

Deep Learning Methods for Vision

Rob Fergus

Dept. of Computer Science, Courant Institute, New York University

Overview

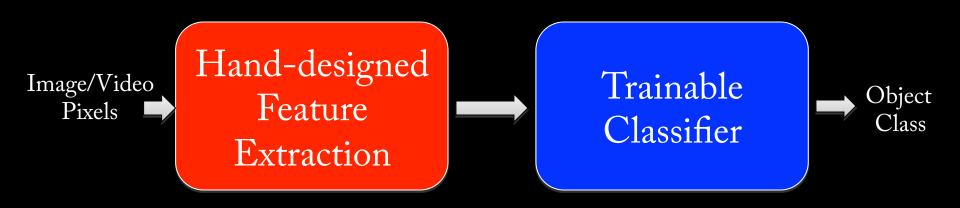
- Learning Feature Hierarchies for Vision

 Mainly for recognition
- Many possible titles:
 Deep Learning
 Feature Learning
- This talk: Basic concepts Links to existing vision approaches

Learning Feature Hierarchies for Vision
 For object recognition

• This talk: Basic concepts Links to existing vision approaches

Existing Recognition Approach



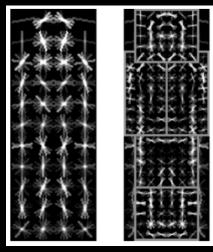
• Features are not learned

• Trainable classifier is often generic (e.g. SVM)

Slide: Y.LeCun

Motivation

- Features are key to recent progress in recognition
- Multitude of hand-designed features currently in use
 SIFT, HOG, LBP, MSER, Color-SIFT.....
- Where next? Better classifiers? Or keep building more features?

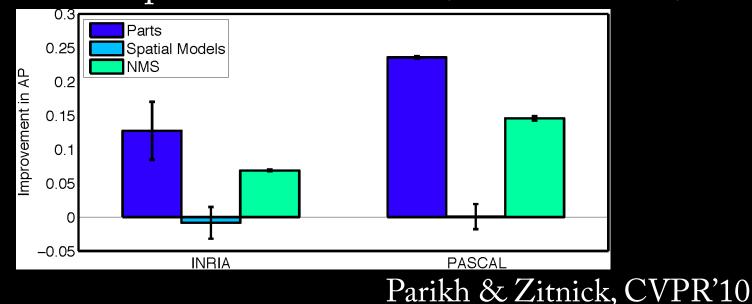


Sampling
 Feature
 Feature

Felzenszwalb, Girshick, McAllester and Ramanan, PAMI 2007 Yan & Huang (Winner of PASCAL 2010 classification competition)

What Limits Current Performance?

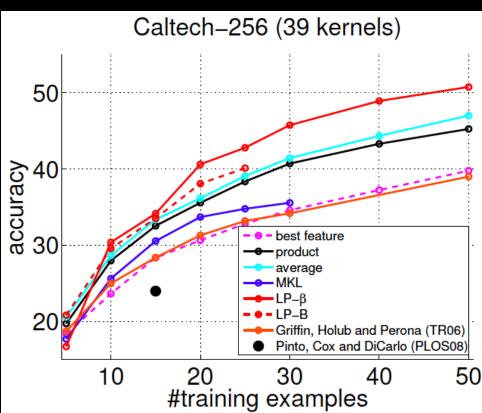
- Ablation studies on Deformable Parts Model
 - Felzenszwalb, Girshick, McAllester, Ramanan, PAMI'10
- Replace each part with humans (Amazon Turk):



Hand-Crafted Features

- LP-β Multiple Kernel Learning
 - Gehler and Nowozin, On Feature Combination for Multiclass Object Classification, ICCV'09
- 39 different kernels

 PHOG, SIFT, V1S+, Region Cov. Etc.
- MKL only gets few % gain over averaging features
- \rightarrow Features are doing the work



Mid-Level Representations

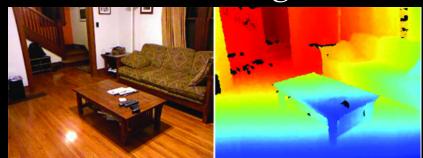
• Mid-level cues

"Tokens" from Vision by D.Marr:

- Object parts:
- Difficult to hand-engineer \rightarrow What about learning them?

Why Learn Features?

- Better performance
- Other domains (unclear how to hand engineer):
 - Kinect
 - Video
 - Multi spectral



- Feature computation time
 - Dozens of features now regularly used
 - Getting prohibitive for large datasets (10's sec /image)

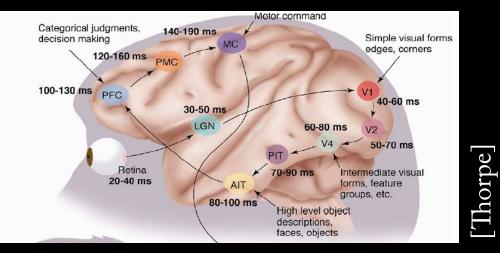
Why Hierarchy?

Theoretical:

"...well-known depth-breadth tradeoff in circuits design [Hastad 1987]. This suggests many functions can be much more efficiently represented with deeper architectures..." [Bengio & LeCun 2007]

Biological:

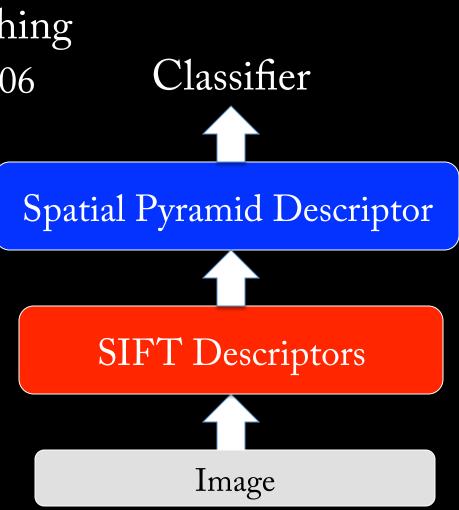
Visual cortex is hierarchical



Hierarchies in Vision

- Spatial Pyramid Matching – Lazebnik et al. CVPR'06
- 2 layer hierarchy

 Spatial Pyramid
 Descriptor pools
 VQ'd SIFT



Hierarchies in Vision

• Lampert et al. CVPR'09

• Learn attributes, then classes as combination of attributes

Class	
Labels	$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_K \\ \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ \dots \\ \end{pmatrix} \begin{pmatrix} z_L \\ \end{pmatrix}$
Attributes	$\begin{pmatrix} a_1 \end{pmatrix} \begin{pmatrix} a_2 \end{pmatrix} \cdots \begin{pmatrix} a_M \end{pmatrix}$
Image	β_1 β_2 β_M
Features	x

otter	
black:	yes
white:	no
brown:	yes
stripes:	no
water:	yes
eats fish:	yes

polar bear

black:	no
white:	yes
brown:	no
stripes:	no
water:	yes
eats fish:	yes

zebra

yes
yes
no
yes
no
no

Learning a Hierarchy of Feature Extractors

- Each layer of hierarchy extracts features from output of previous layer
- All the way from pixels \rightarrow classifier
- Layers have the (nearly) same structure

• Train all layers jointly

Multistage Hubel-Wiesel Architecture

- Stack multiple stages of simple cells / complex cells layers
- Higher stages compute more global, more invariant features
- Classification layer on top

History:

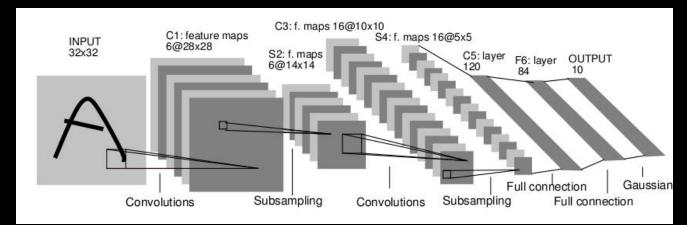
- Neocognitron [Fukushima 1971-1982]
- Convolutional Nets [LeCun 1988-2007]
- HMAX [Poggio 2002-2006]
- Many others...

QUESTION: How do we find (or learn) the filters?

