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Caveat

I’m no fortune teller!

I’ll try to frame the discussion around what I 
might like to hear if I were in your shoes.

Most of these thoughts are due to discussion with 
students, colleagues,...
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A quote...

“Good researchers know how to solve problems; 
great researchers know what problems are worth solving”

-A senior colleague
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What’s the killer app for computer vision?

“Good researchers know how to solve problems; 
great researchers know what problems are worth solving”

...its worth revisiting the tasks we’re considering

-A senior colleague
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Visual perception for self-driving cars

Some proposals:
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Reconstruction of 4D world
Some proposals:

Friday, August 9, 2013



“The work was painstaking and mind-numbing: One agent watched the same segment 
of video 400 times.The goal was to construct a timeline of images, following possible 

suspects as they moved along the sidewalks, building a narrative out of a random 
jumble of pictures from thousands of different phones and cameras. It took a couple of 
days, but analysts began to focus on two men in baseball caps who had brought heavy 
black bags into the crowd near the marathon’s finish line but left without those bags.”

Washington Post

Some proposals:
Surveillance (while ensuring privacy?)
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Some proposals:
Assistive/medical technology
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Entrepreneurial vision

Finding the right app will probably make you some $
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Bird’s eye view
Vision

Graphics Machine 
Learning

Robotics

HCI Human-in-the-loop
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But we’re scientists (not engineers), right?

See-ing robotReplicate human 
visual system

Romantic notions of AI
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What should a vision system report?

Object/scene/action category labels
Segmentations

Attributes
....

bicycle

bench

Friday, August 9, 2013



What is the relevant perceptual output here?
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Learning to predict the future

In general, temporal analysis still seems to be a 
second-class citizen in the world of recognition

Relatively in its infancy compared to 
static-image recognition
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Direction 1: integration of video into recognition

8 years worth of video is uploaded to YouTube... each day

Humans arguably use motion

Using video for learning
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Biological motivation
Hubel and Weisel’s iconic experiments on simple vs complex “pooling”cells

“Clicks” are action potentials generated by instrumented cortical neuron

Complex cells are tuned to movement
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Online never-ending learning

Tom Mitchell’s Never Ending Language Learning (NELL)

We should be processing a never-ending stream of input (temporal) data

Lots of untapped formulations for non-iid online learning (experts, bandits, etc.) 
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Egocentric vision

A killer app?

Friday, August 9, 2013



Functional prediction
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Abstract

We revisit the notion of object affordances, an idea that

speaks to an object’s functional properties more than its

class label. We study the problem of spatially localizing

affordances in the form of 2D segmentation masks anno-

tated with discrete affordance labels. For example, we use

affordance masks to denote on what surfaces a person sits,

grabs, and looks at when interacting with a variety of ev-

eryday objects (such as chairs, bikes, and TVs). We in-

troduce such a functionally-annotated dataset derived from

the PASCAL VOC benchmark and empirically evaluate sev-

eral approaches for predicting such functionally-relevant

object regions. We compare “blind” approaches that ig-

nore image data, bottom-up approaches that reason about

local surface layout, and top-down approaches that reason

about structural constraints between surfaces/regions of ob-

jects. We show that the difficulty of functional region predic-

tion varies considerably across objects, and that in general,

top-down functional object models do well, though there is

much room for improvement.

1. Introduction

“If you know what can be done with a ... object,
what it can be used for, you can call it whatever
you please”
J. J Gibson [14]

Gibson eloquently argues that predicting functional “affor-
dance” is more important then predicting object category
labels. However, the vast majority of work on object recog-
nition focuses on the task of predicting bounding boxes
and category labels - see, for example, the PASCAL VOC
benchmark [7]. As an example, consider the objects in
Fig. 1; though it is unclear if they should be labeled as a
“chair”, most people would know how to sit on them. If a
humanoid robot were to be confronted with these objects,
it would not suffice to simply name them or estimate their
bounding boxes; rather the crucial bit is knowing where the
robot should rest its bum and back.

Figure 1. Objects that can potentially be used as chairs by humans.
Humanoid robots, when faced with such objects would need pre-
cise localization of the regions that they can sit on (yellow) and rest
their back against (blue). We benchmark a wide variety of algo-
rithms for producing such outputs, including blind baselines that
ignore image data, bottom-up models of surface geometry, and
top-down models that reflect object-specific structural constraints.

