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Why estimate visual motion? 

 
•  Tracking 
•  Segmentation 
•  Structure from motion 
•  Action recognition 
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Action recognition and motion 
•  http://astro.temple.edu/~tshipley/mocap/dotMovie.html 

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", 
Perception and Psychophysics 14, 201-211, 1973. 
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Motion Field 

•  P(t) is a moving 3D point 

•  Velocity of scene point:  
V = dP/dt 

•  p(t) = (x(t),y(t)) is the projection of P in the 
image. 

•  Apparent velocity v in the image: given by 
components  

 u = dx/dt and v = dy/dt 
 

•  Considering dt =1: p(t+1) = p(t) + (u,v) 
•  Motion estimation task: 

–  Estimate  

6 

P(t) 
P(t+dt) 

V 

p(t) 
p(t+dt) v 

(u,v) 

Slide credit: S. Lazebnik 
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Brightness constancy constraint 

•  Image is projection of 3D environment 
•  Each pixel: projection of a surface patch 
•  Pixel intensity influenced by 3D surface, incident light, camera … 
•  Assumption: intensity of surface patch remains constant 
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Slide credit: Georg Langs 
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Brightness constancy constraint 

I(x, y, t� 1) = I(x+ u(x, y), y + v(x, y), t)

I(x, y, t� 1) ' I(x, y, t) +
@I

@x

u(x, y) +
@I

@y

v(x, y)

Constraint: 

Taylor expansion of RHS: 

t� 1

t
(x, y)

(x+ u(x, y), y + v(x, y))

Brightness Constancy Constraint: 
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Optical flow estimation: 
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Optical flow estimation - 2D to 1D 

•  Two input images 

Slide credit: Georg Langs 
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•  How can we estimate the displacement? 

Optical flow estimation - 1D case 

Slide credit: Georg Langs 
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Optical Flow Estimation – 1D case 

•  Known: Gradient, Difference of intensities at x-d 
•  Unknown: d 
 

How about 2D? 
Slide credit: Georg Langs 
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Brightness constraint: not enough for 2D! 
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unknown flow parallel to the edge 
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The Aperture Problem 
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Perceived motion 
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The Aperture Problem 
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Actual motion 
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Optical flow uncertaintly 
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Overcoming the aperture effect 

Brightness constancy constraint 
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Overcoming the aperture effect 

united we move 

Brightness constancy constraint 
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Lucas-Kanade 

Au = b

✏ = Au� b
✏T ✏ = bTb� 2uTATb+ uTATAu

ATAu = ATb
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Rewrite: 25 equations, 2 unknows  

Residuals: 

Cost: 

Minimization: 

B. Lucas and T. Kanade. An iterative image registration technique with an application to 
stereo vision. IJCAI, 1981. 
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Lucas-Kanade, continued  

ATAu = ATb
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Is it invertible? 

B. Lucas and T. Kanade. An iterative image registration technique with an application to 
stereo vision. IJCAI, 1981. 
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Second Moment Matrix 

Distribution of gradients: 
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Second Moment Matrix 

Distribution of gradients: 
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Second Moment Matrix 

Distribution of gradients: 
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Second Moment Matrix 

Distribution of gradients: 

J = G⇢ ⇤
h
(rG� ⇤ u)T (rG� ⇤ u)

i
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•  Eigenvectors                   : directions of 
maximal and minimal variation of u 

•  Eigenvalues: amounts of minimal and 
maximal variation u 

Second Moment Matrix 

J = G⇢ ⇤
h
(rG� ⇤ u)T (rG� ⇤ u)

i
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Local structure and motion estimation 

�1 ' 0,�2 ' 0 �1 large,�2 ' 0 �1,�2 : large
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Interpreting the eigenvalues 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2 

λ1 and λ2 are small “Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of image points using eigenvalues of the 
second moment matrix: 

Slide credit: K. Grauman 
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SSD measure 

–  Sum of squared differences 
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High-Texture Region 
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–  Gradients are different, large magnitude 
–  Large λ1 , large λ2 
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Edge 
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–  Gradients very large or very small 
–  Large λ1 , small λ2 
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Low-Texture Region 
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–  Gradients have small magnitude 
–  Small λ1 , small λ2 
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Shi-Tomasi feature tracker 

1.  Find good features (min eigenvalue of 2×2 Hessian) 
2.  Use Lucas-Kanade to track with pure translation 
3.  Use affine registration with first feature patch 
4.  Terminate tracks whose dissimilarity gets too large 
5.  Start new tracks when needed 
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Tracking example 

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.  
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Lucas-Kanade and the aperture effect 

I
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Brightness constancy +  neighboring pixels have same (u,v) 

5x5 window: 25 equations, 2 unknowns 

Solve the system around each pixel separately  
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Lucas Kanade Horn Schunk Anisotropic 

Dense Lukas Kanade 
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Minimum condition 

Horn-Schunk and the aperture effect 

Brightness constancy +  flow smoothness: 

Minimize with respect to u(x, y), v(x, y)

Euler-Lagrange derivative: 

J(u, v) =
1

2

ZZ
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dxdy

B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence, 1981. 
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Horn-Schunk results 



