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Plan of Talk

Part I:

Compositional Models: Unsupervised
Learning.

Part Il:

Compositional Models: Complexity of
Representation and Inference.

Note: Compositional Models relate closely to
Grammatical Models (see tomorrow).



Compositional Models of Objects

B Compositional Models represent objects in terms of
object parts and their spatial relations.

B These parts are represented recursively in terms of
subparts (with spatial relations), and sub-subparts,...

B Detecting an object also estimates the positions of its
parts and subparts automatically.

B Composition allows explicit part-sharing, yielding big
gains in computational efficiency (2nd part).

B This talk describes unsupervised learning algorithms
which learn representation of objects.



Compositional Models: Examples

B Examples: Models of Baseball Players and Horses.

® Executive Summary: High-level nodes encode
coarse descriptions of object. E.g., centroid position

W Detalls (e.g., leg positions) are specified by lower-
level nodes.
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Figure 4. The AND/OR Graph Model (Zhu, Chen, Lin,
& Yuille, 2010). The Baseball player is an AND of the
head and torso, and left and right legs, but the head is
an OR of straight head and torso or an inclined head and 4

torso (top left).



|T’rior and Related Work

® Prior work on compositional and grammatical
models of vision: typically hand-specifies the
graphical and grammatical structures of the
models. Although the parameters are learnt.

B S. Geman, S. Todorovic, SC Zhu, D.B. Mumford,
L. Zhu, A.L. Yulille, P. Felzenzswalb, C. Williams.

M |t Is desirable to learn the structure of these
models automatically.



‘ Advantages of Explicit Representations

‘ Compositionality

Construct models by composing smaller elements.

This enables:

(1). Ability to transfer between contexts and generalize or
extrapolate (e.g. , from Cowto Yak).

(2). Ability to reason about the system, intervene, do
diagnostics.

(3). Allows the system to answer many different questions
based on the same underlying knowledge structure.
‘An embodiment of faith that the world is knowable, that one
can tease things apart, comprehend them, and mentally
recompose them atwill.” K. Holyoak.

“The world is compositional or God exists” 5. Geman. : 6



‘ Mathematics of Compositional Models

‘ Part 2: Compositionality

B Build models forelementary components.
B What is a Compositional Model?

® A probability distribution defined over a graph
specified by parent-child relations:

H P(ff‘h(b’) |X,, )PI: (xl‘ﬂﬂt ]
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Key Property: Modularity

 The probability distribution of an object is composed
from parts composed of subparts.

e This enables you to make new distributions — by
extracting one part of the object and replacing it by a
different parts. Or by altering the parameters of the
parts (e.qg., making a leg thicker).

 These changes can be done in a modular manner.

e More generally, construct a distribution by building it
from elementary parent-child components.

e Modularity enables us to learn the distributions, one
parent-child cligue at a time.



i’arent-Child components: basic building blocks
B Parent-Child determinism:

P(Xcnw)|Xu, Av) = 0(Xp — £(Xenw)) JM(Xu: Av)

M f() Is a deterministic function

® Executive summary — e.g., parent node encodes
average position.

® h() spatial relations between child nodes.
Specified by parameter lambda.

M Prior propagation: If object has uniform prior
position, then subpart has uniform prior.
Pp(xu,‘) = Z 5(Xu R f( i’(“h(u) ) )h(f(.'h(r/): A;/)Pp(_xu )

x(‘h(w] /xlf;'



Parent-Child Example:

B Executive summary: parent node take mean
position of child nodes.

B Spatial relations between parts are specified by
Gaussian distribution on relative positions.

(Xp. Xy, Xy ) = (2. 2y, . Z,, ). Spatial position
z, = z,,,2,,) = 1/2(z,, + 2Z,,)
h(z,,.z,,: A\,) = N(z,, — z,,: m, o), Gaussian
P,(z,) = U(z,). the uniform distribution

(. tranc<latinn orann
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Compositional Models for T and L

W HowtomakeaToranlL?
B Dictionary of Level-0 models:
W E.g., horizontal or vertical bars.

M Level-1 model —T or L —is a composition of two
Level-O0 models plus spatial relations..

B Child nodes: horizontal or vertical bars.

Ar = (ursor) AL = (pL,0L)
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Compositional Learning: dictionaries.

W Start with a dictionary of Level-0 models.

M Learn a Dictionary of Level-1 models by
combining models from the Level-0 dictionary.

B Repeat to build Level-2 dictionaries and high-
level dictionaries.