Slide: Y.LeCun

Supervised Learning

- Convolutional Neural Networks
 - Back-propagation



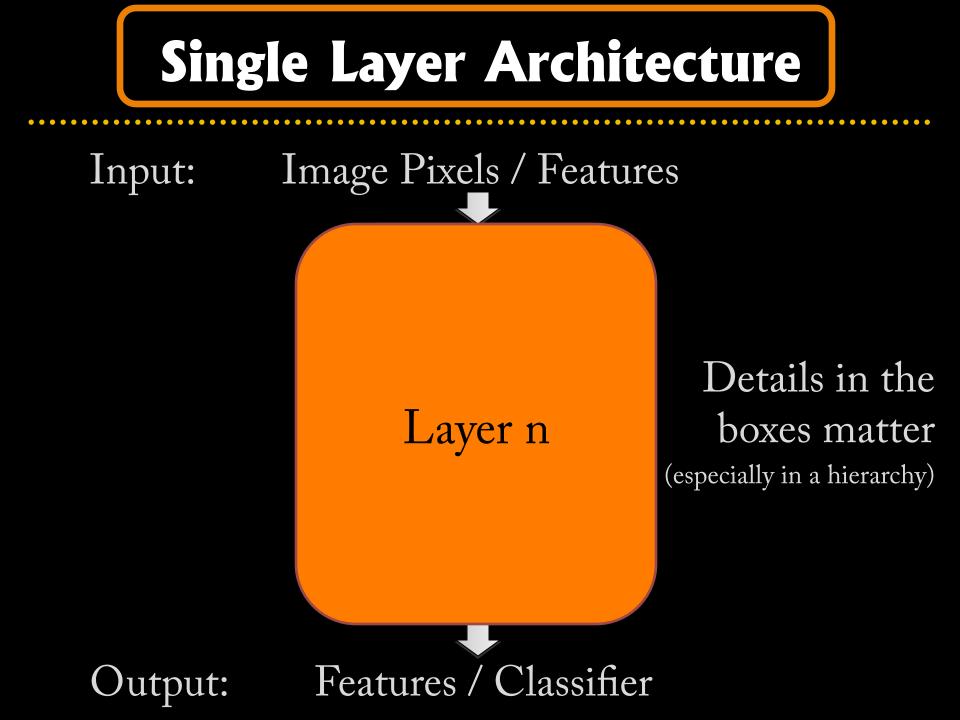
- Problems:
 - Can be difficult to train deep models:
 - Vanishing gradients
 - Highly non-convex (local minima)
 - Getting enough labels

[LeCun et al. 1998]

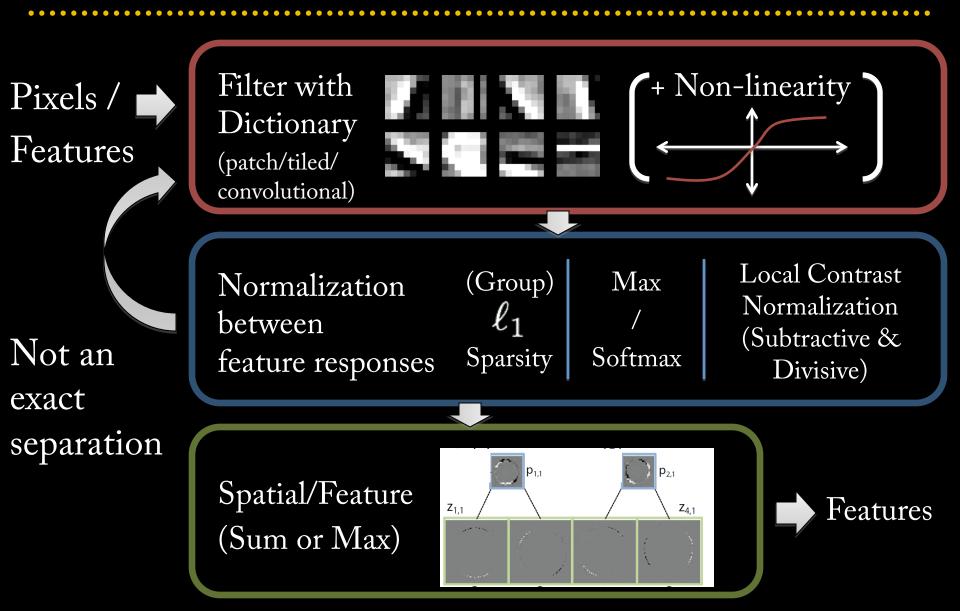
Unsupervised Learning

• Model distribution of input data

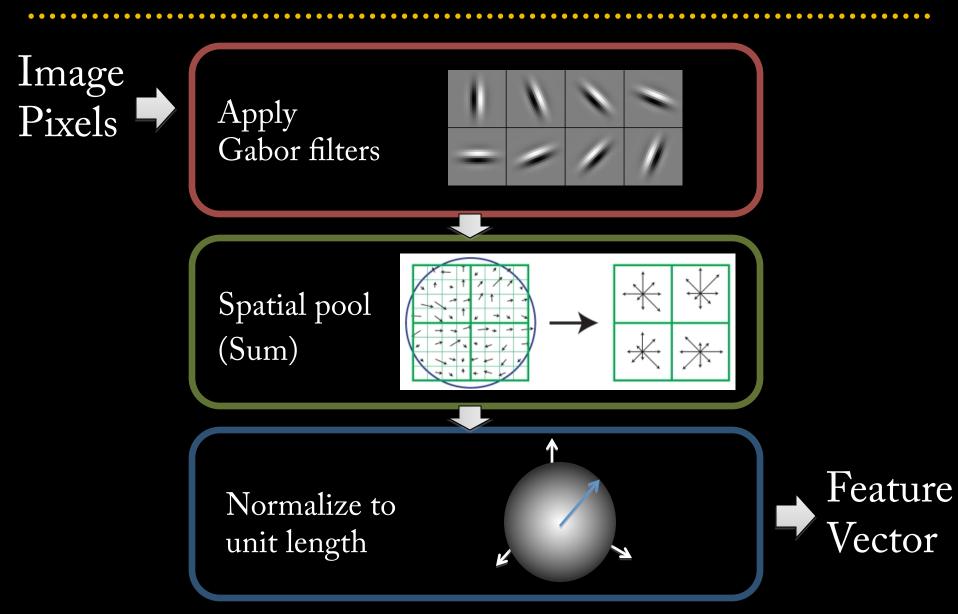
- Can use unlabeled data (unlimited)
- Refine with standard supervised techniques (e.g. backprop)



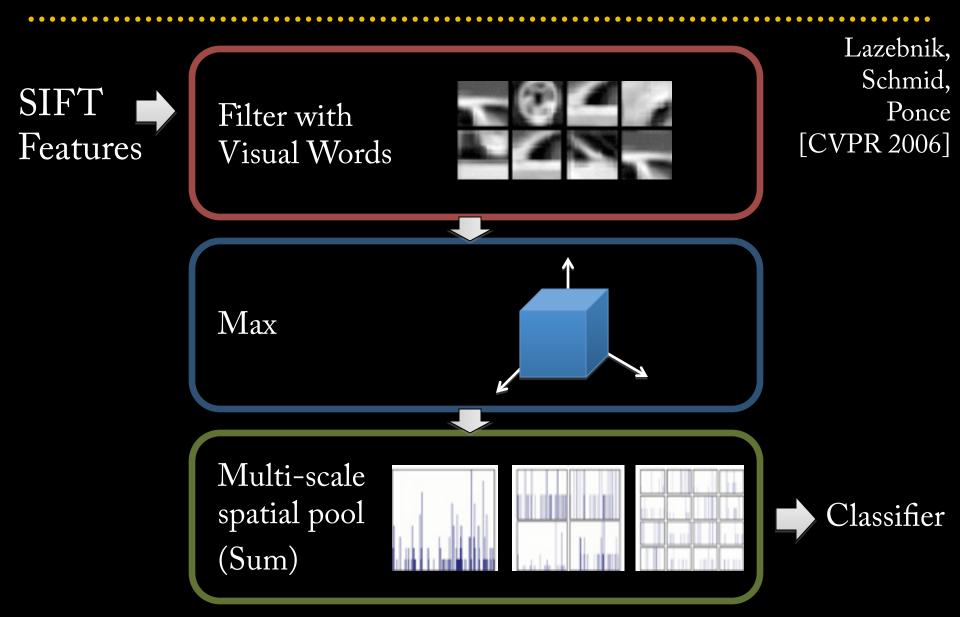
Example Feature Learning Architectures



SIFT Descriptor

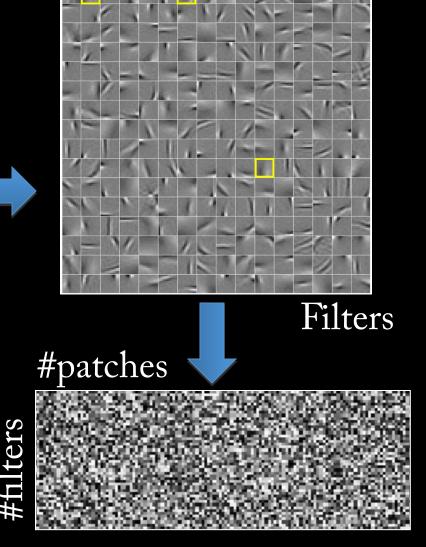


Spatial Pyramid Matching



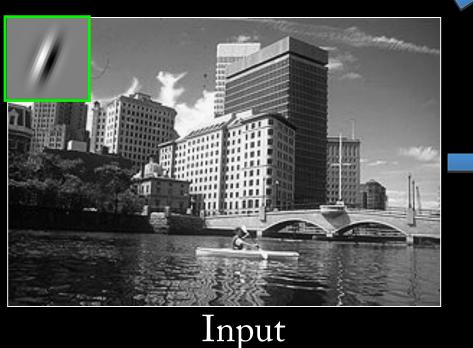
Filtering

Patch
Image as a set of patches



Filtering

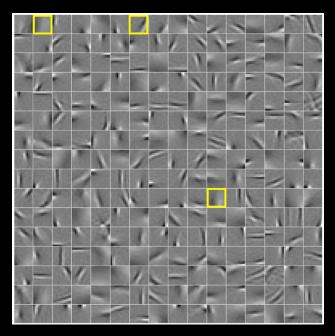
- Convolutional
 - Translation equivariance
 Tied filter weights
 (same at each position → few parameters)

