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Model fitting and regularization

(discrete optimization approach)
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Overview

m Label costs (high-order sparsity prior)
m Model fitting

 dealing with continuum of labels
« K-means and EM + regularization

m Applications

 unsupervised image segmentation, compression
« geometric model fitting (lines, circles, planes, homographies, motion,...)
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E(L L, —| V(L,L,)
Potts model = 2L 1)+ 2V,

(piece-wise constant Iabellng)

Via,B)=w-la=p]

m Robust regularization /(. p)
 NP-hard, many local minima .
» provably good approximations (a-expansion)

maxflow/mincut
combinatorial algorithms
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E(L)=Y"D, (L V(L,L,)
Potts model  E= 2D+ 2V,

(piece-wise constant Iabellng)

Right eye image

Via,B)=w-la=p]

m Robust regularization /(. p)
 NP-hard, many local minima .
» provably good approximations (a-expansion)

maxflow/mincut
combinatorial algorithms




IPAM Graduate Summer School: Computer Vision, July 2013 Yuri Boykov, UNO

Adding label costs
E(L)= ZD (L,)+ D V(L,, L) + > h -6(L)

(p.,qg)eN LeA
m Leclerc [pPAMmI 89] A - set of labels
« MDL framework, graduated non-convexity allowed at each point p
m Zhu & Yuille [pami 96] 1 Jp:L =L
« cont. framework (gradient descent + merging heuristics) 5,_ (L) = ’ P )
0, otherwise

m Torr [PTRS 98], LI [CVPR 2007]

« AIC/BIC framework, only 15t and 3" terms
« Seq. RANSAC heuristic (Torr) , LP relaxation w/o any guarantees (Li)

m Brox & Welkert [DAGM 04], Ayed & Mitiche [TIp’08]

» Level-sets with merging heuristics (Brox)
« Multi-level sets (Ayed)
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Adding label costs
E(L) = ZD L)+ DV(L, L) + D h -8.(L)

(p,9)eN LcA

A - set of labels
allowed at each point p

1, 3p:L, el

m Our work [CVPR 2010, JCV 2011] & (L) =
0, otherwise

e subsets of labels

« multiple combinatorial algorithms w. optimality bounds
— a-expansion++ (3" term is a high-order clique)
— UFL heuristics for 15t & 3" term [Barinova et al., CVPR’10]

_generic model fitting applications >
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Model fitting

L

= argmin Y || p-L||
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many outliers

Yuri Boykov, UNO
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quadratic errors fail

use more robust
error measures, e.g.

p—LIl = 1p,—ap,—b]
gives “MEDIAN" line

- more expensive
computations
(non-differentiable)

- still fails if
outliers exceed
50%

. RANSAC

0.5
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many outliers
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many outliers

Yuri Boykov, UNO
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many outliers

Yuri Boykov, UNO
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Multiple models and many outliers
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Multiple models and many outliers
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Energy-based approach
E(L) = > llp-L]|

energy-based interpretation
of RANSAC criteria for
single model fitting:

- find optimal label L
for one very specific
error measure

. 0, if dist<T
| dist]| = o
1, if dist>T
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Energy-based approach
E(L) = > llp-L,l

If multiple models

- assign different models
(labels L) to every point p

- find optimal labeling
L={L,L,,..,L}

Yuri Boykov, UNO

Need regularization!
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Energy-based approach
E(L) = > llp-L, Il + > h-56.(L)

LeA

If multiple models A - setof labels
allowed at each point p

- assign different models

: 1, dp:L, =L
(labels L) to every point p 5, (L) :{ P

0, otherwise

- find optimal labeling
L={L,L,,..,L}
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Energy-based approach
E(L) = D IIp-LyIl + D> wll,=L,]

geN

If multiple models
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Energy-based approach
E(L)=>]|p-L,| |+ > w L =#L] + > h -5 (L)

pgeN LeA

If multiple models

- assign different models
(labels L) to every point p

- find optimal labeling
L={L,L,,..,L}

Practical problem: number of potential labels (models) is huge,
how can we use a-expansion designed for a finite set of labels?
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Discrete optimization for
continuum of labels?

example: line detection
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Discrete optimization for
continuum of labels?

example: line detection

Hough transform (that is, space of lines)

X X X X X X X XXX XX X

xxxxﬁxxxxx

X X X XX X XXX XXX X ¢

X X XXX X X X X X X X X | X X

X xxxxxxx\x

P-xxxxxxxxxxx%
X X XX XXXXXXXX X

Uniform discretization of label space Adaptive exploration of label space (PEARL)
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PEARL

Propose
Expand
And
Reestimate
Labels

data points



IPAM Graduate Summer School: Computer Vision, July 2013

PEARL

Propose
Expand
And
Reestimate
Labels

data points + randomly sampled models

Yuri Boykov, UNO

sample data
to generate
a finite set
of initial
labels

A
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[p-Lyll + > will, =L+ > h-8[L]

