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Caveat

I’m no fortune teller!

I’ll try to frame the discussion around what I
might like to hear if I were 1n your shoes.

Most of these thoughts are due to discussion with
students, colleagues,...
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A quote...

“Good researchers know how to solve problems;
great researchers know what problems are worth solving”

-A senior colleague
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What’s the killer app for computer vision?

...1ts worth revisiting the tasks we’re considering

“Good researchers know how to solve problems;
great researchers know what problems are worth solving”

-A senior colleague
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Some proposals:

Visual perception for self-driving cars
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Some proposals:

Reconstruction of 4D world
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Some proposals:

Surveillance (while ensuring privacy?)
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“The work was painstaking and mind-numbing: One agent watched the same segment
of video 400 times.The goal was to construct a timeline of 1images, following possible
suspects as they moved along the sidewalks, building a narrative out of a random
jumble of pictures from thousands of different phones and cameras. It took a couple of
days, but analysts began to focus on two men in baseball caps who had brought heavy
black bags into the crowd near the marathon’s finish line but left without those bags.”

Washington Post



Some proposals:

Assistive/medical technology

Activity of daily living.
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Entrepreneurial vision

Finding the right app will probably make you some $
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Bird’s eye view

Vision
Graphics Machine
Learning
Robotics
HCI Human-in-the-loop
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But we’re scientists (not engineers), right?

Romantic notions of Al

Replicate human See-1ng robot
visual system
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What should a vision system report?

Object/scene/action category labels

Segmentations
Attributes
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What is the relevant perceptual output here?

Live[X]
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Learning to predict the future

In general, temporal analysis still seems to be a
second-class citizen in the world of recognition

Relatively 1n its infancy compared to
static-image recognition
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Direction 1: integration of video into recognition

Using video for learning

You

Tube

8 years worth of video 1s uploaded to YouTube... each day

Humans arguably use motion
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Biological motivation

Hubel and Weisel’s iconic experiments on simple vs complex “pooling”cells

Complex cells are tuned to movement

“Clicks” are action potentials generated by instrumented cortical neuron
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Online never-ending learning
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Tom Mltchell’s Never Ending Language Learning (NELL)

We should be processing a never-ending stream of input (temporal) data

Lots of untapped formulations for non-iid online learning (experts, bandits, etc.)
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Egocentric vision

A killer app?
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Functional prediction

If you know what can be done with a ... object, what it can be
used for, you can call it whatever you please”

J. J. Gibson. The Ecological Approach to Visual Perception

“sittable” affordance label implies someone can sit in the future
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Direction 2: Scalability
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Direction 2: Scalability
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Approach 1: Built thousands of models and compress them

Approach 2: Built representation that scales sublinearly with # of categories

(c.f. compositional models)
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Difficulties: long tails

PASCAL 2010 training data
2000

1500

1000

500 1 -

0
person chair plane train boat sofa cow
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Difficulties: long tails

PASCAL 2010 training data
2000

1500

1000

500 1 -

0
person chair plane train boat soia._cow

“One-shot learning”: sharing
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Difficulties: long tails

PASCAL 2010 training data
2000

1500

1000

500 1 -

0
person chair plane train boat sofa cow

“Zero-shot” learning: synthesis
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Explicit synthesis

Long Tail

Kinect pose estimation
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Subordinate categories

How to sub-linearly encode fine-scale
differences between object categories?
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Comparison to deep networks

Input Image/ Features

Deep models Part models
Naturally shares parameters Difficult to share across categories
Hierarchical Trees / grammars
Learned representation Engineered representation
Difficult to train (need lots of data) Easier to train (100’s of examples)
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Various representations

Patches Skeleton Poselets
2011 1970’s 2009

As a field, we perform a human-in-the-loop search over
representations, at the time-scale of years or decades

We must be able to do better!
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Thought experiment

CPU cycles

Deep models
(learned, implicit)

Part models
(semantic)

Training data
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Thought experiment

CPU cycles

Deep models
(learned, implicit)

Doesn’t help
good + bad

Training data

Part models —}
(semantic)
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Why should representations be interpretable?
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Why should representations be interpretable?

Detailed outputs (pose, landmarks) seem to “force” the
black box to internally represent 3D shape
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Why should representations be interpretable?

Ignoring that, why do we need explicit semantic representations?
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Why should representations be interpretable?
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Practical 1ssue (dataset bias)
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Post-hoc 1nterpretation

1
i
{
{

;://%}

WA
Aey (uRNLN kg
{ %1 vgs

PR STy

Perhaps in retrospect, we’ll be able to visualize/interpret the black box

If so, do semantic constructs (eyes, mouths) play any role during learning?
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Post hoc 1nterpretat10n
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The three “wheel” parts sometimes fire on non-wheels.
We thought this meant that this was the wrong representation
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Post-hoc 1nterpretation
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Perhaps in retrospect, we’ll be able to visualize/interpret the black box
If so, what is the role of semantic tokens (eyes, mouths) when learning models?

Perhaps they are most crucial in defining the output...
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Direction 3: Diagnostic evaluation
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false positives per image
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Hoemm et al, ECCV12

miss rate
miss rate

bicycle

min area (%)

Everingham et al, [JCV10

Claim: diagnostic evaluation 1s just as important than
dataset collection, but is even less appreciated




Long tails complicate evaluation
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(a) Bus (b) Face

Less training instances mean unusual poses are harder to get right

Less test instances mean unusual poses impact performance less
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A look back

Pick a good problem
(c.f. robotics, HCI)

Putting temporal reasoning back into recognition
(more training data, online learning, functional labels)

Scalable representations
(semantic vs learned vs interpretable)

Diagnostic evaluation
(systematic progress)
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