# Model fitting and regularization

## (discrete optimization approach)

Yuri Boykov

# Overview

# Label costs (high-order sparsity prior)Model fitting

- dealing with continuum of labels
- K-means and EM + regularization

# Applications

- unsupervised image segmentation, compression
- geometric model fitting (lines, circles, planes, homographies, motion,...)

Yuri Boykov, UWO

Potts model 
$$E(\mathbf{L}) = \sum_{p} (L_p - I_p)^2 + \sum_{(p,q) \in N} V(L_p, L_q)$$
(piece-wise constant labeling)





$$V(\alpha,\beta) = w \cdot [\alpha \neq \beta]$$

# Robust regularization

- NP-hard, many local minima
- provably good approximations (a-expansion)

maxflow/mincut combinatorial algorithms

Yuri Boykov, UWO

# Potts model $E(\mathbf{L}) = \sum_{p} D_{p}(L_{p}) + \sum_{(p,q) \in N} V(L_{p}, L_{q})$ (piece-wise constant labeling)



$$V(\alpha,\beta) = w \cdot [\alpha \neq \beta]$$

**∧**V (α,β)

 $\alpha - \beta$ 

# Robust regularization

- NP-hard, many local minima
- provably good approximations (a-expansion)

maxflow/mincut combinatorial algorithms

# Adding label costs

$$E(\mathbf{L}) = \sum_{p} D_{p}(L_{p}) + \sum_{(p,q) \in N} V(L_{p}, L_{q}) + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}(\mathbf{L})$$

# Leclerc [PAMI 89]

• MDL framework, graduated non-convexity

# Zhu & Yuille [PAMI 96]

• cont. framework (gradient descent + merging heuristics)

# Torr [PTRS 98], Li [CVPR 2007]

- AIC/BIC framework, only 1<sup>st</sup> and 3<sup>rd</sup> terms
- Seq. RANSAC heuristic (Torr), LP relaxation w/o any guarantees (Li)

# Brox & Weikert [DAGM 04], Ayed & Mitiche [TIP'08]

- Level-sets with merging heuristics (Brox)
- Multi-level sets (Ayed)

 $\Lambda$  - set of labels allowed at each point p

$$\delta_{L}(\mathbf{L}) = \begin{cases} 1, & \exists p : L_{p} = L \\ 0, & otherwise \end{cases}$$

# Adding label costs

$$E(\mathbf{L}) = \sum_{p} D_{p}(L_{p}) + \sum_{(p,q) \in N} V(L_{p}, L_{q}) + \sum_{L \subseteq \Lambda} h_{L} \cdot \delta_{L}(\mathbf{L})$$

 $\Lambda$  - set of labels allowed at each point p

- Subsets of labels • Our work [CVPR 2010, IJCV 2011]  $\delta_L(\mathbf{L}) = \begin{cases} 1, & \exists p : L_p \in L \\ 0, & otherwise \end{cases}$ 
  - multiple combinatorial algorithms w. optimality bounds
    - a-expansion++ (3<sup>rd</sup> term is a high-order clique)
    - UFL heuristics for 1<sup>st</sup> & 3<sup>rd</sup> term [Barinova et al., CVPR'10]

• generic model fitting applications

# Model fitting



quadratic errors fail







- 1. sample randomly two points, get a line
- 2. count inliers for <u>threshold</u> *T*





# Multiple models and many outliers



#### Yuri Boykov, UWO

# Multiple models and many outliers



outliers + multiple models

$$E(L) = \sum_{p} \| p - L \|$$

energy-based interpretation of RANSAC criteria for **single** model fitting:

- <u>find optimal label</u> *L* for one very specific error measure

$$\| \operatorname{dist} \| = \begin{cases} 0, & \text{if } \operatorname{dist} \leq T \\ 1, & \text{if } \operatorname{dist} > T \end{cases}$$

$$E(\boldsymbol{L}) = \sum_{p} \| p - L_{p} \|$$

## If **multiple** models

- assign different models (labels  $L_p$ ) to every point p
  - find optimal labeling  $L = \{ L_1, L_2, \dots, L_n \}$

Need regularization!

$$E(\boldsymbol{L}) = \sum_{p} \| p - L_{p} \| + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}(\boldsymbol{L})$$

## If **multiple** models

- assign different models (labels  $L_p$ ) to every point p

- find optimal labeling  $L = \{ L_1, L_2, \dots, L_n \}$   $\Lambda\,$  -  $\,$  set of labels allowed at each point p

$$\delta_{L}(\mathbf{L}) = \begin{cases} 1, & \exists p : L_{p} = L \\ 0, & otherwise \end{cases}$$

$$E(\mathbf{L}) = \sum_{p} ||p - L_{p}|| + \sum_{pq \in N} w \cdot [L_{p} \neq L_{q}]$$

### If **multiple** models

- assign different models (labels  $L_p$ ) to every point p
  - find optimal labeling  $L = \{ L_1, L_2, \dots, L_n \}$



$$E(\mathbf{L}) = \sum_{p} ||p - L_{p}|| + \sum_{pq \in N} w \cdot [L_{p} \neq L_{q}] + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}(\mathbf{L})$$

## If **multiple** models

- assign different models (labels  $L_p$ ) to every point p
  - find optimal labeling  $L = \{ L_1, L_2, \dots, L_n \}$



**Practical problem:** number of potential labels (models) is huge, how can we use a-expansion designed for a finite set of labels?