We argue such precise modes of interaction exist for vir-
tually any object category. When interacting with a bottle,
we must estimate where to grab it with our hands and where
to place our mouths. When interacting with a computer, we
must estimate where to look, since a rear-facing monitor af-
fords little use to an observer. The central thesis of this work
is that functional regions are an important type of output
that recognition systems should produce, alongside classic
outputs as categorical labels and attribute values. We define
a generic set of affordance labels based on body parts that
touch an object during typical interactions (e.g., when using
a bike, one places feet on pedals and hands on handlebars).
Additionally, we define “looking at” as an important inter-
action that does not involve touching. We show examples
of functional regions for everyday objects in Fig. 2.

Functional prediction dataset: Formally, we define the
task of function region prediction as the prediction of seg-
mentation masks with discrete affordance labels. We de-
fine a candidate mask and label to be correct if it over-
laps the correspondingly-labeled ground-truth segmentation
mask by a sufficient amount. For simplicity, we consider the
case when an object bounding box is known at test-time,
similar to the formulation of attribute prediction [9]. We
introduce a dataset for functional region prediction derived
from keypoint annotations on the PASCAL 2009 trainval
set, to spur further progress for this relatively novel prob-
lem.

Benchmark evaluation: We compare several baseline
approaches to functional region prediction. We first con-

1

If you know what can be done with a ... object, what it can be 
used for, you can call it whatever you please”

J. J. Gibson. The Ecological Approach to Visual Perception

“sittable” affordance label implies someone can sit in the future
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Direction 2: Scalability
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Direction 2: Scalability

Approach 1: Built thousands of models and compress them

Approach 2: Built representation that scales sublinearly with # of categories
(c.f. compositional models)
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Difficulties: long tails
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Difficulties: long tails
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“One-shot learning”: sharing
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Difficulties: long tails
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“Zero-shot” learning

“Zero-shot” learning: synthesis
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Explicit synthesis

Kinect pose estimation
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Subordinate categories

How to sub-linearly encode fine-scale 
differences between object categories?
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Comparison to deep networks

Input	
  Image/	
  Features

Deep models Part models
Naturally shares parameters 

Hierarchical
Learned representation

Difficult to train (need lots of data)

Difficult to share across categories 
Trees / grammars

Engineered representation
Easier to train (100’s of examples)

Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)
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Various representations

Skeleton PoseletsPatches

As a field, we perform a human-in-the-loop search over 
representations, at the time-scale of years or decades

1970’s 20092011

We must be able to do better!
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Thought experiment

Training data

CPU cycles

Deep models
(learned, implicit)

Part models
(semantic)
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Thought experiment

Training data

CPU cycles

Deep models
(learned, implicit)

Part models
(semantic)

Doesn’t help
(good + bad)

?
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Why should representations be interpretable?

Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)

Detailed outputs (pose, landmarks) seem to “force” the 
black box to internally represent 3D shape

Why should representations be interpretable?
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)

Ignoring that, why do we need explicit semantic representations?

Why should representations be interpretable?
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Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)

?

Practical issue (dataset bias)

Why should representations be interpretable?
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Post-hoc interpretation

Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)

... ...

Perhaps in retrospect, we’ll be able to visualize/interpret the black box
If so, do semantic constructs (eyes, mouths) play any role during learning?
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Post-hoc interpretation

3 ‘wheels’?
We need 3D 
representations

non-gaussian 
shape models

The three “wheel” parts sometimes fire on non-wheels.  
We thought this meant that this was the wrong representation 
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Post-hoc interpretation

Figure 2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines denote springs between pairs
of parts; note there are no closed loops, maintaining the tree property. All trees make use of a common, shared pool of part
templates, which makes learning and inference efficient.

community and commercial systems such as Google Picasa
[1] and face.com [2] (the best-performing system on LFW
benchmark [3]). We first show results in controlled lab
settings, using the well-known MultiPIE benchmark [16].
We definitively outperform past work in all tasks, partic-
ularly so for extreme viewpoints. As our results saturate
this benchmark, we introduce a new “in the wild” dataset of
Flickr images annotated with faces, poses, and landmarks.
In terms of face detection, our model substantially outper-
forms ViolaJones, and is on par with the commercial sys-
tems above. In terms of pose and landmark estimation, our
results dominate even commercial systems. Our results are
particularly impressive since our model is trained with hun-
dreds of faces, while commercial systems use up to billions
of examples [36]. Another result of our analysis is evidence
of large gap between currently-available academic solutions
and commercial systems; we will address this by releasing
open-source software.