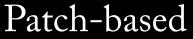


Feature Map

Translation Equivariance

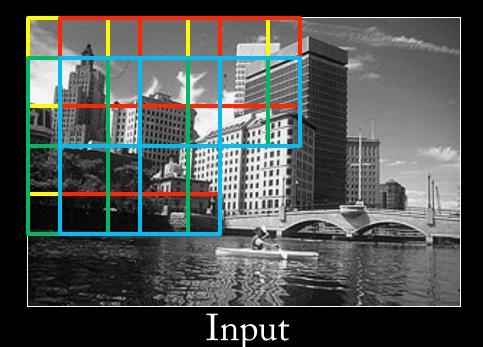
- Input translation \rightarrow translation of features
 - Fewer filters needed: no translated replications
 - But still need to cover orientation/frequency

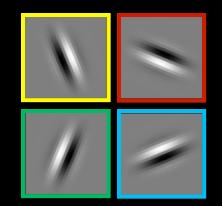




Filtering

- Tiled
 - Filters repeat every n
 - More filters than convolution for given # features

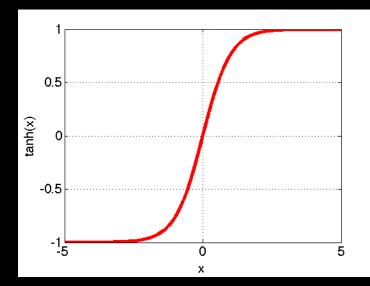


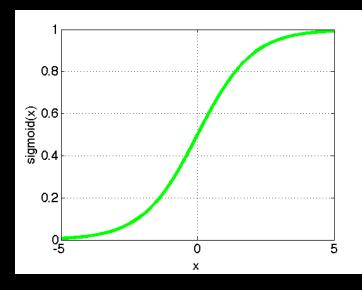


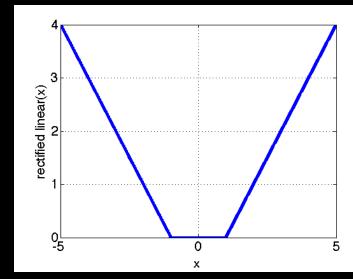
Feature maps

Filtering

- Non-linearity
 - Per-feature independent
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear

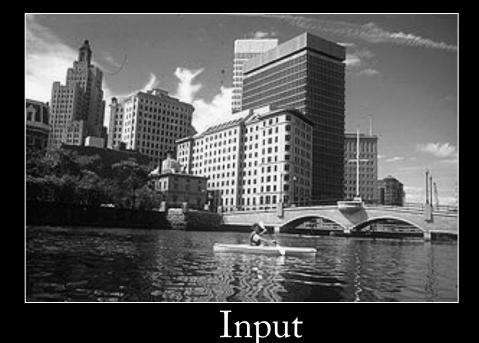






Normalization

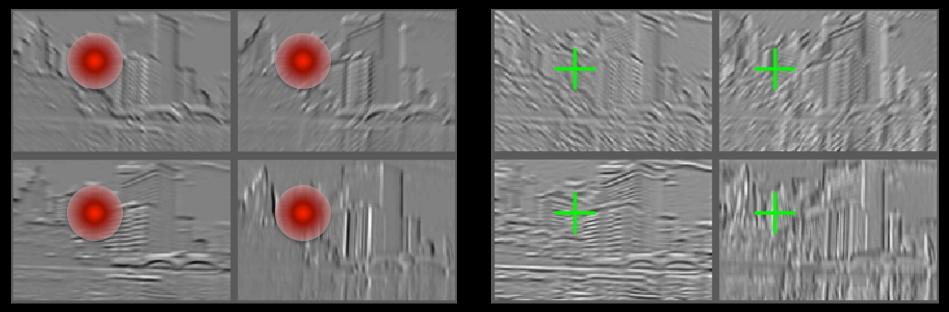
- Contrast normalization
 - See Divisive Normalization in Neuroscience



Normalization

Contrast normalization (across feature maps)

 Local mean = 0, local std. = 1, "Local" → 7x7 Gaussian
 Equalizes the features maps

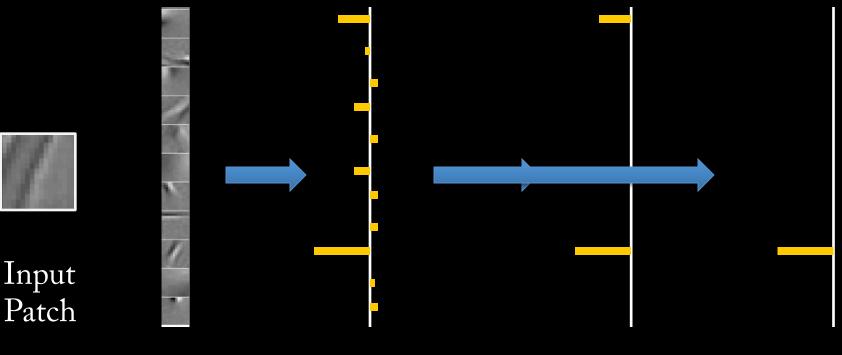


Feature Maps

Feature Maps After Contrast Normalization

Normalization

- Sparsity
 - Constrain L_0 or L_1 norm of features
 - Iterate with filtering operation (ISTA sparse coding)



Filters

Features

Sparse Coding

K-means

Role of Normalization

- Induces local competition between features to explain input
 - "Explaining away" in graphical models
 - Just like top-down models
 - But more local mechanism
- Filtering alone cannot do this!

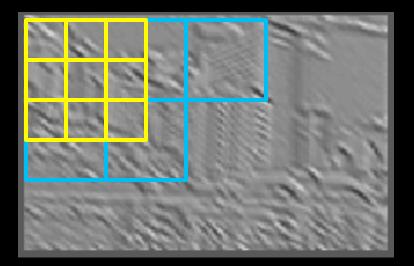
Example: Convolutional Sparse Coding from Zeiler et al. [CVPR'10/ICCV'11]

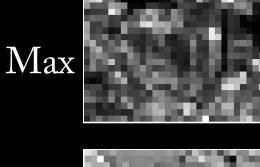
Sparse reduce maps Image: sparse reduce maps </ta

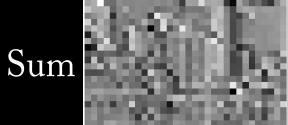
Sparse Feature Maps

Pooling

- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML'10 for theoretical analysis

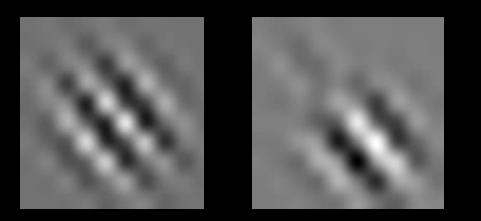


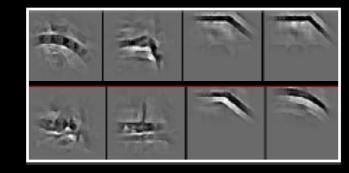




Role of Pooling

- Spatial pooling
 - Invariance to small transformations
 - Larger receptive fields (see more of input)
 - Visualization technique from [Le et al. NIPS'10]:



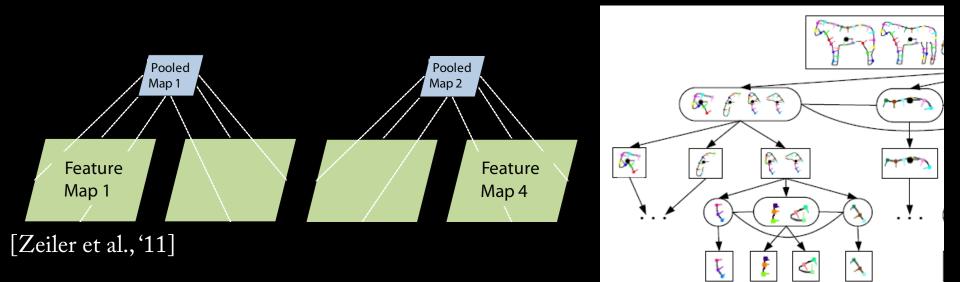


Zeiler, Taylor, Fergus [ICCV 2011]

Videos from: http://ai.stanford.edu/~quocle/TCNNweb

Role of Pooling

- Pooling across feature groups
 - Additional form of inter-feature competition
 - Gives AND/OR type behavior via (sum / max)
 - Compositional models of Zhu, Yuille



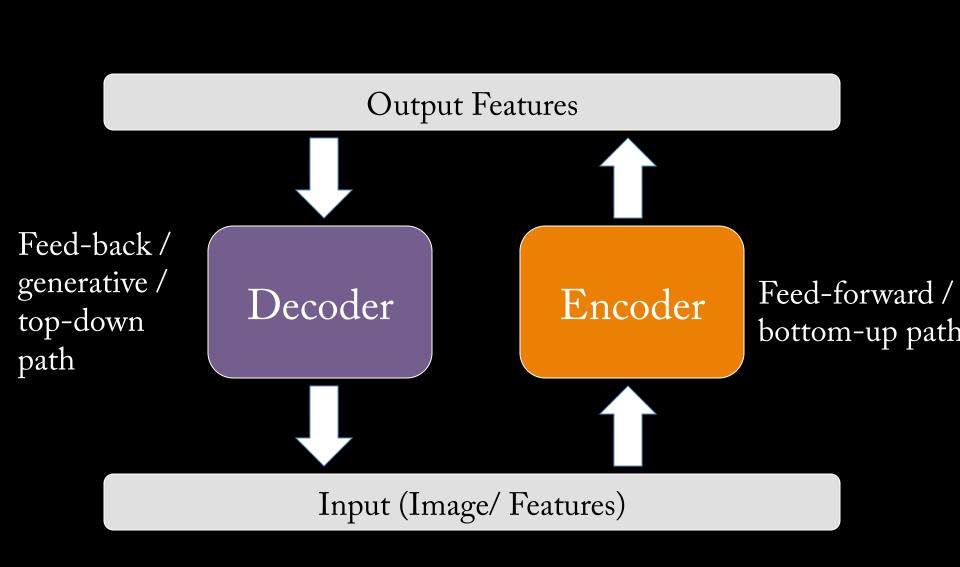
Chen, Zhu, Lin, Yuille, Zhang [NIPS 2007]

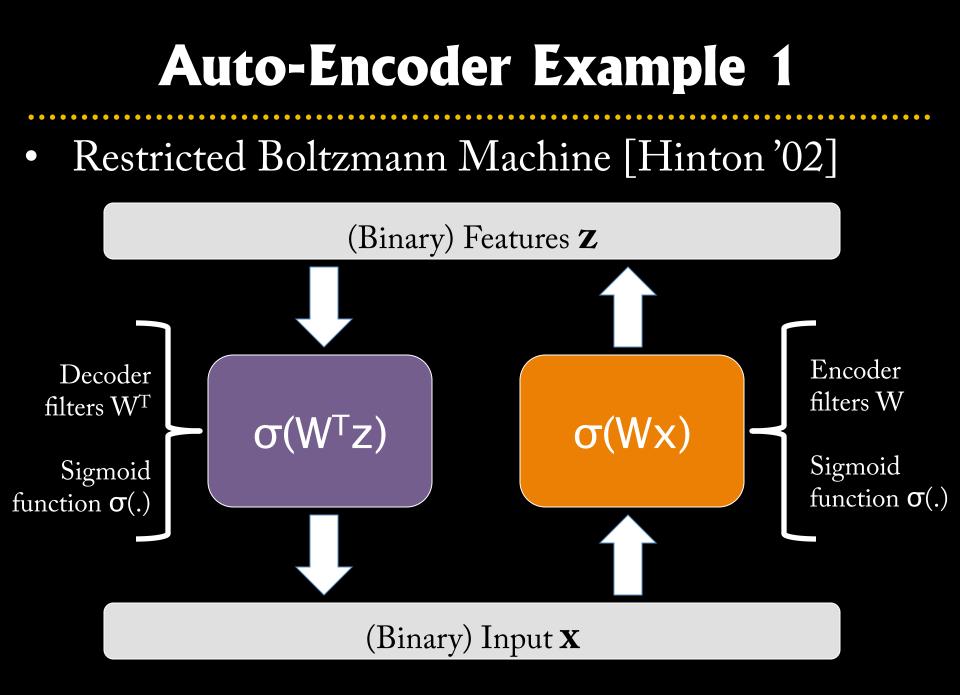
Unsupervised Learning

- Only have class labels at top layer
- Intermediate layers have to be trained unsupervised

- Reconstruct input
 - 1st layer: image
 - Subsequent layers: features from layer beneath
 - Need constraint to avoid learning identity

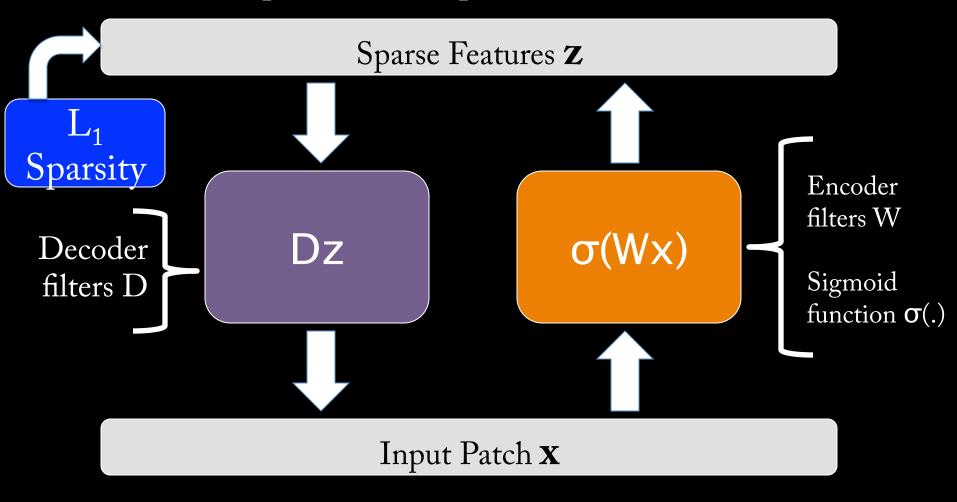
Auto-Encoder





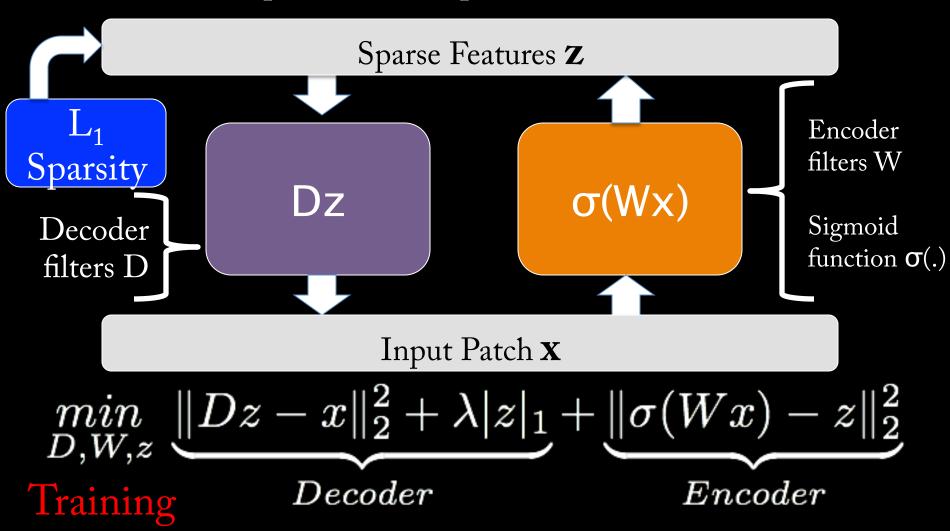
Auto-Encoder Example 2

• Predictive Sparse Decomposition [Ranzato et al., '07]