# Discrete optimization for continuum of labels?

#### example: line detection



# Discrete optimization for continuum of labels?

example: line detection



Hough transform (that is, **space of lines**)



Uniform discretization of label space



Adaptive exploration of label space (PEARL)

# PEARL

Propose Expand And Reestimate Labels



data points

# PEARL

Propose Expand And Reestimate Labels



sample data to generate a finite set of initial labels A

data points + randomly sampled models





iteration #





iteration #

Yuri Boykov, UWO

$$E(L) = \sum_{p} ||p - L_{p}|| + \sum_{pq \in N} w \cdot [L_{p} \neq L_{q}] + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}[L]$$
**PEARL**

Propose Expand And Reestimate Labels



iteration 3: optimize labeling L



$$E(\boldsymbol{L}) = \sum_{p} ||p - L_{p}|| + \sum_{pq \in N} w \cdot [L_{p} \neq L_{q}] + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}[\boldsymbol{L}]$$

# PEARL

Propose Expand And Reestimate Labels





iteration 3: reestimate models

Yuri Boykov, UWO

$$E(\boldsymbol{L}) = \sum_{p} ||p - L_{p}|| + \sum_{pq \in N} w \cdot [L_{p} \neq L_{q}] + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}[\boldsymbol{L}]$$

# PEARL





Yuri Boykov, UWO

$$E(\boldsymbol{L}) = \sum_{p} ||p - L_{p}|| + \sum_{pq \in N} w \cdot [L_{p} \neq L_{q}] + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}[\boldsymbol{L}]$$
**PEARL**





Yuri Boykov, UWO

$$E(\boldsymbol{L}) = \sum_{p} ||p - L_{p}|| + \sum_{pq \in N} w \cdot [L_{p} \neq L_{q}] + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}[\boldsymbol{L}]$$
**PEARL**





iteration 15... converged.

# PEARL can significantly improve initial models



# Comparison for multi-model fitting



Low noise

original data points

Yuri Boykov, UWO

# Comparison for multi-model fitting

Low noise

sequential RANSAC

#### Yuri Boykov, UWO

# Comparison for multi-model fitting



# Comparison for multi-model fitting



original data points

# Comparison for multi-model fitting





sequential RANSAC

### Comparison for multi-model fitting



Other generalization of RANSAC (J-linkage, Toldo & Fusiello, ECCV'08)

# Comparison for multi-model fitting



#### Yuri Boykov, UWO

# Comparison for multi-model fitting



**IPAM Graduate Summer School: Computer Vision, July 2013** 

# Automatic noise level estimation by fitting models $L=(a,b,\sigma)$



Each model  $L_k$  gets its own  $\sigma_{\kappa}$ 

$$E(\mathbf{L}) = \sum_{p} \| p - L_{p} \| + \frac{\text{hard c}}{\text{number}}$$

hard constraint on number of models





#### 5 random initial lines + outlier model gets stuck in local minima

$$E(\mathbf{L}) = \sum_{p} \| p - L_{p} \| + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}(\mathbf{L})$$
  
K-means PEARL  $h_{L} = 1000$ 

5 random initial lines + outlier model gets stuck in local minima 1000 initial lines + outlier model better explores label space

$$E(\mathbf{L}) = \sum_{p} || p - L_{p} || + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}(\mathbf{L})$$
  
K-means PEARL  $h_{L} = 500$ 

5 random initial lines + outlier model gets stuck in local minima 1000 initial lines + outlier model better explores label space

$$E(\mathbf{L}) = \sum_{p} || p - L_{p} || + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}(\mathbf{L})$$
  
K-means PEARL  $h_{L} = 2000$ 

5 random initial lines + outlier model gets stuck in local minima

-

#### 1000 initial lines + outlier model better explores label space

# Fitting circles

$$E(\mathbf{L}) = \sum_{p} \| p - L_{p} \| + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}(\mathbf{L})$$



#### EM vs K-means





EM, with 5 models

K-means, with 5 models

#### EM vs K-means



EM, with 4 models

K-means, with 4 models

#### EM vs K-means



EM, with 7 models



K-means, with 7 models

#### EM vs K-means + sparsity + many proposals



EM + dirichlet, with 50 models

[Figueiredo & Jain, PAMI 2002]



K-means + label cost, with 50 models

[Delong, Osokin, Isack, Boykov, IJCV 2012] (PEARL)

#### EM vs K-means + sparsity + many proposals





[Figueiredo & Jain, PAMI 2002]



K-means + label cost, with 50 models [Delong, Osokin, Isack, Boykov, IJCV 2012]

(PEARL)



#### Models in vision have non-overlapping support (since non-transparent models occlude each other)

#### PEARL can integrate both sparsity and spatial regularity [Delong, Osokin, Isack, Boykov, IJCV 2012]

Q: spatial regularity + EM?