A o
/l\ 3. 1/’\ N /l\/ . ;J\_,\n l_ A\ \7/ )\ )/ OR -----
| —/ N | — \
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Examples of dictionaries for 120 objects.
B The mean shapes of elements of dictionaries at:
Level-0, Level-1, Level-2 Level-3, Level-4.

B Note: the dictionaries are probability distribution,
but we only show their mean shapes.
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Multiple Objects:

B Multiple objects can be represented in terms of
these hierarchical dictionaries.

® This enables part-sharing between objects —
dictionary elements used in several objects.

B Part-Sharing enables efficient learning,
representation and inference. (2"9 part).
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Inference on Compositional Models.

® We perform inference using Dynamic
Programming (message passing).

B Bottom-Up propagates local hypotheses to
obtain consistent top-level interpretations.

B Top-down disambiguates local hypotheses.

B Discussed in detail in 2"d part. Inference can be
parallelized.

15



Unsupervised Learning

Automatically learns a hierarchical set of
dictionaries.

Method: clustering, efficient encoding.

Theory: parallel search through set of possible
generative models of the data.

Number of levels is determined automatically
by the algorithm.



How to Learn Compositional Models?

Cocktail party problem — object in cluttered

background. —;[I

Hard Learning Problems: (unsupervised)

Do not know the graph structure of the model (e.g.,
no. of levels)

(ii) Do not know the assignment of leaf nodes of the
model to the data.

(iii) Do not know the model parameters (lambdas).




Strategy: Exploit Modularity

Start by learning the lowest levels of the dictionaries —
i.e. the smallest parts.

Learn these dictionary elements separately. Allow for
overlap — we can enforce consistency later.

Each dictionary element gives an encoding of the data
which is better than the encoding by the root model
(uniform distribution).

Proceed level by level. Build new models by composition
from models at lower levels. Impose consistency of
assignments during composition.



Parallel Search in Model Space

‘*""O + .+( Level-2 part -infrequent

*-{-. O-l-( Level-1 parts - frequent
/ | | *‘I‘O '+( Level-1 parts — infrequent
level2 P2 | ' |1 1P * O . ( Level-0 parts — infrequent

Low-level models may perform poorly by themselves,
but may combine well to form good high-level
compositions.

Do not reject weak models too soon.



Horse Dataset: L.Zhu et al. 2008.

* Input Images: Horse Dataset. 10 images used
for training. 300 for testing.
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Compositional Learning




Generic Parts to Object Structures

* As we go up the hierarchy, the dictionaries
mimic the features used in low-level, mid-
level, and high-level vision.

e E.g., Mid-level gives ‘gestalt rules’

 High-level is specific to the object. Low-, and
mid-level are more generic.




Dictionaries and part sharing.

W Sharing of parts between 120 objects (horizontal)

o Vertical — Level-1, :Level-2,..

W Part sharing Is very frequent at low levels. But
less sharing at higher levels.
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Brief Mathematical Descriptions

B The input to computational learning are a set of
Images. We assume a set Moof level-0 dictionary
models, which are pre-specified — e.g., edge
detectors.

B For each image, we obtain a set of points with
their corresponding types: (xi; tau(x)).

B The type — tau — indicates the element of the
level-0 dictionary (e.g., horizontal or vertical bar).

24



Brief Mathematics: Better encoding.

To create the level-1 dictionaries we cluster sets of r points from {(z;. 7(x;))} which have fixed 7 =
(71,...,7,) to find frequently occurring spatial relations (e.g., the spatial relations between the horizontal
and vertical bars for the 7" and L). Hence we search for examples {(z,7),....(2%,7.) : p=1,..,n} and
parameters A such that:

P(7, 3", 7))

log —=
- H;’:l PD(I?‘~ Ti))

where z# is the optimal estimate of the parent node — i.e. 2# = arg max, P(z*, 7|##,7,\) — Pp(z;) is a
default distribution for the positions of the points (e.g., the uniform distribution), and K is a threshold.

> K, Yy (8)

We take the local maxima over the value A to obtain a level-1 dictionary M. Each dictionary element
is indexed by its type 7! = (7, \!), where 7 are the types of the r children, and \; parameterizes the
spatial relations. We do nor impose consistency so a pair (z,7) can be used in many different clusters.
This lack of consistency is desirable because we do not want to make premature decisions. It gives an
over-complete representation of the image in terms of level-1 models. Note that this equation is similar

to thresholding the local evidence for a part, with the main difference being the lack of the data terms
l()g ;:(;‘|T(I-r))
(I(z)|ro0)"
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What Inputs to Use?

