# FINE-GRAINED CATEGORIZATION OF BOTANICAL SHAPES

#### Donald Geman Johns Hopkins University

IPAM Summer School Institute for Pure and Applied Mathematics Los Angeles, August 9, 2013

#### COLLABORATORS

- Asma Rejeb Sfar (PhD student, INRIA)
- Nozha Boujemaa (INRIA)

### OUTLINE

- Introduction
- Representation
- Learning
- Classification
- Conclusion

#### PROBLEM



What plant species is this?

# WHY IDENTIFY PLANTS?

- Field studies
- Conserve biodiversity
- Improve agricultural productivity
- Develop educational tools, etc.

#### WHY LEAVES?

- Discriminating for taxonomic identity.
- Present for much of the year (unlike more transient organs).
- Easily collected.

#### MANUAL PROCESS

- Field guide:
  - Pictures organized by family, shape, location or other descriptors;
  - Includes identification keys to assist with identification.



- Botanists generally proceed sequentially and adaptively.
- They compare observed characteristics around botanical landmarks from one or more samples.

# DIFFICULTIES (I)

- Large number of biologically relevant plant categories (more than 300,000 known species).
- Large variation of patterns among fundamental features.
- Ongoing shortage of skilled taxonomists.
- However, botanical identification keys are much too complex for most non-specialists.
- Hence, an *automated* or even *partially automated* system would have considerable value.

# DIFFICULTIES (II)

Large intra-species variability and inter-species similarity.



# DIFFICULTIES (III)

Heteroblastic leaf development.



#### RELATED WORK

- Bird world
  - Part localization with humans in the loop: Wah et al. ICCV 2011
  - Poseltes: Farrell et al. ICCV 2011 and Zhang et al. CVPR 2012
  - Bubbles game: Deng et al. CVPR 2013
- Dog world
  - Face part localization: Liu et al. ECCV 2012
- Insect world
  - Stacked evidence trees: Martnez-Muoz et al. CVPR 2009

#### LEAF WORLD

- Shape-tree matching algorithm: Felzenszwalb and Schwartz CVPR 2007
- Inner Distance Shape Context (IDSC): Ling and Jacobs PAMI 2007
- Shape and Venation features: Park et al. Journal of System and Software 2008
- ▶ Multi-scale curvature histograms: Kumar et al. ECCV 2012
- Multi-scale triangular representation: Mouine et al. ICMR 2013

#### OUTLINE

- Introduction
- Representation
- Learning
- Classification
- Conclusion

#### COARSE-TO-FINE

- Pre-defined species hierarchy, either
  - Handcrafted (e.g., taxonomic), or
  - By shape-based hierarchical clustering.
- A novel object representation is used to build efficient local classifiers.

#### EXAMPLE OF TREE-STRUCTURED HIERARCHY



15 / 51

#### NOTATION

- ► *Y*: complete set of hypotheses (species).
- $Y = Y(I) \in \mathcal{Y}$ : true species of image *I*.
- $\mathcal{T}$ : tree graph.
- ► t: node of T.
- $C_t \subset \mathcal{Y}$ : a set of categories associated with *t*.
- $X_t$ : classifier score for  $Y \in C_t$  versus  $Y \notin C_t$ .

# VANTAGE FEATURE FRAMES (I)

- A representation for building  $X_t$ .
- Motivated by the strategy used by botanists.
- ► Landmarks in the sense of *vantage points*.
- What to look for in a neighborhood of the landmarks may be category-dependent.
- Hence,
  - Where to look, and
  - What to compute.

# VANTAGE FEATURE FRAMES (II)

#### ► A frame *F* has two components

- Geometric component ⊖: a category-independent and local coordinate system.
- Appearance-based component Z: a category-dependent family of pose-indexed features.
- ► Z = {Z<sub>1</sub>,...,Z<sub>N</sub>}, where Z<sub>t</sub> is the set of local features to compute in frame F.
- ► *F* must be both *detectable* and *discriminating*.

