Lambertian model of reflectance II: harmonic analysis

Ronen Basri

Weizmann Institute of Science

Illumination cone

- What is the set of images of an object under different lighting, with any number of sources?
- Images are additive and non-negative
- This set, therefore, forms a convex cone in \mathbb{R}^{p}, p number of pixels (Belhumeur \& Kriegman)

Illumination cone

- Cone characterization is generic, holds also with specularities, shadows and interreflections
- Unfortunately, representing the cone is complicated (infinite degrees of freedom)
- Cone is "thin" for Lambertian objects; indeed the illumination cone of many objects can be represented with few PCA vectors (Yuille et al.)

Illumination cone is often thin

	Ball		Face	Phone		Parrot
\#1	48.2	53.7	67.9	42.8		
\#3	94.4	90.2	88.2	76.3		
\#5	97.9	93.5	94.1	84.7		
\#7	99.1	95.3	96.3	88.5		
\#9	99.5	96.3	97.2	90.7		

(Yuille et al.)

Lambertian reflectance is smooth

(Basri \& Jacobs; Ramamoorthi \& Hanrahan)

lighting

Reflectance obtained with convolution

Reflectance obtained with convolution

Spherical harmonics

$$
\begin{gathered}
Y_{n m}(\theta, \varnothing)=\sqrt{\frac{(2 n+1)}{4 \pi} \frac{(n-|m|)!}{(n+|m|)!}} P_{n m}(\cos \theta) e^{i m \emptyset} \\
p_{n m}(z)=\frac{\left(1-z^{2}\right)^{m / 2}}{2^{n} n!} \frac{d^{n+m}}{d z^{n+m}}\left(z^{2}-1\right)^{n}
\end{gathered}
$$

- Orthonormal basis for functions on the sphere
- n 'th order harmonics have $2 n+1$ components
- Rotation $=$ phase shift (same n, different m)
- In space coordinates: polynomials of degree n
- Funk-Hecke convolution theorem

Spherical harmonics

$$
X^{2}+Y^{2}+Z^{2}=1
$$

Positive values
Negative values

Harmonic approximation

- Lighting, in terms of harmonics

$$
\ell(\theta, \phi)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} l_{n m} Y_{n m}(\theta, \phi)
$$

- Reflectance

$$
r(\theta, \phi)=k * \ell \approx \sum_{n=0}^{2} \sum_{m=-n}^{n} k_{n} l_{n m} Y_{n m}(\theta, \phi)
$$

- Approximation accuracy, 99.2\%
(Basri \& Jacobs; Ramamoorthi \& Hanrahan)

Harmonic transform of kernel

99.2\%

Subspace approximation

- Up to $2^{\text {nd }}$ order:
- 9 basis images
- Accuracy: 99.2\%
- Up to $1^{\text {st }}$ order:
-4 basis images: ambient + point source
- Accuracy: 87.5\%
- In practice, due to self occlusions ${ }^{\sim} 98 \%$ can be achieved with just 6 basis images (Ramamoorthi)

Scope

- Harmonic representations handle convex, lambertian objects with multiple light sources (including attached shadows)
- Harmonic representations do not model cast shadows and inter-reflections
- Accuracy is maintained for fairly close light sources
- Representing specular objects may require a very large basis

Applications

- We can use this theory to predict novel appearances under new lighting
- Harmonic lighting theory has led to applications in
- Face recognition
- Photometric stereo
- 3D reconstruction with prior
- Motion analysis

"Harmonic faces"

Non-negative light

- We can enforce in addition that light is nonnegative, by projecting the illumination cone onto the harmonic space
- Closed-form constraints for $1^{\text {st }}$ order approximation
- Sampling method, or Toeplitz matrix (Shirdhonkar \& Jacobs) for higher orders

Photometric stereo

(Basri, Jacobs \& Kemelmacher)

SVD recovers L and S up to an $(r \times r)$ ambiguity

Photometric stereo

Reconstruction with a prior

(Kemelmacher \& Basri)

- Given just one image SFS is impractical
- Reconstruction is possible when a prior is available
- Energy

$$
\min _{l, \rho, Z} \iint_{\Omega} D+S
$$

- Data term

$$
D=\left(I-\rho l^{T} Y(\widehat{n})\right)^{2}
$$

- Regularization

$$
S=\lambda_{1}\left(\Delta\left(Z-Z_{\text {prior }}\right)\right)^{2}+\lambda_{2}\left(\Delta\left(\rho-\rho_{\text {prior }}\right)\right)^{2}
$$

- Solve as a linear PDE

Reconstruction with a prior

More...

Mooney faces

(Kemelmacher, Nadler \& B, CVPR 2008)

Motion + lighting

Motion + lighting

(Basri \& Frolova)

- Given 2 images

$$
I(p)=\rho l^{T} \hat{n} \quad J\left(p^{\prime}\right)=\rho l^{T} R \hat{n}
$$

- Take ratio to eliminate albedo

$$
\frac{J\left(p^{\prime}\right)}{I(p)}=\frac{l^{T} R n}{l^{T} n}
$$

- If motion is small we can represent $J\left(p^{\prime}\right)$ using a Taylor expansion around p

Small motion

- We obtain a PDE that is quasi linear in z

$$
a z_{x}+b z_{y}=c
$$

- Where

$$
\begin{aligned}
& a(x, y, z)=l_{1}\left(I_{\theta}-z J_{x}\right)-l_{3} I \\
& b(x, y, z)=l_{2}\left(I_{\theta}-z J_{x}\right) \\
& c(x, y, z)=-l_{3}\left(I_{\theta}-z J_{x}\right)-l_{1} I
\end{aligned}
$$

with

$$
I_{\theta}=\frac{J-I}{\theta}
$$

- Can be solved with continuation (characteristics)

Reconstruction

More reconstructions

Conclusion

- Understanding the effect of lighting on images is challenging, but can lead to better interpretation of images
- Harmonic analysis allows to model complex lighting in a linear model
- Various applications in recognition and reconstruction
- We only looked at Lambertian objects...