B The work described above uses edges as
iInputs. But alternative features can be used.

B For example, we can use HOG-Bundles
(Mottaghi and Yuille 2011). These are built from
HOG features by local spatial grouping.

B Note: edges have disadvantages because there
are many of them and have similar properties.
HOG-bundles are fewer and easier to
differentiate.

26



HOG-Bundles

e Start with HoG-bundle representation of images.

e Hog-bundles: HOGs detect edges — HOG-bundles group by
proximity and collinearity.

* HOG bundles often correspond (roughly) to parts of object.




ETHZ dataset =4 1 :

e Learnt models for each category of the ETHZ
dataset. Rectangles represent the HOG
bundles.

e No. of parts and relative position/orientation
is learnt automatically.

== P

- — . \
LF I i :

= " v B » * B -~

: ' -l |

™ ] : 5 r \
[ il : 1
~ - j |

T



Multiview Car Dataset

e Learns models for different viewpoints
(automatically). Test on Car dataset (Su, Sun,
Fei Fei, Savarase 2009).

e Performance was best — expect for methods
with explicit 3D car models. =




Any Relation to Neurons?

M There are some interesting relations to work by
L. Valiant in Circuits of the Mind.

B Valiant studies how sets of “neuroids” could
automatically store memories of conjunctions,.

B His more recent work considers memorizing
conjunctions of conjunctions — analogous to
higher level compositions.

B His interest was In Random Access Memory
models. But the same ideas could be used for
compositional models.
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Summary of Part 1.

B Compositional Models represent objects explicitly
In terms of parts, subparts, and spatial relations.

B This explicitness enables diagnostics and transfer.

B Unsupervised learning — learns dictionaries
bottom-up exploiting modularity.

B Part-sharing — makes learning efficient.

W Efficiency of Inference and representation and
parallel implementation (2nd talk).

® But will they work on Pascal or ImageNet?

31



References:

B S. Geman et al.. Composition Systems. Quarterly
of Applied Mathematics, 60. 2002.

B S.C. Zhu and D.M. Mumford. A Stochastic
Grammar of Images. 2006.

B D.M. Mumford and A. Desolneux. Pattern Theory.
2010

M L. Zhu et al. Unsupervised Structure Learning.
ECCV. 2008.

M L. Zhu et al. Part and Appearance Sharing. CVPR
2010.

m D NMaAattanhi anAdA A | Vinlla A ~rArmnAcitinnal >



Compositional Models
Part Il: Complexity of Representation
and Inference

A.L. Yuille UCLA

“Compositional Models and the
Fundamental Problem of Vision”?



Hierarchical Models

 One of the hopes, and expectations, of
hierarchical models is that they can represent
complex structures in terms of compositions
of elementary components — shared parts.

e This should yield big gains in the complexity of
representation and inference.

* But how can we analyze and quantify this?



A Fundamental Problem of Vision

Complexity:
Set of images is almost infinite (Kersten 1987).
No. of objects is big 30,000 (Biederman 1984).

But the human brain can detect objects and
understand scenes within 150 msecs.

And we want computer vision systems to do the
same.



The Fundamental Problem

This lecture explores this fundamental problem
from the perspective of compositional models.

Quantify the gains of part sharing and executive
summary. (Recall objects have a hierarchical
distributed representation).

(1): We analyze compositional models and show
they can yield exponential gains in efficiency.

(Il) We perform a similar analysis for a novel
parallel implementation of compositional models.

(111) Speculations about the Visual Cortex.



Compositional Models:

B Examples: Graphical Models for Horses and Players.

® Executive Summary: High-level nodes encode
coarse descriptions of object. E.g. centroid position

W Detalls (e.g. leg positions) are specified by lower-
level nodes.
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Figure 4. The AND/OR Graph Model (Zhu, Chen, Lin,
& Yuille, 2010). The Baseball player is an AND of the
head and torso, and left and right legs, but the head is
an OR of straight head and torso or an inclined head and 5

torso (top left).



Compositional Model of a Single Object

M Each Object is represented by a graphical
model.

B Generative for positions of parts.

£) = P(zn) | | P(@ehilai ),
® Basic Building Block: Child-Parent Models:
P(Xenw)|Xu. Av) = 0(Xy — f(Xenw))  h(Xp: Av)

B Generative model for data.

PI{xz:leL})= [] PU(z)|r(z)) H P(I(z)|7).
re{z}



anmples

W Left: T's, L’s, and their compositions.