# same scene from a different view point...



Note very small steps between each floor-



Original image (one of 2 views)



(a) Label costs only



(b) Spatial regularity only



(c) Spatial regularity + label costs

#### Comparison



based on spectral clustering - Chin, Wang, Sutter ICCV 2009

#### Yuri Boykov, UWO

#### Fitting Rigid Motions (fundamental matrices)



Original image

[Rene Vidal]



3 motions

(a) Label costs only



(b) Spatial regularity only



3 motions

(c) Spatial regularity + label costs







#### label L represents parameters (e.g. mean) of a Gaussian N(I/L)



$$E_{I}(\mathbf{L}) = \sum_{p} (I_{p} - L_{p})^{2} + \sum_{(p,q) \in N} w \cdot [L_{p} \neq L_{q}]$$

color consistency model (Chan-Vese)

#### Yuri Boykov, UWO

#### (unsupervised image segmentation) Fitting color models

**more generally...** label *L* represents parameters of an arbitrary distribution Pr(I|L)



$$E_{I}(\mathbf{L}) = \sum_{p} ||p - L_{p}|| + \sum_{(p,q) \in N} w \cdot [L_{p} \neq L_{q}] + \sum_{L \in \Lambda} h_{L} \cdot \delta_{L}(\mathbf{L})$$

information theory (MDL) interpretation: = number of bits to compress image *I* **losslessly** 



Spatial smoothness + label costs

Zhu & Yuille, PAMI 1996 used continuous formulation (gradient descent)



Spatial smoothness only [Zabih & Kolmogorov, CVPR 04]



Label costs only

## (unsupervised image segmentation) Fitting color models



Spatial smoothness + label costs

## Lossy image compression



 $E(\bar{I},L) = E_{\bar{I}}(L) + \lambda \cdot \sum \|\bar{I}_p - I_p\|$ 

color model fitting (optimal bits for I )

distortion of *I* 

Ι

## Lossy image compression



 $E(\bar{I},L) = E_{\bar{I}}(L) + \lambda \cdot \sum \|\bar{I}_p - I_p\|$ 

color model fitting (optimal bits for I )

distortion of I

Ι

## Lossy image compression



 $E(\bar{I},L) = E_{\bar{I}}(L) + \lambda \cdot \sum \| \bar{I}_p - I_p \|$ 

color model fitting (optimal bits for I )

distortion of I

Ι

## Lossy image compression



 $E(\bar{I},L) = E_{\bar{I}}(L) + \lambda \cdot \sum \| \bar{I}_p - I_p \|$ 

color model fitting (optimal bits for  $\bar{I}$  )

distortion of *I* 

## Lossy image compression



 $E(\bar{I},L) = E_{\bar{I}}(L) + \lambda \cdot \sum \| \bar{I}_p - I_p \|$ 

color model fitting (optimal bits for  $\bar{I}$  )

distortion of I

#### **Rate-Distortion Plot**





#### Energy-based multi-model fitting

- Algorithms for minimizing label-costs energies with global optimality guarantees
  - extended *a-expansion*, standard *UFL* heuristics

#### Exploring a continuum of labels, *PEARL*

#### Extensions Piece-wise smooth model fitting



[Olsson, Boykov CVPR12]

#### Extensions

#### Piece-wise smooth model fitting



## Extensions Piece-wise smooth stereo





[Olsson, Ulen, Boykov CVPR13]

**IPAM Graduate Summer School: Computer Vision, July 2013** 

# Extensions Piece-wise smooth stereo





#### First-order smoothess



#### Second-order smoothess Unlike Woodford et al.'08, first-order interactions

[Olsson, Ulen, Boykov CVPR13]

**IPAM Graduate Summer School: Computer Vision, July 2013** 

# Extensions Piece-wise smooth stereo





First-order smoothess

Second-order smoothess Unlike Woodford et al.'08, first-order interactions

[Olsson, Ulen, Boykov CVPR13]

://www.youtube.com/watch?v=2HAFSwFRoR8&l ist=UUVS7P9dioyjoN7j9mHStQ\_Q&feature=play er\_detailpage&t=7