2. Related Work
As far as we know, no previous work jointly addresses

the tasks of face detection, pose estimation, and landmark
estimation. However, there is a rich history of all three in
vision. Space does not allow for a full review; we refer
the reader to the recent surveys [42, 27, 40]. We focus on
methods most related to ours.

Face detection is dominated by discriminatively-trained
scanning window classifiers [33, 22, 28, 18], most ubiqui-
tous of which is the Viola Jones detector [38] due its open-
source implementation in the OpenCV library. Our system
is also trained discriminatively, but with much less training
data, particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario
[42], or a controlled lab setting that assumes the detection
problem is solved, such as the MultiPIE [16] or FERET [32]
benchmarks. Most methods use explicit 3D models [6, 17]
or 2D view-based models [31, 10, 21]. We use view-based
models that share a central pool of parts. From this perspec-
tive, our approach is similar to aspect-graphs that reason
about topological changes between 2D views of an object
[7].

Facial landmark estimation dates back to the classic ap-
proaches of Active Appearance Models (AAMs) [9, 26] and

elastic graph matching [25, 39]. Recent work has focused
on global spatial models built on top of local part detectors,
sometimes known as Constrained Local Models (CLMs)
[11, 35, 5]. Notably, all such work assumes a densely con-
nected spatial model, requiring the need for approximate
matching algorithms. By using a tree model, we can use
efficient dynamic programming algorithms to find globally
optimal solutions.

From a modeling perspective, our approach is similar to
those that reason about mixtures of deformable part models
[14, 41]. In particular [19] use mixtures of trees for face de-
tection and [13] use mixtures of trees for landmark estima-
tion. Our model simultaneously addresses both with state-
of-the-art results, in part because it is aggressively trained
to do so in a discriminative, max-margin framework. For
example, previous approaches train part templates indepen-
dantly, while our templates are trained “contextually” in a
joint optimization. We also explore part sharing for reduc-
ing model size and computation, as in [37, 29].

3. Model

Our model is based on mixture of trees with a shared
pool of parts V . We model every facial landmark as a
part and use global mixtures to capture topological changes
due to viewpoint. We show such mixtures for viewpoint
in Fig.2. We will later show that global mixtures can also
be used to capture gross deformation changes for a single
viewpoint, such as changes in expression.

Tree structured part model: We write each tree Tm =
(Vm, Em) as a linearly-parameterized, tree-structured pic-
torial structure [41], where m indicates a mixture and Vm ⊆
V . Let us write I for an image, and li = (xi, yi) for the
pixel location of part i. We score a configuration of parts
L = {li : i ∈ V } as:

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (1)

Appm(I, L) =
�

i∈Vm

wm
i · φ(I, li) (2)

Shapem(L) =
�

ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy

(3)

... ...

Perhaps in retrospect, we’ll be able to visualize/interpret the black box
If so, what is the role of semantic tokens (eyes, mouths) when learning models?

Perhaps they are most crucial in defining the output...
Friday, August 9, 2013



Direction 3: Diagnostic evaluation

Hoeim et al, ECCV12

Diagnosing Error in Object Detectors 5

% Top False Positives, AP Impact: FGMR (v4) Detector 

% Top False Positives, AP Impact: VGVZ’09 Detector 
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Fig. 2. Analysis of Top-Ranked False Positives. Pie charts: fraction of top-ranked false positives

that are due to poor localization (Loc), confusion with similar objects (Sim), confusion with other

VOC objects (Oth), or confusion with background or unlabeled objects (BG). Each category

named within ‘Sim’ is the source of at least 10% of the top false positives. Bar graphs display

absolute AP improvement by removing all false positives of one type (‘B’ removes confusion

with background and non-similar objects). ’L’: the first bar segment displays improvement if

duplicate or poor localizations are removed; the second displays improvement if the localization

errors were corrected, turning false detections into true positives.

fusion with similar categories are both common. In looking at trends of false positives

with increasing rank, localization errors and confusion with similar objects tend to be

more common among the top-ranked than the lower-ranked false positives. Confusion

with “other” objects and confusion with background may be similar types of errors.