B Right: Executive summary — quantified by a
Spatial decay factor q — lower resolution needed
for higher-levels of the hierarchy.

(a) (b)



Inference for a Single Object

M For each object, we can perform inference using

Dynamic
B Bottom-U

Programming (message passing):

D and Top-Down pass (c.f.

Inside/outside algorithm).

P(I(z)|r(z))

#* — arg lllﬂ.‘({ E l()f_’; —— 4 E | l{,lg’ [7|r, "hv) |J‘:,: Tu | = = ll}f._{ L’l:.rH I}
7 a P(I(x)|m0)
. v




Compositional Inference: Bottom-Up

B DP Example: Level-2 state. 7 = (z, 21, 22, 11, T12, T21, T22).

M Inference Task is to maximize:
log P(xy, z5|xz) + log P(xyy, x12|xy) + log P(x5y, T9s|x5)

T P(I(l‘ll)‘T(Ill)) , _ P([(IIEHT(IIB)) = $op P(I(-T'2|)|T(I21)) N log P(f(-l‘zz)\T(-i';z)S_

+ log

P(I(z11)|70) P(I(z12)|70) P(I(z21)|70) P(I(z22)|m0

B DP: bottom-up (first step) Computes set

{z1,¢(zq)} and {z3, d(22)}

P(I(z11)|7(z11)) P(I(z12)|7(z12))

’(xy) = max {log P(zy,, x12|x;) + log + log _ =

. By ?(21) 111.1"12{ 5 11> T12{71) - P(l'll|70) P(I(z12, |TO,)
o P(I(x91)] "91) P(I Io22)|T\ T2
o(z2) = lll;lai‘\){log P(z21, 192|72) + log (PE;(“;);)(;;; . +log (PEI(ZI~1|.))(|TO) -

[] Repeat: ¢(z) = max{log P(z,, z3|z) + ¢1(x1) + ¢2(z2)}

z1,T2



Compositional Inference: Top-Down
B Top-Down: Estimate r* = arg max ¢(x).

B Repeat:

(z], x3) = arg max {log P(zy, z2|z") + ¢1(z1) + @2(22)}

(r1.,72)

*

B And so on to obtain:  Z11 T12s T35 Too:
B Intuition: propagate up hypotheses about the
states of subparts of the object. Increased

context as you rise up the hierarchy, less
ambiguity. Estimate coarse structure first ---

executive summary. Top-down uses high-level
context to resolve low-levels ambiguities.

10



Inference: Illustration

B Bottom-Up
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Theories of the Visual Cortex

@ Most theories of the visual cortex assume
bottom-up/feedforward processing — but some
advocate top-down generative approaches.

B Compositional models have aspects of both.
They are generative (e.d., synthesis and
attention). But allow rapid inference.

M Inference Is done by propagating hypotheses
upward in a feedforward pass, followed by a top-
down pass to remove low-level ambiguities.

® “High-level vision tells low-level to stop
gossiping”.Murray, Kersten et al.’s fMRI study.

12



Complexity of Inference for a Single Object

® \We can analyze the complexity of inference for a
single object — standard analysis of DP.

M Factors:

® (1) No. of Layers -- H.

M (i) Noof c
M (i) No. of

hildren In parent-child ---r.

parent-child configurations — C_r

B (lv) Spatial decay factor (ex. summary.) -- q

B Assumed to be the same at all levels of the

hierarchy.

13



Multiple Objects: Part Sharing

M If parts and shared between objects we can
share the computation between many objects —
or many instances of the same object.

B Captured by hierarchical dictionaries:a,b,c,A,B.

B Model competition — at top-level — determines
which object is present (if any),

® No need to train a final classification stage! (Rev.)

b Or

A B £\ A B

a b bé¢ / 0 a bl
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Part Sharing Example: L.Zhu et al. CVPR 2010

W Sharing of parts between 120 objects (horizontal)
W Left: Part Sharing (black)

B Right: Dictionaries — mean shapes only.
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Multiple Objects: Inferences

M Inference is performed on the dictionaries with
model competition at top-level.

B Recall that a dictionary element at level | is
composed (by parent-child relations) of
dictionary elements at level |-1

B The complexity of inference depends on the
number of dictionary elements.

B Exact inference — relations to UAI work on
techniqgues for speeding up inference on
graphs? (E.g., Darwiche and Chol).

16



Parallel Implementation.: Convolutional
Compositions?
® Dynamic Programming is naturally parallelized.

B Make copies of the dictionaries at different spatial
positions.