#### OUTLINE

- Introduction
- Representation
- Learning
- Classification
- Conclusion

#### LEARNING THE FRAMES (I)

- Leverage domain knowledge.
- ► Given a list of candidate origins {*I*<sub>1</sub>, ..., *I*<sub>K</sub>}, we associate frames with a subset of these.



#### LEARNING THE FRAMES (II)

- The orientation of the frame is determined by the centroid of the object (the landmark points to the centroid).
- The unit distance is the approximative scale of the object.

#### LEARNING THE FRAMES (III)

- ► The choice of landmarks is performance-based.
- During the learning, the locations of the landmarks are manually annotated.
- The errors in automatically detecting the landmarks are not considered in choosing the representation.
- The best performance is obtained with two frames corresponding to *apex* and *base* of the leaf.

# DETECTING THE FRAMES (I)

- The orientation is determined by the centroid, which is directly computed from the raw image data after a segmentation process.
- The scale is taken to be the radius of the bounding circle.
- Each landmark is detected by a binary SVM classifier trained on manually annotated images.

# EXAMPLE



# DETECTING THE FRAMES (II)

- The features for SVM learning are defined in the local coordinate system centered on the candidate landmarks.
- Invariant focusing of this nature is enabled by the type of pose-indexed features Z introduced first for detecting cats.
- ► Given a frame, there is a candidate feature Z = Z(w, j) for each (local) window w in frame coordinates and image property j.
- Shape and texture were used as properties (i.e., Hough, EOH and Fourier histograms were used as base features).

#### SOME LANDMARK DETECTION RESULTS



### LEARNING THE FEATURES (I)

- A separate binary SVM score is built for each t (i.e., for each C<sub>t</sub>).
- ► Each SVM employs a learned, category-dependent subset of features Z<sub>t</sub>.
- Category-dependent features increase recognition performance.

#### LEARNING THE FEATURES (II)

- The probability distribution of each feature is estimated under both hypotheses Y ∈ C<sub>t</sub> and Y ∉ C<sub>t</sub> from the positive and negative examples.
- For feature Z = Z(w, j), denote the two distributions by p<sup>+</sup><sub>w,j</sub> and p<sup>−</sup><sub>w,j</sub>.
- $d_{w,j} = |p_{w,j}^+ p_{w,j}^-|$
- $Z_t$  consists of the features with the *M* largest differences.

#### OUTLINE

- Introduction
- Representation
- Learning
- Classification
- Conclusion

# CLASSIFICATION

- Given a pre-defined tree hierarchy *T* along with scores X = {X<sub>t</sub>, t ∈ *T*} how can we estimate the species Y(I) of the leaf in *I* as accurately as possible?
- Standard method:
  - Report a single species  $\hat{Y}$ .
  - Utilize Coarse-grained to fine-grained category identification.
  - Build a binary classifier for each t using X<sub>t</sub> (we use SVMs).
  - Process the hierarchy breath-first coarse-to-fine: at each level, all the children of a *positive* node *t* are retained and tested at the next level.

#### LIKELIHOOD RATIOS

Likelihood ratio:

$$L_t(I) = \frac{P(X_t | Y \in C_t)}{P(X_t | Y \notin C_t)}$$

- Now threshold  $L_t(I)$ .
- Positive leaf-nodes (i.e., species) are then sorted according their likelihood ratios.

# WHY LIKELIHOOD RATIOS? (I)

- The advantage of mapping the SVM score to a likelihood ratio is that it takes into account the distribution under both hypotheses.
- This mapping is not monotone, i.e, does not preserve the ordering of SVM scores across a level, which might naturally occur on different scales.

# WHY LIKELIHOOD RATIOS (II)



# **RESULTS (SWEDISH)**

► Data: 15 Swedish species (1125 leaf images).



- One-third of images for training (375 images)
- Two-third for testing (750 images)

# **RESULTS (SWEDISH)**

#### Table: Different results on the Swedish data

| Methods                          | Perf. (top-1) |
|----------------------------------|---------------|
| Ours (taxonomic hierarchy)       | 98.4%         |
| sPACT                            | 97.92%        |
| TSLA (triangular representation) | 96.53%        |
| Shape-Tree                       | 96.28%        |
| IDSC                             | 94.13%        |
| Shape Context                    | 88.12%        |
| Söderkvist                       | 82.40%        |

# RESULTS (IMAGECLEF)

- Data: 46 species (scanned simple ImageClef2011 leaves).
- Comparison between the ImageClef2011 score of our method using a taxonomic hierarchy and those of the 8 participants at ImageClef2011.