Auto-Encoder Example 2

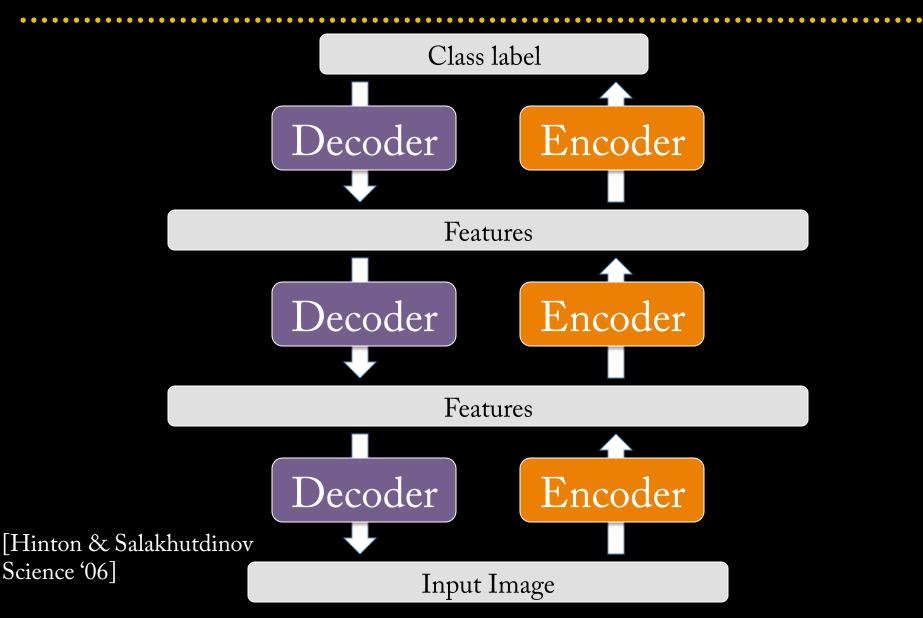
• Predictive Sparse Decomposition [Kavukcuoglu et al., '09]



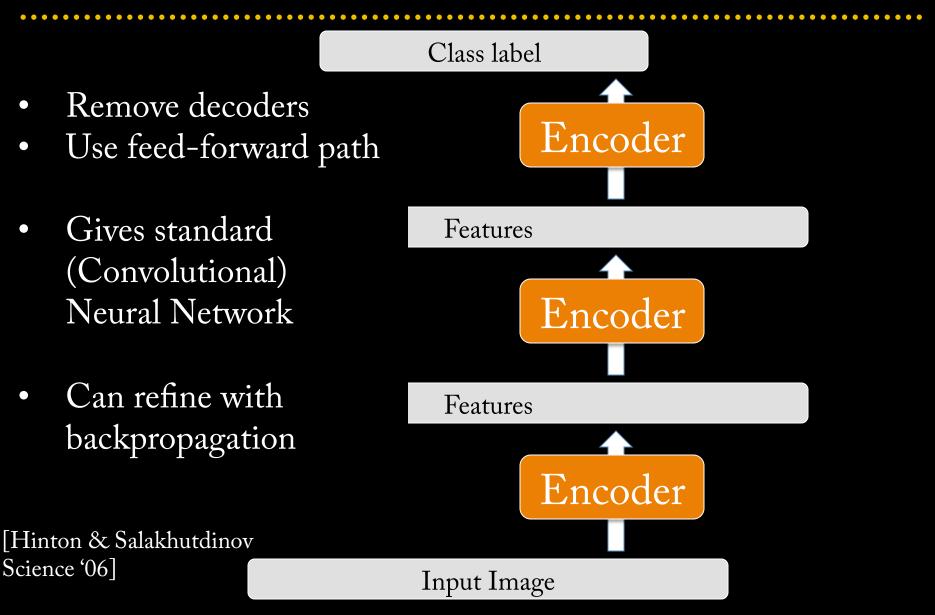
Taxonomy of Approaches

- Autoencoder (most Deep Learning methods)
 RBMs / DBMs
 - Denoising autoencoders
 - Predictive sparse decomposition
- Decoder-only
 - Sparse coding
 - Deconvolutional Nets
- Encoder-only
 - Neural nets (supervised)

Stacked Auto-Encoders

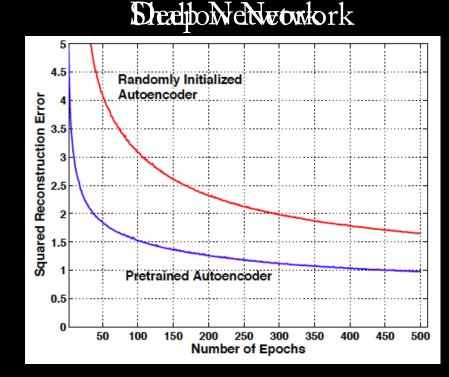


At Test Time



Semi-Supervised Training (2 phases)

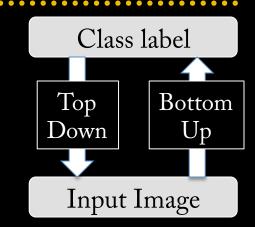
- 1. Unsupervised pre-training
 - Get parameters into right ball-park
- Then supervised refinement (backpropagation)
 - Find local optima
- Helps to avoid local minima
 Highly non-convex cost
- Most common training paradigm in Deep Learning

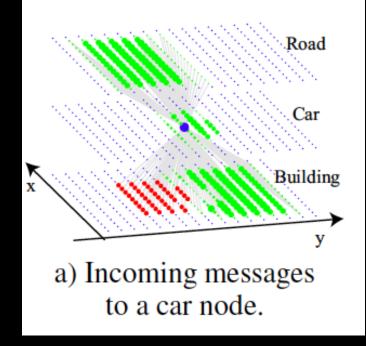


[Hinton & Salakhutdinov, Science '06]

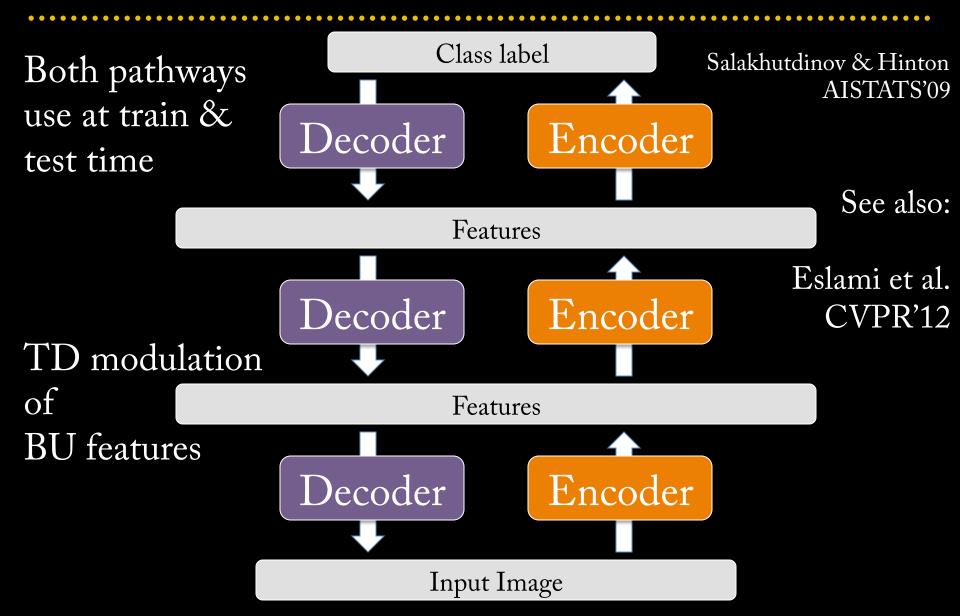
Information Flow in Vision Models

- Top-down (TD) vs bottom-up (BU)
- In Vision typically: BU appearance + TD shape
 – Example 1: MRF's
 - Example 2: Parts & Structure models
- TD context models
 E.g. Torralba et al. NIPS'05





