A look toward the future of object recognition

Dева Ramanan

UC Irvine
Caveat

I’m no fortune teller!

I’ll try to frame the discussion around what I might like to hear if I were in your shoes.

Most of these thoughts are due to discussion with students, colleagues,...
A quote...

“Good researchers know how to solve problems; great researchers know what problems are worth solving”

-A senior colleague
What’s the killer app for computer vision?

...its worth revisiting the tasks we’re considering

“Good researchers know how to solve problems; great researchers know what problems are worth solving”

-A senior colleague
Some proposals:

Visual perception for self-driving cars
Some proposals:

Reconstruction of 4D world
Some proposals:
Surveillance (while ensuring privacy?)

“The work was painstaking and mind-numbing: One agent watched the same segment of video 400 times. The goal was to construct a timeline of images, following possible suspects as they moved along the sidewalks, building a narrative out of a random jumble of pictures from thousands of different phones and cameras. It took a couple of days, but analysts began to focus on two men in baseball caps who had brought heavy black bags into the crowd near the marathon’s finish line but left without those bags.”

Washington Post
Some proposals:
Assistive/medical technology
Entrepreneurial vision

Finding the right app will probably make you some $
Bird’s eye view

Vision

Graphics

Machine Learning

Robotics

HCI

Human-in-the-loop
But we’re scientists (not engineers), right?

Romantic notions of AI

Replicate human visual system

See-ing robot
What should a vision system report?

Object/scene/action category labels
Segmentations
Attributes

....
What is the relevant perceptual output here?
Learning to predict the future

In general, temporal analysis still seems to be a second-class citizen in the world of recognition.

Relatively in its infancy compared to static-image recognition.
Direction 1: integration of video into recognition

Using video for learning

8 years worth of video is uploaded to YouTube... each day

Humans arguably use motion
Biological motivation

Hubel and Weisel’s iconic experiments on simple vs complex “pooling” cells

Complex cells are tuned to movement

“Clicks” are action potentials generated by instrumented cortical neuron
Online never-ending learning

Tom Mitchell’s Never Ending Language Learning (NELL)

We should be processing a never-ending stream of input (temporal) data

Lots of untapped formulations for non-iid online learning (experts, bandits, etc.)
Egocentric vision

A killer app?
Functional prediction

If you know what can be done with a ... object, what it can be used for, you can call it whatever you please”

J. J. Gibson. *The Ecological Approach to Visual Perception*

“sittable” affordance label implies someone can sit *in the future*
Direction 2: Scalability
Direction 2: Scalability

Approach 1: Built thousands of models and compress them

Approach 2: Built representation that scales sublinearly with # of categories
 (c.f. compositional models)
Difficulties: long tails

PASCAL 2010 training data

- Person: 2000
- Chair: 1500
- Plane: 1000
- Train: 500
- Boat: 0
- Sofa: 0
- Cow: 0
Difficulties: long tails

PASCAL 2010 training data

“Zero-shot” learning: sharing

Friday, August 9, 2013
Difficulties: long tails

PASCAL 2010 training data

Zero-shot learning: synthesis

Friday, August 9, 2013
Explicit synthesis

Kinect pose estimation
Subordinate categories

How to sub-linearly encode fine-scale differences between object categories?
Comparison to deep networks

Deep models
- Naturally shares parameters
- Hierarchical
- Learned representation
- Difficult to train (need lots of data)

Part models
- Difficult to share across categories
- Trees / grammars
- Engineered representation
- Easier to train (100’s of examples)
As a field, we perform a human-in-the-loop search over representations, at the time-scale of years or decades

We must be able to do better!
Thought experiment

CPU cycles

Deep models
(learned, implicit)

Part models
(semantic)

Training data
Thought experiment

- Training data
- CPU cycles
- Part models (semantic)
- Deep models (learned, implicit)
- Doesn’t help (good + bad)
Why should representations be interpretable?
Why should representations be interpretable?

Detailed outputs (pose, landmarks) seem to “force” the black box to internally represent 3D shape.
Why should representations be interpretable?

Ignoring that, why do we need explicit semantic representations?
Why should representations be interpretable?

Practical issue (dataset bias)
Post-hoc interpretation

Perhaps in retrospect, we’ll be able to visualize/interpret the black box
If so, do semantic constructs (eyes, mouths) play any role during learning?
The three “wheel” parts sometimes fire on non-wheels. We thought this meant that this was the wrong representation.
Post-hoc interpretation

Perhaps in retrospect, we’ll be able to visualize/interpret the black box.
If so, what is the role of semantic tokens (eyes, mouths) when learning models?
Perhaps they are most crucial in defining the output...
Direction 3: Diagnostic evaluation

Hoeim et al, ECCV12

Dollar et al, 12

Everingham et al, IJCV10

Claim: diagnostic evaluation is just as important than dataset collection, but is even less appreciated
Long tails complicate evaluation

Less training instances mean unusual poses are harder to get right

Less test instances mean unusual poses impact performance less
A look back

Pick a good problem
(c.f. robotics, HCI)

Putting temporal reasoning back into recognition
(more training data, online learning, functional labels)

Scalable representations
(semantic vs learned vs interpretable)

Diagnostic evaluation
(systematic progress)