Some categories were often confused with semantically dissimilar categories. For ex-

ample, bottles were often confused with people, due to the similarity of exterior con-

tours. Removing only one type of false positives may have a small effect, due to the
TP

TP+FP form of precision. In particular, the potential improvement by removing all

background false detections is surprisingly small (e.g., 0.02 AP for animals, 0.04 AP

for vehicles). Improvements in localization or differentiating between similar categories

would lead to the largest gains. If poor localizations were corrected, e.g. with an effec-

tive category-based segmentation method, performance would improve greatly from

additional high-confidence true positives, as well as fewer false positives.

3 False Negatives and Impact of Object Characteristics

Detectors may incur a false negative by assigning a low confidence to an object or by

missing it completely. Intuitively, an object may be difficult to detect due to occlusion,

truncation, small size, or unusual viewpoint. In this section, we measure the sensitivity

of detectors to these characteristics and others and also try to answer why so many

objects (typically about 40%) are not detected with even very low confidence.
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(c) Atypical aspect ratios
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(f) Far scale
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(h) Partial occlusion
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(i) Heavy occlusion
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Figure 1: Miss rates versus false positive per-image curves shown for various subsets of the data. Lower curves indicate better per-

formance; the log-average miss rate for each detector is shown in plot legends. (a) Overall performance on the entire dataset. (b-c)

Performance w.r.t. aspect ratio (computed for unoccluded pedestrians 50 pixels or taller). (d-f): Performance w.r.t. scale (computed for

unoccluded pedestrians). (g-i): Performance under varying levels of occlusion (computed for pedestrians 50 pixels or taller).

1

Dollar et al, 12

Everingham et al, IJCV10
Claim: diagnostic evaluation is just as important than 

dataset collection, but is even less appreciated
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Long tails complicate evaluation
14 Xiangxin Zhu et al.
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Fig. 17 We plot the number of distinct shape configura-
tions, or deformation patters in our training set of Buses
and Faces. In both cases, the number of occurrences seems
to follow a long-tail distribution: a small number of pat-
terns are common, while there are a huge number of rare
cases.Interestingly, there are less than 500 unique bus config-
urations observed in our PASCAL-10X dataset of 2000 train-
ing examples (as labeled through parts inferred by a latent
DPM). This suggests that one can build an exemplar part
model (EPM) from the “right” set of 500 training exam-
ples and still perform similarly to a DPM trained on the full
dataset (Fig. 16).

cal feature analysis (Tuytelaars and Mikolajczyk, 2008),
kernel methods (Vedaldi et al, 2009), and decision trees (Bosch
et al, 2007), to name a few. Such methods may produce
different dependancies on performance as a function of
dataset size due to inherent differences in model archi-
tectures. We hypothesize that our conclusions regarding
parameter sharing and extrapolation may still hold for
other architectures.

Non-parametric models in vision: Most rele-
vant to our analysis is work on data-driven models for
recognition. Nonparametric scene models have been used
for scene completion (Hays and Efros, 2007), geoloca-
tion (Hays and Efros, 2008). Exemplar-based methods
have also been used for scene-labeling through label
transfer (Liu et al, 2011; Tighe and Lazebnik, 2010).
Other examples include nearest-neighbor methods for
low-resolution image analysis (Torralba et al, 2008) and
image classification (Zhang et al, 2006; Boiman et al,
2008). The closest approach to us is (Malisiewicz et al,

2011), who learn exemplar templates for object detec-
tion. Our analysis suggests that it is crucial to share
information between exemplars and extrapolate to un-
seen templates by re-composing parts to new configu-
rations.

Scalable nearest-neighbors:We demonstrate that
compositional part models are one method for efficient
nearest-neighbor computations. Prior work has explored
approximate methods such as hashing (Shakhnarovich
et al, 2003, 2005) and kd-trees (Muja and Lowe, 2009;
Beis and Lowe, 1997). Our analysis suggests that one
can view parts as tools for exact amd efficient index-
ing into an exponentially-large set of templates. This
suggests an alternative perspective of parts as compu-
tational entities rather than semantic ones.