Deep Boltzmann Machines



Deep Boltzmann Machines

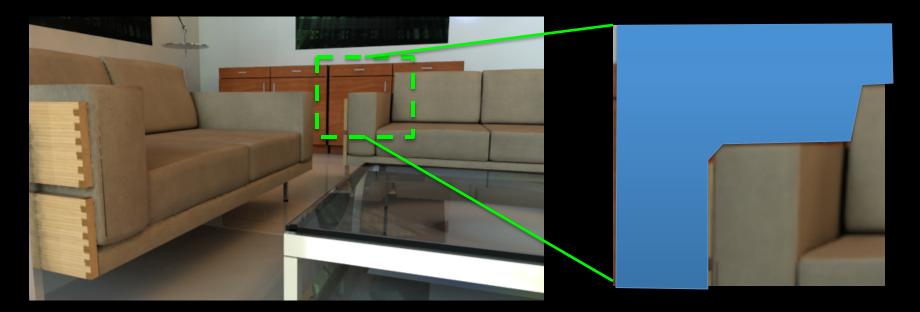
- Shape Boltzmann Machine
 Eslami et al. CVPR'12
- 2 Hidden layers – Layer 1: tiled
 - Layer 2: densely connected
- Joint training of all layers
 - Only layer 2 can see whole image
 - Layer 2 crucial for training layer 1

 \mathbf{h}^2 h^1

Model samples for fixed h²

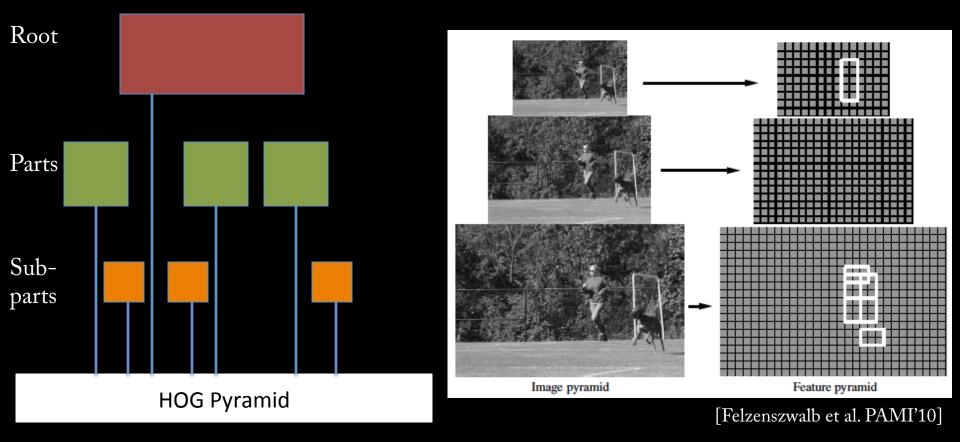
Why is Top-Down important?

- Example: Occlusion
- BU alone can't separate sofa from cabinet
- Need TD information to focus on relevant part of region



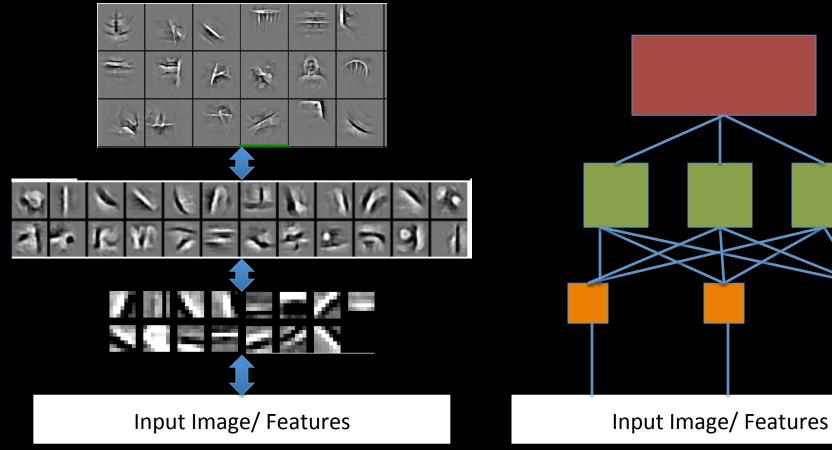
Multi-Scale Models

- E.g. Deformable Parts Model
 - [Felzenszwalb et al. PAMI'10], [Zhu et al. CVPR'10]
 - Note: Shape part is hierarchical



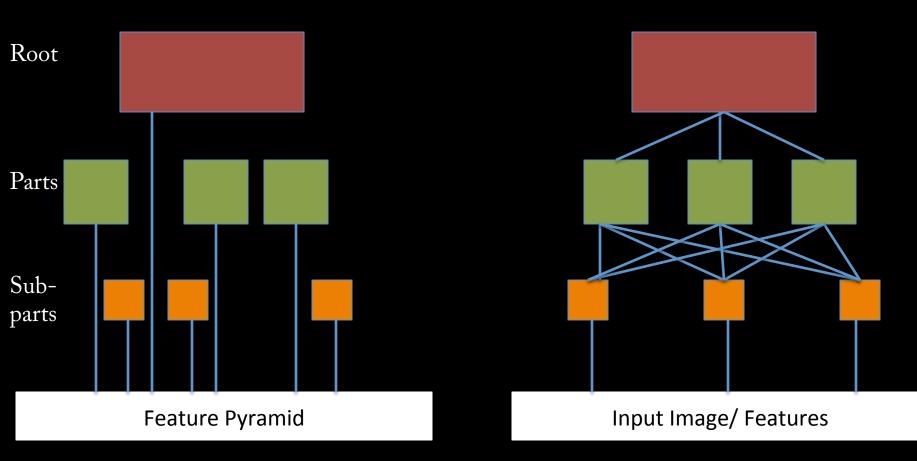
Hierarchical Model

• Most Deep Learning models are hierarchical



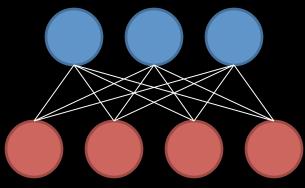
[Zeiler et al. ICCV'11]

Multi-scale vs Hierarchical



Appearance term of each part is independent of others Parts at one layer of hierarchy depend on others

- Learn everything
 - Homogenous architecture
 - Same for all modalities



- Only concession topology (2D vs 1D)

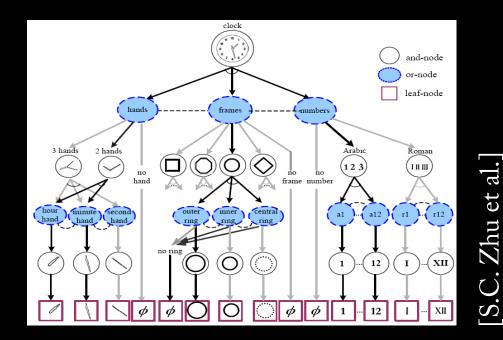
How much learning?

- Build vision knowledge into structure
 - Shape, occlusion etc.
 - Stochastic grammars, parts and structure models

Learn

Stochastic Grammar Models

- Set of production rules for objects
- Zhu & Mumford, Stochastic Grammar of Images, F&T 2006

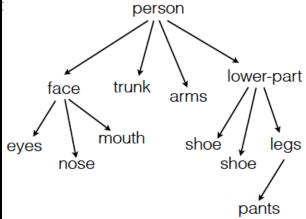


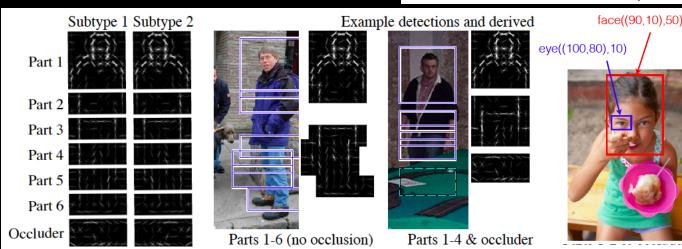
Hand

specify

Learn

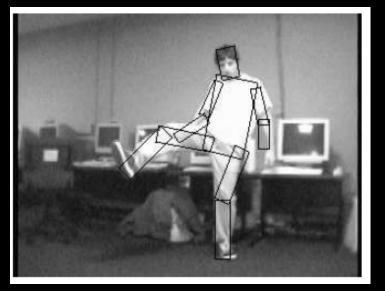
- R. Girshick, P. Felzenszwalb, D. McAllester, Object Detection with Grammar Models, NIPS 2011
- Learn local appearance & shape





Parts and Structure models

 Defined connectivity graph
 Learn appearance / relative position

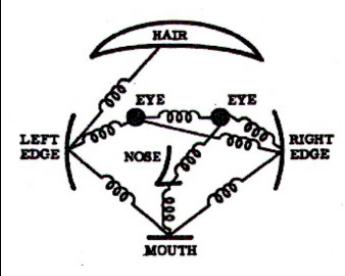


Jearn

Hand

specify

[Felzenszwalb & Huttenlocher CVPR'00]