\

energy

E(L) =

PEARL

pgeN LeA

L €A

Propose
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And
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iteration #

iteration 1: optimize labeling L

Yuri Boykov, UNO

a-expansion:

minimize E(L)
over a fixed
set of labels

A



IPAM Graduate Summer School: Computer Vision;July 20
E(L) =( X 11p-L,I
p

+ > ow L, =L ]+

Yuri Boykov, UNO

EA@SL[L]

paeN
PEARL e
Propose
Expand
And . .
Reestimate SN .
TR reestimating
Labels . NN labels in A
L NS, o for given inliers
: P e
- ' minimizing
the first term
of energy E(L)

energy

iteration #

iteration 1: reestimate models



IPAM Graduate Summer School: Computer Vision, Ju Yuri Boykov, UNO

E(L) = Q_lIp-Lll + > will#L1+ > h-3[L]

geN LeA

PEARL L cA

Propose
Expand .
And MR,

Reestimate |~ . NG ,
Labels TN NG L a-expansion:
R : LOUNG, ' minimize E(L)
over a fixed
set of labels

A

energy

iteration 2: optimize labeling L

iteration #
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E(L) =( X 11p-L,I
p

+ > ow L, =L ]+
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EA@SL[L]

pgeN

PE ARL fixed

Propose

Expand

And .

Reestimate T o

SONG - reestimating
Labels . TN L labels in
I ...~ for given inliers

\

energy

minimizing
the first term
of energy E(L)

iteration #

iteration 2: reestimate models
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E(L) = D IIp-L,ll +
PEARL

> w L =L ]+ > h -8 [L]

pgeN LeA

Yuri Boykov, UNO

Propose
Expand

And A\ N

Reestimate
Labels

energy

iteration #

iteration 3: optimize labeling L
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E(L) = D IIp-LyI| +

> w L =L ]+ > h -8 [L]

Yuri Boykov, UNO

pgeN LeA
PEARL
Propose
Expand Ni.
And :
Reestimate |~ TN
Labels TN
LT
T IS
>
()

iteration #

iteration 3: reestimate models
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E(L) = X lIp-Lll + > will#L]+ > h-3[L]

pgeN LeA

PEARL

energy

iteration 7...

iteration #
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E(L) = X lIp-Lll + > will#L]+ > h-3[L]

pgeN LeA

PEARL

energy

iteration 10...

iteration #
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E(L) = X lIp-Lll + > will#L]+ > h-3[L]

pgeN LeA

PEARL

energy

iteration 15... converged.

iteration #
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PEARL can significantly
Improve Initial models

deviation (from ground truth)
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Comparison for
multi-model fitting

: o4 cotL Low
B T noise

original data points
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Comparison for
multi-model fitting

Low
noise

sequential RANSAC
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Comparison for
multi-model fitting

Low
noise

PEARL
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Comparison for
multi-model fitting
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Comparison for
multi-model fitting

sequential RANSAC
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Comparison for
multi-model fitting

High
noise

Other generalization of RANSAC (J-linkage, Toldo & Fusiello, ECCV'08)
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Comparison for
multi-model fitting

Finding modes in Hough-space, e.g. via mean-shift
(also maximizes the number of inliers)
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Comparison for
multi-model fitting
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Automatic noise level estimation
by fitting models L=(a,b, o)
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K-means vs. PEARL
E(L) = lep—LpII +
P

K-means

hard constraint on
number of models

5 random initial lines + outlier model

gets stuck in local minima
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K-means vs. PEARL
E(L) = > llp-L, Il + D h -5.(L)
P

LeA

K-means PEARL h, =1000

5 random initial lines + outlier model 1000 initial lines + outlier model

gets stuck in local minima  better explores label space
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K-means vs. PEARL
E(L) = > llp-L, Il + D h -5.(L)
P

LeA
K-means PEARL h, =500

5 random initial lines + outlier model 1000 initial lines + outlier model

gets stuck in local minima  better explores label space
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K-means vs. PEARL
E(L) = > llp-L, Il + D h -5.(L)
P

LeA
K-means PEARL h, =2000

5 random initial lines + outlier model 1000 initial lines + outlier model

gets stuck in local minima  better explores label space
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Fitting circles

Yuri Boykov, UNO
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EM vs K-means
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EM vs K-means

EM, with 4 models K-means, with 4 models
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EM vs K-means

EM, with 7 models K-means, with 7 models
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EM vs K-means + sparsity + many proposals

EM + dirichlet, with 50 models K-means + label cost, with 50 models

[Figueiredo & Jain, PAMI 2002] [Delong, Osokin, Isack, Boykov, I1JCV 2012]
(PEARL)
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EM vs K-means + sparsity + many proposals

EM + dirichlet, with 50 models K-means + label cost, with 50 models

[Figueiredo & Jain, PAMI 2002] [Delong, Osokin, Isack, Boykov, I1JCV 2012]
(PEARL)
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EM vs PEARL

Models in vision have non-overlapping support
(since non-transparent models occlude each other)

PEARL can integrate both sparsity and spatial regularity
[Delong, Osokin, Isack, Boykov, 1JCV 2012]

Q: spatial regularity + EM?
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Fitting planes (homographies)
E(L) = Z||p L[|+ > w L =L] + >h -8(L)

(P, q)eN LeA

PEARL
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Fitting planes (homographies)
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Same scene
from a different view point...