37 Introduction to Linear Image Processing 

Lucas-Kanade revisited 

•  General expression for LK criterion: 

•  LK flow 

•  How does this compare with Horn-Schunk criterion? 
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Lucas-Kanade meets Horn-Schunk 
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Bruhn-Weickert-Schnoerr 

Horn-Schunk 

Lucas-Kanade 

A. Bruhn, J. Weickert, C. Schnörr: 'Lucas/Kanade meets Horn/Schunck: Combining 
local and global optic flow methods.' IJCV 2005 
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Horn-Schunk 
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Bruhn-Weickert-Schnoerr 
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Bruhn-Weickert-Schnoerr, continued 
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Spatio-temporal regularization 

Robust norms: 
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Bruhn-Weickert-Schnoerr 
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Bruhn-Weickert-Schnoerr - anisotropic 



44 Introduction to Linear Image Processing 

Bruhn-Weickert-Schnoerr – flow regularization 
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Numerical solutions 
•  Euler-Lagrange: 
 
•  Numerical approximation to  Laplacian 

 

•  Sparse linear system in u,v 
–  Gauss-Seidel, Successive Over Relaxation (SOR) 
–  Multigrid 
–  12 fps, 2006 
 
 

A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comput., 1977. 
D. Terzopoulos, Image Analysis Using Multigrid Relaxation Methods, PAMI, 1986 
A. Kenigsberg, R. Kimmel, and I. Yavneh, “A Multigrid Approach for Fast Geodesic Active Contours,” 2001 
G. Papandreou and P. Maragos, "Multigrid Geometric Active Contour Models", TIP 2007 
A. Bruhn, J. Weickert, T. Kohlberger, C. Schnörr: A multigrid platform for real-time motion computation 
with discontinuity-preserving variational methods. IJCV 2006 
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Optical Flow: Iterative Estimation 

x x0 

Initial guess:  
Estimate: 

estimate 
update 

(using d for displacement here instead of u) 



47 Introduction to Linear Image Processing 

Optical Flow: Iterative Estimation 

x x0 

estimate 
update 

Initial guess:  
Estimate: 



48 Introduction to Linear Image Processing 
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x x0 

Initial guess:  
Estimate: 
Initial guess:  
Estimate: 

estimate 
update 
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Optical Flow: Iterative Estimation 

x x0 
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Large Displacements: Reduce Resolution! 
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Coarse-to-fine Optical Flow Estimation 
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Image 2 Image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

Image 2 Image 1 u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 
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Coarse-to-fine Optical Flow Estimation 
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Image 2 Image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

Image 2 Image 1 

Run iterative OF 

Run iterative OF 

Warp & upsample 

. 

. 

. 
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Beyond the brightness constancy constraint 

SIFT flow: dense correspondence across different scenes, C Liu, J Yuen, A 
Torralba, J. Sivic, W. Freeman, ECCV 2008 
 
T. Brox, J. Malik, Large displacement optical flow: descriptor matching in 
variational motion estimation, PAMI 2011 
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Beyond the brightness constancy constraint 
E. Trulls, I. Kokkinos, A. Sanfeliu, and F. Moreno, Dense Segmentation-Aware 
Descriptors, CVPR 2013 
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Motion-based action recognition 
Discovering Discriminative Action Parts from Mid-Level Video Representations, 
M. Raptis, I. Kokkinos and S. Soatto. CVPR, 2012.  
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Motion-based segmentation 

Unsupervised segmentation incorporating colour, texture, and motion. T Brox, M 
Rousson, R Deriche, J Weickert, IVC 2010 
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Further Literature Pointers 

 
 
 
 
 
 

Layered motion, parametric models, motion segmentation: 
Layered Representation for Motion Analysis. CVPR 1993. J. Wang and E. Adelson 
Black, M. J. and Anandan, P., The robust estimation of multiple motions: Parametric and 
piecewise-smooth flow fields, CVIU 1996 
D. Cremers, S. Soatto, Motion Competition: A Variational Approach to Piecewise 
Parametric. Motion Segmentation, IJCV 2004 
Unsupervised segmentation incorporating colour, texture, and motion. T Brox, M 
Rousson, R Deriche, J Weickert, IVC 2010 
(wait for R. Szeliski’s talk) 
 
Learning: 
Roth, S., Black, M.J.: On the spatial statistics of optical flow. IJCV 74, 33–50 (2007) 
 
Discrete optimization: (W. Freeman’s talk today) 
Fusion Moves for Markov Random Field Optimization. V. Lempitsky, C. Rother, S. Roth, 
and A. Blake, PAMI 2010.  
B. Glocker, N. Komodakis, G. Tziritas, N. Navab, N. Paragios  Dense Image 
Registration through MRFs and Efficient Linear Programming MIA, 2008 
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Code 

 
•  Secrets of optical flow estimation and their principles, Sun., Roth., 

and Black, CVPR 10 
•  T. Brox, J. Malik, Large displacement optical flow: descriptor 

matching in variational motion estimation, PAMI 2011 
•  Action recognition & descriptor works: 

–  http://vision.mas.ecp.fr/Personnel/iasonas/code.html 
•  Registration service: http://cvn.ecp.fr/ 
•  www.ipol.im 