# **RESULTS (SMITHSONIAN)**

Data: 50 Smithsonian species (2160 leaf images).



- Two-third of images for training (1426)
- One-third for testing (734 images)
- Performance of shape-based hierarchy:

| top-1 | top-2 | top-3 | top-5 | top-10 | top-15 |
|-------|-------|-------|-------|--------|--------|
| 66%   | 81%   | 87%   | 92%   | 94%    | 94.5%  |

# **CLASSIFICATION RESULTS (CONT)**



# SET-VALUED CLASSIFICATION (I)

- Motivated by applications, we consider another scenario:
- Suppose a specialist is perfect without any assistance from a computer vision, i.e., could determine the true species from one or more images from the same plant.
- Instead of providing a single predicted species Ŷ, we report a set Ĉ ⊂ 𝔅 of species and the human then examines Ĉ.
- The key constraint is then  $P(Y \in \hat{C}) \ge 1 \epsilon$
- Performance criterion: minimize *E*|*Ĉ*| subject to the constraint.
- Context: constructing Ĉ will take into account all the local scores simultanesously?

# SET-VALUED CLASSIFICATION (II)

- Restrict  $\hat{C}$  to  $\{C_t, t \in \mathcal{T}\}$ .
- Obviously we need to compute  $P(Y \in C_t | X)$  where  $X = \{X_s\}_s$ .
- f(X|Y = s): density of X given Y = s, estimated from data.
- Assuming conditional independence of scores Y:

$$P(Y \in C_t | X = x) = \frac{\sum_{s \in C_t} f(X | Y = s)}{\sum_{s \in \mathcal{T}} f(X | Y = s)}$$
$$= \frac{\sum_{s \in C_t} \prod_{r \in \mathcal{T}} f(x_r | Y = s)}{\sum_{s \in \mathcal{T}} \prod_{r \in \mathcal{T}} f(x_r | Y = s)}$$

# SET-VALUED CLASSIFICATION (III)

- Define  $B(x) = \{t \in \mathcal{T} : P(Y \in C_t | X = x) \ge 1 \epsilon\}.$
- ► Note: B(x) is necessarily a sub-path in T originating at the root.
- $X \rightarrow t(X) = \operatorname{argmin}_{t \in B(X)} |C_t|$

# TOY EXAMPLE (I)



# TOY EXAMPLE (II)



# TOY EXAMPLE (III)



# **RESULTS** (I)

#### Data: 50 Smithsonian species.



# **RESULTS (II)**

| Accuracy | Average size of the response |
|----------|------------------------------|
| 94%      | 2.4                          |

If the species are simply sorted according their SVM scores:

| top-1 | top-2 | top-3 | top-5 | top-10 | top-15 |
|-------|-------|-------|-------|--------|--------|
| 89%   | 93%   | 93.5% | 94%   | 94%    | 94%    |

# **RESULTS (III)**

Data: 15 Swedish species.



# RESULTS (IV)

| Accuracy | Average size of the response |
|----------|------------------------------|
| 99.6%    | 1.3                          |

 If the species returned are sorted according their SVM scores, we have the following performances

| top-1 | top-2 | top-3 | top-5 |
|-------|-------|-------|-------|
| 98.8% | 99.6% | 99.6% | 99.6% |

#### OUTLINE

- Introduction
- Representation
- Learning
- Classification
- Conclusion

#### CONCLUSION

- Vantage feature frames provide the cues needed to distinguish between closely-related categories such as plant species.
- Works as well as detailed boundary analysis for standard classification.
- ► For applications (e.g., for botanists), reporting Y along with other species is more valuable than reporting  $\hat{Y} \neq Y$ .
- The same framework could be extended to be able to consider several leaf images of the same plant.
- The more ambitious problem is to classify from more challenging images.

#### NATURAL PHOTOS