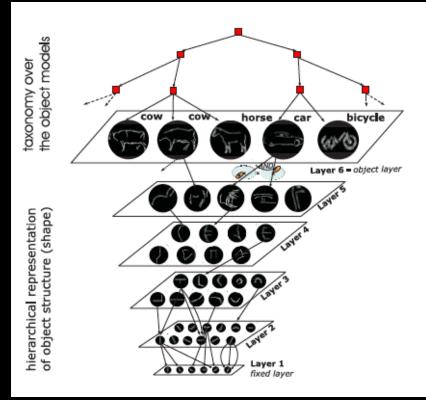


[Fischler and R. Elschlager 1973]

Learn

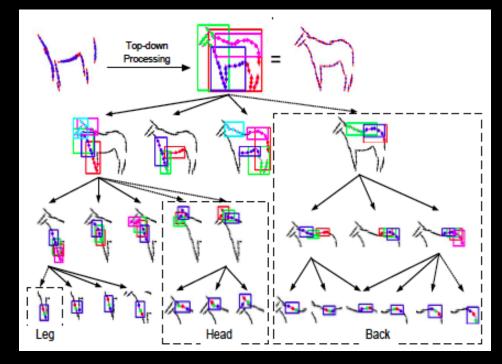
- Fidler et al. ECCV'10
- Fidler & Leonardis CVPR'07

 Hierarchy of parts and structure models



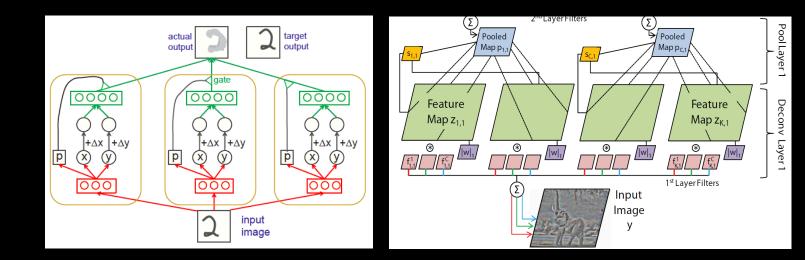
Learn

- Leo Zhu, Yuanhao Chen, Alan Yuille & collaborators
 - Recursive composition, AND/OR graph
 - Learn # units at layer



Learn

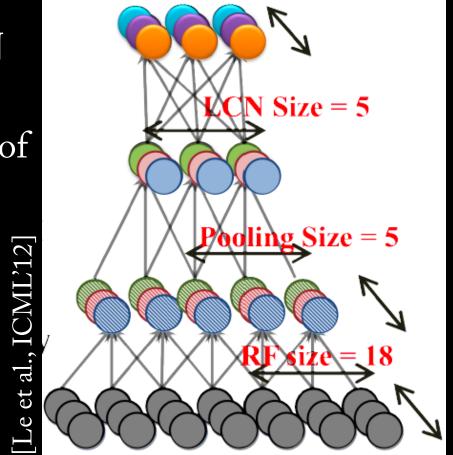
- Transforming Auto-Encoders
 - [Hinton et al. ICANN'11]
 - Deconvolutional Networks
 -[Zeiler et al. ICCV'11]
 - Explicit representation of what/where



Learn • Neural Nets / Auto-encoders

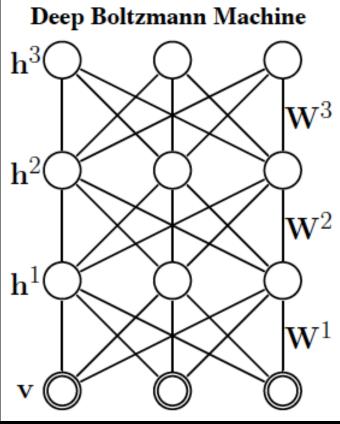
Dedicated
 pooling / LCN
 layers

- No separation of what/where
- Modality
 independent
 (e.g. speech,
 images)



Boltzmann Machines

- Homogenous architecture
- No separation of what/where
- Modality
 independent
 (e.g. speech, images)



Hand specify

earn

[Salakhutdinov & Hinton AISTATS'09]

Performance of Deep Learning

- State-of-the-art on some (simpler) datasets
- Classification
 - ILSVRC 2010 (~1.4M images)
 - NEC/UIUC Winners (Sparse coding)
 - Full ImageNet (~16M images @ 2011)
 - Le et al. ICML'12 15.8% (vs 9.3% Weston et al.)
- Video
 - Holywood 2 (Action Recognition): Le et al. CVPR'11 53.3% (vs 50.9%)
- Detection
 - INRIA Pedestrians: Sermanet & LeCun (6.6% vs 8.6% miss rate @ 1FPPI)
- Not yet state-of-the-art on more challenging ones (e.g. PASCAL VOC Detection)

NIPS 2012: The Return of Convnets

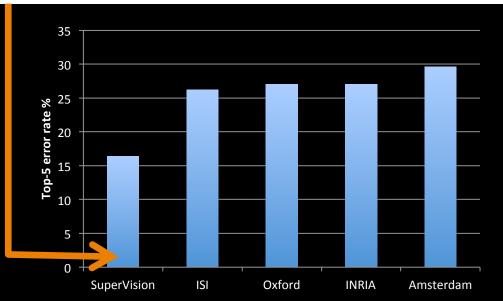
ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca

Ilya Sutskever University of Toronto ilya@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

ImageNet 2012 classification competition results



Summary

- Unsupervised Learning of Feature Hierarchies

 Detailed explanation in following talks
- Showing promise on vision benchmarks
- Success in other modalities (speech, text)

• But few Deep Learning papers at CVPR!

Deep Learning & Feature Learning Methods for Vision

CVPR 2012 Tutorial

Rob Fergus (NYU) Kai Yu (Baidu) Marc' Aurelio Ranzato (Google) Honglak Lee (Michigan) Ruslan Salakhutdinov (U. Toronto) Graham Taylor (University of Guelph)

Further Resources

- CVPR 2012 tutorial on Deep Learning <u>http://cs.nyu.edu/~fergus/tutorials/</u> <u>deep_learning_cvpr12/</u>
- <u>http://deeplearning.net/</u>
- <u>http://www.cs.toronto.edu/~hinton/csc2515/</u> <u>deeprefs.html</u>
- NIPS 2011 workshop on Deep Learning and Unsupervised Feature Learning

 http://deeplearningworkshopnips2011.wordpress.com/
- Torch5 <u>http://torch5.sourceforge.net/</u>

Exam Questions

 In classical approaches to feature learning (e.g. ConvNets), learning was purely supervised. What form does learning take in recent Deep Learning approaches?

Exam Questions

• 2. Normalization is a key component in many Deep Learning approaches. What form does this take?

Exam Questions

• 3. In an auto-encoder, which of the following roles are performed by the decoder:

(i) providing a feed-forward path for quick feature computation(ii) ensuring that the features reconstruct the input(iii) providing a target during training for the encoder

- [Slide 5]
- P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 9, September 2010
- Zheng Song*, Qiang Chen*, Zhongyang Huang, Yang Hua, and Shuicheng Yan. Con-tex-tual-iz-ing Ob-ject De-tec-tion and Clas-si-fi-ca-tion. In CVPR'11. (* in-di-cates equal contri-bu-tion) [No. 1 per-for-mance in VOC'10 clas-si-fi-ca-tion task]
- [Slide 6]
- Finding the Weakest Link in Person Detectors, D. Parikh, and C. L. Zitnick, CVPR, 2011.
- [Slide 7]
- Gehler and Nowozin, On Feature Combination for Multiclass Object Classification, ICCV'09
- [Slide 8]
- <u>http://www.amazon.com/Vision-David-Marr/dp/0716712849</u>
- [Slide 10]
- Yoshua Bengio and Yann LeCun: Scaling learning algorithms towards AI, in Bottou, L. and Chapelle, O. and DeCoste, D. and Weston, J. (Eds), Large-Scale Kernel Machines, MIT Press, 2007

- [Slide 11]
- S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, CVPR 2006
- [Slide 12]
- Christoph H. Lampert, Hannes Nickisch, Stefan Harmeling: "Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer", IEEE Computer Vision and Pattern Recognition (CVPR), Miami, FL, 2009
- [Slide 14] Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2: 1019-1025.
- <u>http://www.scholarpedia.org/article/Neocognitron</u>
- K. Fukushima: "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position", Biological Cybernetics, 36[4], pp. 193-202 (April 1980).
- Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

- [Slide 30]
- Y-Lan Boureau, Jean Ponce, and Yann LeCun, A theoretical analysis of feature pooling in vision algorithms, Proc. International Conference on Machine learning (ICML'10), 2010
- [Slide 31]
- Q.V. Le, J. Ngiam, Z. Chen, D. Chia, P. Koh, A.Y. Ng, Tiled Convolutional Neural Networks. NIPS, 2010
- <u>http://ai.stanford.edu/~quocle/TCNNweb</u>
- Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive Deconvolutional Networks for Mid and High Level Feature Learning, International Conference on Computer Vision(November 6-13, 2011)
- [Slide 32]
- Yuanhao Chen, Long Zhu, Chenxi Lin, Alan Yuille, Hongjiang Zhang. Rapid Inference on a Novel AND/OR graph for Object Detection, Segmentation and Parsing. NIPS 2007.

