explanation in following talks 

•  Showing promise on vision benchmarks 
•  Success in other modalities (speech, text) 

•  But few Deep Learning papers at CVPR! 



Deep Learning &  
Feature Learning  

Methods for Vision 

 
Rob Fergus (NYU) 

Kai Yu (Baidu) 
Marc’Aurelio Ranzato (Google) 

Honglak Lee (Michigan) 
Ruslan Salakhutdinov (U. Toronto) 

Graham Taylor (University of Guelph) 

CVPR 2012 Tutorial 



Further Resources 

•  CVPR 2012 tutorial on Deep Learning 
http://cs.nyu.edu/~fergus/tutorials/
deep_learning_cvpr12/ 

•  http://deeplearning.net/ 
•  http://www.cs.toronto.edu/~hinton/csc2515/

deeprefs.html 
•  NIPS 2011 workshop on Deep Learning and 

Unsupervised Feature Learning 
–  http://deeplearningworkshopnips2011.wordpress.com/ 

•  Torch5 http://torch5.sourceforge.net/ 



Exam Questions 

•  1. In classical approaches to feature learning 
(e.g. ConvNets), learning was purely 
supervised. What form does learning take in 
recent Deep Learning approaches? 

–  (a): Supervised 
–  (b): Unsupervised 
–  (c) Semi-supervised 



Exam Questions 

•  2.  Normalization is a key component in many 
Deep Learning approaches. What form does 
this take? 

–  (a): Independently per-feature (e.g. scaling to +/-1) 
–  (b): Between features at the same location 
–  (c): Between features at all locations  



Exam Questions 

•  3. In an auto-encoder, which of the following 
roles are performed by the decoder: 

 (i) providing a feed-forward path for quick feature computation 
 (ii) ensuring that the features reconstruct the input 
 (iii) providing a target during training for the encoder 

–  (a): (ii) 
–  (b): (i) & (ii) & (iii) 
–  (c): (ii) & (iii)  
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Application to Video 



gated restricted boltzmann 
machines (grbm) 

Memisevic & Hinton (2007)


Input
 Output
 Input


Output


Latent variables




Convolutional Gated RBM 
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•  Taylor et al. [ECCV’10] 

•  Local 3rd order 
interactions between 
pair of frames and 
features 

•  Inference has closed 
form  



•  KTH actions 

•  Some features 
capture motion 

•  Others capture 
static content  
(e.g. edges) 

Fe
at

ur
e  

Time 

Visualization - Convolutional Gated RBM 
 

Taylor et al. [ECCV’10] 

(subset of features) 

Action:   Hand-clapping 
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