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PROBLEM

What plant species is this?
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WHY IDENTIFY PLANTS?

v

Field studies

Conserve biodiversity

Improve agricultural productivity
Develop educational tools, etc.
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WHY LEAVES?

» Discriminating for taxonomic identity.
» Present for much of the year (unlike more transient organs).
» Easily collected.
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MANUAL PROCESS

» Field guide:
» Pictures organized by family, shape, location or other
descriptors;
» Includes identification keys to assist with identification.

» Botanists generally proceed sequentlally and adaptlvely

» They compare observed characteristics around botanical
landmarks from one or more samples.
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DIFFICULTIES (I)

» Large number of biologically relevant plant categories
(more than 300,000 known species).

Large variation of patterns among fundamental features.
Ongoing shortage of skilled taxonomists.

However, botanical identification keys are much too
complex for most non-specialists.

Hence, an automated or even partially automated system
would have considerable value.
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DIFFICULTIES (II)

» Large intra-species variability and inter-species similarity.

llex aquifolium L. ‘ %
Quercus jlex L. " _.
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DIFFICULTIES (1)

» Heteroblastic leaf development.
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RELATED WORK

» Bird world
» Part localization with humans in the loop: Wah et al./ICCV
2011
» Poseltes: Farrell et al. ICCV 2011 and Zhang et al. CVPR
2012
» Bubbles game: Deng et al. CVPR 2013
» Dog world
» Face part localization: Liu et al. ECCV 2012
» Insect world
» Stacked evidence trees: Martnez-Muoz et al. CVPR 2009
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LEAF WORLD

» Shape-tree matching algorithm: Felzenszwalb and
Schwartz CVPR 2007

» Inner Distance Shape Context (IDSC): Ling and Jacobs
PAMI 2007

» Shape and Venation features: Park et al. Journal of System
and Software 2008

» Multi-scale curvature histograms: Kumar et al. ECCV 2012

» Multi-scale triangular representation: Mouine et al. ICMR
2013
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COARSE-TO-FINE

» Pre-defined species hierarchy, either

» Handcrafted (e.g., taxonomic), or
» By shape-based hierarchical clustering.

» A novel object representation is used to build efficient local
classifiers.
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EXAMPLE OF TREE-STRUCTURED HIERARCHY
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NOTATION

V: complete set of hypotheses (species).

Y = Y(/) € Y: true species of image /.

T tree graph.

t: node of 7.

C; C V: a set of categories associated with t.
Xi: classifier score for Y € C; versus Y ¢ C;.
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VANTAGE FEATURE FRAMES (l)

v

A representation for building X;.
Motivated by the strategy used by botanists.
Landmarks in the sense of vantage points.

What to look for in a neighborhood of the landmarks may be
category-dependent.
Hence,

» Where to look, and
» What to compute.
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VANTAGE FEATURE FRAMES (II)

» A frame F has two components
» Geometric component ©: a category-independent and local
coordinate system.
» Appearance-based component Z: a category-dependent
family of pose-indexed features.
» Z={Z24,..., 2N}, Where Z; is the set of local features to
compute in frame F.

» F must be both detectable and discriminating.
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LEARNING THE FRAMES (I)

» Leverage domain knowledge.
» Given a list of candidate origins {/, ..., I}, we associate
frames with a subset of these.

Petiole
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LEARNING THE FRAMES (Il)

» The orientation of the frame is determined by the centroid of
the object (the landmark points to the centroid).

» The unit distance is the approximative scale of the object.
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LEARNING THE FRAMES (Il1)

» The choice of landmarks is performance-based.

» During the learning, the locations of the landmarks are
manually annotated.

» The errors in automatically detecting the landmarks are not
considered in choosing the representation.

» The best performance is obtained with two frames
corresponding to apex and base of the leaf.
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DETECTING THE FRAMES (l)

» The orientation is determined by the centroid, which is
directly computed from the raw image data after a
segmentation process.

» The scale is taken to be the radius of the bounding circle.

» Each landmark is detected by a binary SVM classifier
trained on manually annotated images.
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DETECTING THE FRAMES (l)

» The features for SVM learning are defined in the local
coordinate system centered on the candidate landmarks.

» Invariant focusing of this nature is enabled by the type of
pose-indexed features Z introduced first for detecting cats.

» Given a frame, there is a candidate feature Z = Z(w, ) for
each (local) window w in frame coordinates and image
property j.

» Shape and texture were used as properties (i.e., Hough,
EOH and Fourier histograms were used as base features).
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OME LANDMARK DETECTION RESULTS



LEARNING THE FEATURES (I)

» A separate binary SVM score is built for each t (i.e., for
each C;).

» Each SVM employs a learned, category-dependent subset
of features Z..

» Category-dependent features increase recognition
performance.
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LEARNING THE FEATURES (lI)

» The probability distribution of each feature is estimated
under both hypotheses Y € C;and Y ¢ C; from the positive
and negative examples.

» For feature Z = Z(w, j), denote the two distributions by p,, ;
and p,, ;.