- [Slide 35]
- P. Smolensky, Parallel Distributed Processing: Volume 1: Foundations, D. E. Rumelhart, J. L. McClelland, Eds. (MIT Press, Cambridge, 1986), pp. 194–281.
- G. E. Hinton, Neural Comput. 14, 1711 (2002).
- [Slide 36]
- M. Ranzato, Y. Boureau, Y. LeCun. "Sparse Feature Learning for Deep Belief Networks". Advances in Neural Information Processing Systems 20 (NIPS 2007).
- [Slide 39]
- Hinton, G. E. and Salakhutdinov, R. R., Reducing the dimensionality of data with neural networks. Science, Vol. 313. no. 5786, pp. 504 507, 28 July 2006.
- [Slide 41]
- A. Torralba, K. P. Murphy and W. T. Freeman, Contextual Models for Object Detection using Boosted Random Fields, Adv. in Neural Information Processing Systems 17 (NIPS), pp. 1401-1408, 2005.

- [Slide 42]
- Ruslan Salakhutdinov and Geoffrey Hinton, Deep Boltzmann Machines, 12th International Conference on Artificial Intelligence and Statistics (2009).
- [Slide 44]
- P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 9, September 2010
- Long Zhu, Yuanhao Chen, Alan Yuille, William Freeman. Latent Hierarchical Structural Learning for Object Detection. CVPR 2010.
- [Slide 45]
- Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive Deconvolutional Networks for Mid and High Level Feature Learning, International Conference on Computer Vision(November 6-13, 2011)

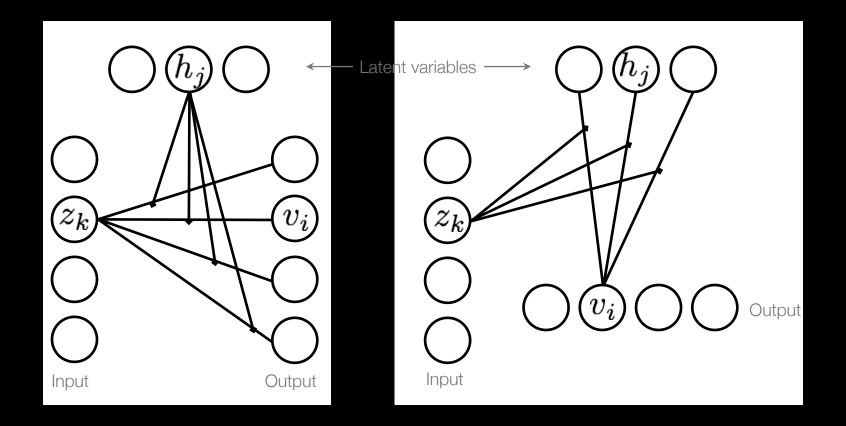
- [Slide 48]
- S.C. Zhu and D. Mumford, A Stochastic Grammar of Images, Foundations and Trends in Computer Graphics and Vision, Vol.2, No.4, pp 259-362, 2006.
- [Slide 49]
- R. Girshick, P. Felzenszwalb, D. McAllester, Object Detection with Grammar Models, NIPS 2011
- [Slide 50]
- P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition, International Journal of Computer Vision, Vol. 61, No. 1, January 2005
- M. Fischler and R. Elschlager. The Representation and Matching of Pictoral Structures. (1973)
- [Slide 51]
- S. Fidler, M. Boben, A. Leonardis. A coarse-to-fine Taxonomy of Constellations for Fast Multi-class Object Detection. ECCV 2010.
- S. Fidler and A. Leonardis. Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts. CVPR 2007.

- [Slide 52]
- Long Zhu, Chenxi Lin, Haoda Huang, Yuanhao Chen, Alan Yuille. Unsupervised Structure Learning: Hierarchical Recursive Composition, Suspicious Coincidence and Competitive Exclusion. ECCV 2008.
- [Slide 53]
- Hinton, G. E., Krizhevsky, A. and Wang, S, Transforming Auto-encoders. ICANN-11: International Conference on Artificial Neural Networks, 2011
- Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive Deconvolutional Networks for Mid and High Level Feature Learning, International Conference on Computer Vision (November 6-13, 2011)
- [Slide 54]
- Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, A.Y. Ng., Building high-level features using large scale unsupervised learning. ICML, 2012.
- [Slide 55]
- Ruslan Salakhutdinov and Geoffrey Hinton, Deep Boltzmann Machines, 12th International Conference on Artificial Intelligence and Statistics (2009).

- [Slide 56]
- http://www.image-net.org/challenges/LSVRC/2010/
- Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, A.Y. Ng., Building high-level features using large scale unsupervised learning. ICML, 2012.
- Q.V. Le, W.Y. Zou, S.Y. Yeung, A.Y. Ng., Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis, CVPR 2011

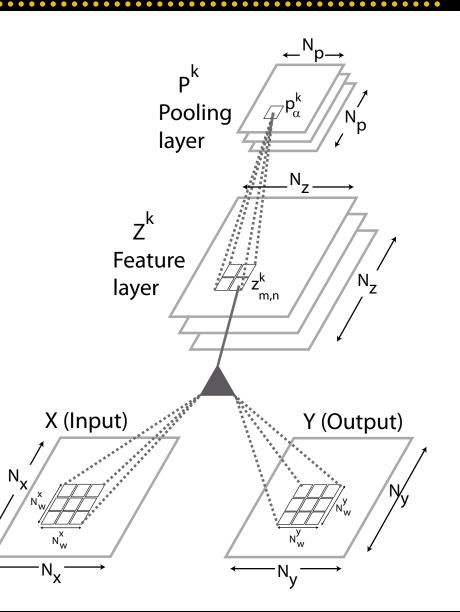
Application to Video

gated restricted boltzmann machines (grbm) Memisevic & Hinton (2007)



Convolutional Gated RBM

- Taylor et al. [ECCV'10]
- Local 3rd order interactions between pair of frames and features
- Inference has closed form

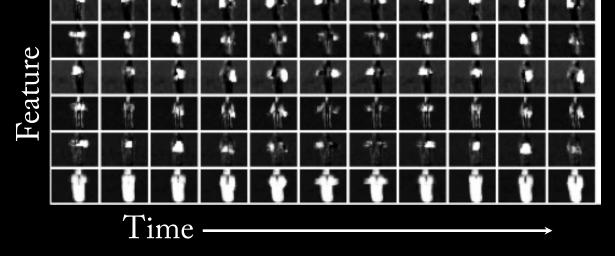


Visualization - Convolutional Gated RBM

• KTH actions

Action: Hand-clapping

• Some features capture motion

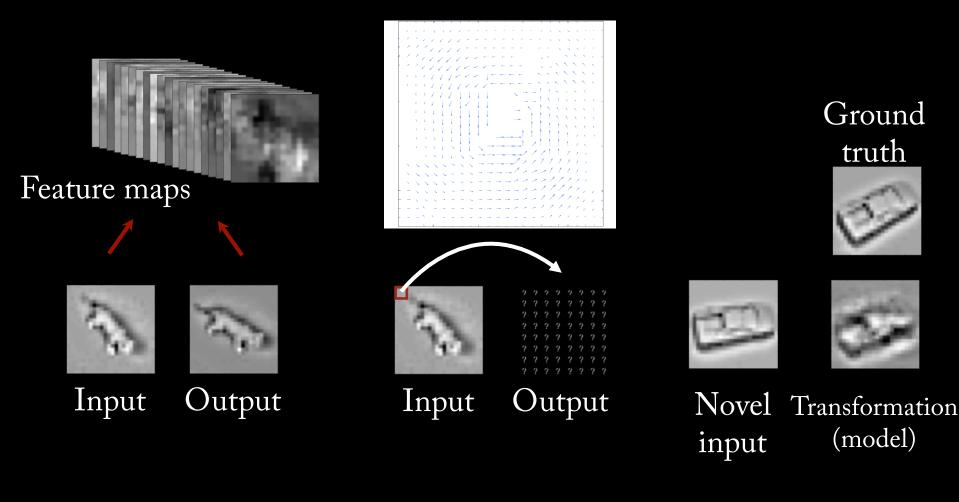


• Others capture static content (e.g. edges)

(subset of features)

Taylor et al. [ECCV'10]

Visualization - Convolutional Gated RBM



[Slide: G. Taylor]