B Fewer copies at high-levels (executive summary).

® Non-Linear “Receptive Fields”:

...................
llllllll
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Parallel Implementation of DP

B The bottom-up pass is an AND-like operation
followed by an OR-like operation.

® The top-down pass selects the child
configuration with maximum score.

Tl AL ;‘.X{ 11‘]7}: f’.:._,- 1,472 :. . '-"'I |: 41 :l . 1“)2 . I | 'y
| - :
logPlz1,22) + i (27) + @2(22) }
max {]-:'l'.',tr";.'_. T2) + nilxy) + ¢2022),.. ., oyl
Bottom Up \ ' Top Down
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Complexity for Single Objects.

W The complexity of DP — bottom-up pass is:
® D O size of Iimage lattice

® C_r no. child-parent configurations.

® H no. of levels

M r no. of children (e.g. r=3)

M g scale decrease factor (executive summary).

H H—1

H‘
» ' - d [ ) / —~y ) { [ .,; y = | { ]‘ ' { \ :
Npu = E Ipto|( 'v'f'H"‘],‘-" r :"‘L — DH|( r"'H E \q/7) = ’D“i Cr ll_ ‘[’{] —\q/T "H}‘
h=1 h=1 |
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Serial and Parallel Impl. with Part Sharing

W If we do not share parts, then computation scales by
the no. M_H of objects.

M For serial Impl. — with part sharing — the complexity
depends on the dictionary size M_h at levels h:

7

.\'p_‘ —_ JDH (-.r'r Z ‘.\"h l}h.

l‘ ! l

® Parallel Impl — comp. time linear in no. level H.

B But requires no. “neurons”. Copies of dictionaries.

H
Z [M|q" [ Dol.
h

M Trade-off — speed neurons
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Analysis: Inference Regimes

 The complexity gains depends on the no. of
shared parts: M_h at level h.

* Three Regimes:
* (i) The exponential growth regime (shape?)
 (ii) The empirical regime (CVPR 2010)

 (iii) The exponential decrease regime
(appearance?)



Exponential Growth Regime

* This regime is natural for shapes (at the low
levels, at least).

e Dictionary elements at one level can be
composed with most other dictionary

elements to form the dictionary at the next
level.

Result 1: If the number of shared parts scales exponentially by [M| o« = then we can perform
4
inference for order g™ objects using part sharing in time linear in . or with a number of neu-

rons linear in H for parallel implementation. By contrast, inference without part-sharing requires
exponential complexity.



Empirical Regime

e This regime was learnt by the unsupervised
algorithm (15t part). L.. Zhu et al. CVPR 2010.

 Note: similar to the exponential growth
regime for the first few levels, then size of
dictionaries decays quickly.

Result 2: 1f | M;,| grows slower than 1/¢" and if |[M),| < r®~" then there are gains due to part
sharing using serial and parallel computers. This is illustrated in figure (7)(center panel) based on
the dictionaries found by unsupervised computational learning [19]. In parallel implementations,
computation is linear in ‘H while requiring a limited number of nodes (“neurons™).



3d Regime: Exponential Decay

e M_h decreases exponentially with h.

e This is the “appearance” regime?

e Intuition: low-level give detailed description:
e (i) Siamese cat fur, (ii) Cat fur, (iii) fur,.

 Executive summary in appearance.

A% wANS '\.!Il\\.l::\." e r"ltl AR AN B \.'\.Jlllrf\.‘klll:-

Result 3: 1f |[My,| = r™~" then there is no gain for part sharing if serial computers are used, see
figure (7)(right panel). Parallel implementations can do inference in time which is linear in H but
require an exponential number of nodes ("neurons™).



Complexity in Figures.

 These illustrate complexity for the three
domains.

—

(a) (b) (c)



e Exponential Decay Regime

This regime is intriguing. It may corresponds to

representing the full appearance of objects, and not just
their edges.

Low-level dictionaries represent local appearance
patterns.

In the parallel impl, it requires a very large no. of
“neurons” at the lowest levels.

Implications for the brain? It suggests that there should
be many low-level dictionaries with many local copies.

Note: 70% of neurons in the visual cortex are in the low
levels. V1 and V2? 30% of the cortex.



Summary

Complexity Analysis of Compositional Models.
Serial and Parallel Implementations.

Gains due to part sharing — compositionality —
depend on how the part dictionaries scale
with level. Three regimes.

Visual Cortex speculations: can we derive the
structure of the cortex from first principles —
as a hierarchical pattern recognition device
which is efficient for representation and
inference?
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