6 Conclusion

We have performed an extensive analysis of the current
dominant paradigm for object detection using HOG fea-
ture templates. We specifically focused on performance
as a function of the amount of training data, and in-
troduced several nonparametric models to diagnose the
state of affairs.

To scale current systems to larger datasets, we find
that one must get certain “details” correct. Sepecifi-
cally, (a) cross-validation of regularization parameters
is mundane but crucial, (b) current discriminative clas-
sification machinery is overly sensitive to noisy data,
suggesting that (c) manual cleanup and supervision or
more clever latent optimization during learning may
play an important role for designing high-performance
detection systems. We also demonstrate that HOG tem-
plates have a relatively small effective capacity; one can
train accurate HOG templates with 100-200 positive
examples (rather than thousands of examples as is typ-
ically done (Dalal and Triggs, 2005)).

From a broader perspective, an emerging idea in
our community is that object detection might be solved
with simple models backed with massive training sets.
Our experiments suggest an slightly refined view. Given
the size of existing datasets, it appears that the current
state-of-the-art will need significant additional data (per-
haps exponentially larger sets) to continue producing
consistent improvements in performance. We found that
larger gains were possible by enforcing richer constraints
within the model, often through nonparametric compo-
sitional representations that could make better use of
additional data. In some sense, we need “better models”
to make better use of “big data”.

Another regular hypothesis is that we should focus
on developing better features, not better learning algo-
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Fig. 17 We plot the number of distinct shape configura-
tions, or deformation patters in our training set of Buses
and Faces. In both cases, the number of occurrences seems
to follow a long-tail distribution: a small number of pat-
terns are common, while there are a huge number of rare
cases.Interestingly, there are less than 500 unique bus config-
urations observed in our PASCAL-10X dataset of 2000 train-
ing examples (as labeled through parts inferred by a latent
DPM). This suggests that one can build an exemplar part
model (EPM) from the “right” set of 500 training exam-
ples and still perform similarly to a DPM trained on the full
dataset (Fig. 16).
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kernel methods (Vedaldi et al, 2009), and decision trees (Bosch
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vant to our analysis is work on data-driven models for
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seen templates by re-composing parts to new configu-
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et al, 2003, 2005) and kd-trees (Muja and Lowe, 2009;
Beis and Lowe, 1997). Our analysis suggests that one
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ing into an exponentially-large set of templates. This
suggests an alternative perspective of parts as compu-
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6 Conclusion
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dominant paradigm for object detection using HOG fea-
ture templates. We specifically focused on performance
as a function of the amount of training data, and in-
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state of affairs.
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cally, (a) cross-validation of regularization parameters
is mundane but crucial, (b) current discriminative clas-
sification machinery is overly sensitive to noisy data,
suggesting that (c) manual cleanup and supervision or
more clever latent optimization during learning may
play an important role for designing high-performance
detection systems. We also demonstrate that HOG tem-
plates have a relatively small effective capacity; one can
train accurate HOG templates with 100-200 positive
examples (rather than thousands of examples as is typ-
ically done (Dalal and Triggs, 2005)).

From a broader perspective, an emerging idea in
our community is that object detection might be solved
with simple models backed with massive training sets.
Our experiments suggest an slightly refined view. Given
the size of existing datasets, it appears that the current
state-of-the-art will need significant additional data (per-
haps exponentially larger sets) to continue producing
consistent improvements in performance. We found that
larger gains were possible by enforcing richer constraints
within the model, often through nonparametric compo-
sitional representations that could make better use of
additional data. In some sense, we need “better models”
to make better use of “big data”.

Another regular hypothesis is that we should focus
on developing better features, not better learning algo-

Less training instances mean unusual poses are harder to get right

Less test instances mean unusual poses impact performance less
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A look back
Pick a good problem
(c.f. robotics, HCI)

Putting temporal reasoning back into recognition 
(more training data, online learning, functional labels)

Scalable representations 
(semantic vs learned vs interpretable)

Diagnostic evaluation
(systematic progress)
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