> Oy = [Py — Py

» Z; consists of the features with the M largest differences.
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CLASSIFICATION

» Given a pre-defined tree hierarchy 7 along with scores
X = {X:, t € T} how can we estimate the species Y(/) of
the leaf in / as accurately as possible?

» Standard method:

Report a single species Y.

Utilize Coarse-grained to fine-grained category identification.
Build a binary classifier for each t using X; (we use SVMs).
Process the hierarchy breath-first coarse-to-fine: at each
level, all the children of a positive node t are retained and
tested at the next level.

vy vV VvV VY
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LIKELIHOOD RATIOS

» Likelihood ratio:

P(Xt\Y = Ct)
L =BV c)

» Now threshold L;(/).

» Positive leaf-nodes (i.e., species) are then sorted according
their likelihood ratios.
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WHY LIKELIHOOD RATIOS? (I)

» The advantage of mapping the SVM score to a likelihood
ratio is that it takes into account the distribution under both
hypotheses.

» This mapping is not monotone, i.e, does not preserve the
ordering of SVM scores across a level, which might
naturally occur on different scales.
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WHY LIKELIHOOD RATIOS (lI)
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RESULTS (SWEDISH)

» Data: 15 Swedish species (1125 leaf images).

00000“0
el 21 X L 0o

» One-third of images for training (375 images)
» Two-third for testing (750 images)
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RESULTS (SWEDISH)

Table: Different results on the Swedish data

Methods Perf. (top-1)
Ours (taxonomic hierarchy) 98.4%
sPACT 97.92%
TSLA (triangular representation) 96.53%
Shape-Tree 96.28%
IDSC 94.13%
Shape Context 88.12%
Sdderkvist 82.40%
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RESULTS (IMAGECLEF)

» Data: 46 species (scanned simple ImageClef2011 leaves).

» Comparison between the ImageClef2011 score of our
method using a taxonomic hierarchy and those of the 8
participants at ImageClef2011.
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RESULTS (SMITHSONIAN)

» Data: 50 Smithsonian species (2160 leaf images).
¥ = §% e oo
g -’::O%“,,Q\,”
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» Two-third of images for training (1426)
» One-third for testing (734 images)
» Performance of shape-based hierarchy:

top-1 | top-2 | top-3 | top-5 | top-10 | top-15
66% | 81% | 87% | 92% | 94% | 94.5%
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CLASSIFICATION RESULTS (CONT)

The distribution of the number of species retruned
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SET-VALUED CLASSIFICATION (1)

» Motivated by applications, we consider another scenario:

» Suppose a specialist is perfect without any assistance from
a computer vision, i.e., could determine the true species
from one or more images from the same plant.

» Instead of providing a single predicted species Y, we report
aset Cc Y of species and the human then examines C.

» The key constraint is then P(Y € C) > 1 — ¢
» Performance criterion: minimize E|C| subject to the
constraint.

» Context: constructing C will take into account all the local
scores simultanesously?
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SET-VALUED CLASSIFICATION (Il)

» Restrict Cto {C;,t € T}.
» Obviously we need to compute P(Y € C;|X) where
X ={Xs}s.
» f(X|Y = s): density of X given Y = s, estimated from data.
» Assuming conditional independence of scores Y

FX|Y =
P(Y € CIX = x) = %eif((xy|v - j))

_ ZSECI HreT f(Xf| Y = S)
ZSET HreT f(Xl’| Y = S)
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SET-VALUED CLASSIFICATION (1)

» Define B(x) ={teT:P(Y € CG|X=x)>1—¢}.

» Note: B(x) is necessarily a sub-path in 7 originating at the
root.

» X — {(X) = argminicp(x)| Ci|
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Toy EXAMPLE ()
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Toy EXAMPLE (I1)

0.01 0.01
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Toy EXAMPLE (l11)

e=0.05
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RESULTS (I)

» Data: 50 Smithsonian species.

The distribution of the number of species retruned
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REsuLTS (Il)

Accuracy

Average size of the response

94%

2.4

» If the species are simply sorted according their SVM scores:

top-1 | top-2

top-3 | top-5 | top-10 | top-15

89% | 93%

93.5% | 94% | 94% | 94%
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ReEsuLTs (1)

» Data: 15 Swedish species.

The distribution of the number of species returned

Number of tested images
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RESULTS (V)

Accuracy

Average size of the response

99.6%

1.3

» If the species returned are sorted according their SVM

scores, we have the following performances

top-1

top-2

top-3

top-5

98.8%

99.6%

99.6%

99.6%
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CONCLUSION

» Vantage feature frames provide the cues needed to
distinguish between closely-related categories such as
plant species.

» Works as well as detailed boundary analysis for standard
classification.

» For applications (e.g., for botanists), reporting Y along with
other species is more valuable than reporting Y # Y.

» The same framework could be extended to be able to
consider several leaf images of the same plant.

» The more ambitious problem is to classify from more
challenging images.
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NATURAL PHOTOS
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