Note very small steps between each floor
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Fitting planes (homographies)

Original image (one of 2 views)
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Fitting planes (homographies)

(a) Label costs only
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Fitting planes (homographies)

(b) Spatial regularity only
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Fitting planes (homographies)

@ , e0g00

(c) Spatial regularity + label costs
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based on spectral clustering - Chin, Wang, Sutter ICCV 2009
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Fitting Rigid Motions (fundamental matrices)

3
motions
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Fitting Rigid Motions (fundamental matrices)

3
motions

(a) Label costs only
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Fitting Rigid Motions (fundamental matrices)

7
motions

(b) Spatial regularity only
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Fitting Rigid Motions (fundamental matrices)

ﬂ IV. . ‘ '}
ér:.

3
motions

(c) Spatial regularity + label costs



IPAM Graduate Summer School: Computer Vision, July 2013 Yuri Boykov, UNO

Fitting Rigid Motions (fundamental matrices)
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Fitting Rigid Motions (fundamental matrices)

*~a" ~%
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Fitting Rigid Motions (fundamental matrices)

e
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(unsupervised image segmentation)
Fitting color models

label L represents parameters (e.g. mean) of a Gaussian N(I|L)

—QNU|L)

E,(L)= Z(I —L) + > w L, #L,]

(P.4)eN

color consistency model (Chan-Vese)
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(unsupervised image segmentation)
Fitting color models

more generally...
label L represents parameters of an arbltrary distribution Pr(l|L)

—[nPr‘(IID L)

E,(L)= Z||p L 1+ D weL,=L] + > h -8 (L)

( p,q)eN LeA

information theory (MDL) interpretation:
= number of bits to compress image 7/ losslessly
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(unsupervised image segmentation)
Fitting color models

Spatial smoothness + label costs

Zhu & Yuille, PAMI 1996
used continuous formulation (gradient descent)
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(unsupervised image segmentation)
Fitting color models

Spatial smoothness only [Zabih & Kolmogorov, CVPR 04]
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(unsupervised image segmentation)
Fitting color models
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(unsupervised image segmentation)
Fitting color models

Spatial smoothness + label costs
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Lossy image compression

E(I,L) = E(L) + A1, —1,]

color model fitting

_ _ distortion of 7
(optimal bits for | )
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Lossy image compression

E(I,L) = E(L) + A1, —1,]

color model fitting

_ _ distortion of 7
(optimal bits for | )
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Lossy image compression

E(I,L) = E(L) + A1, —1,]

color model fitting

_ _ distortion of 7
(optimal bits for | )
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Lossy image compression

E(I,L) = E(L) + A1, —1,]

color model fitting

_ _ distortion of 7
(optimal bits for | )
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Lossy image compression

E(I,L) = E(L) + A1, —1,]

color model fitting

_ _ distortion of 7
(optimal bits for | )
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Rate-Distortion Plot

4
— Chickens
3 Museum
Zebra

Tiger

—
1

Compression rate (in bpp)
N

0 1 1 )
0 0,002 0,004 0,006

Average squared-error distortion measure
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Conclusions

m Energy-based multi-model fitting

m Algorithms for minimizing label-costs energies
with global optimality guarantees

 extended a-expansion, standard UFL heuristics

m Exploring a continuum of labels, PEARL
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Extensions
Piece-wise smooth model fitting

o
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[Olsson, Boykov CVPR12]
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Extensions
Piece-wise smooth model fitting

-0.1F
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-0.13r

-0.14+

-0.06 -005 -004 -003 -0.02 -0.01
[Olsson, Boykov CVPR12]
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Extensions
Pilece-wise smooth stereo

Labels are tangents
(incl. orientation)

[Olsson, Ulen, Boykov CVPR13]
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Extensions
Piece-wise smooth stereo
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First-order smoothess Second-order smoothess

Unlike Woodford et al.'08,
first-order interactions

[Olsson, Ulen, Boykov CVPR13]
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Extensions
Piece-wise smooth stereo

First-order smoothess Second-order smoothess

Unlike Woodford et al.'08,
first-order interactions

[Olsson, Ulen, Boykov CVPR13]
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://www.voutube.com/watch?v=2HAFSWFRoOR8&l
ist=UUVS7P9dioyjoN7i9mHStQ O&feature=play
er detailpage&t=7
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