IPAM Graduate Summer School: Computer Vision, July 2013

Inverse modelling using optimization

to solve imaging tasks

Part II

Mila Nikolova

ENS Cachan, CNRS, France
nikolova@cmla.ens-cachan.fr

Stability of the minimizers of \mathcal{F}_{v}

$$
\begin{aligned}
& \mathcal{F}_{v}(u)=\|A u-v\|_{2}^{2}+\beta \Phi(u) \\
& \Phi(u)=\sum_{i} \varphi\left(\left\|G_{i} u\right\|_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& u \in \mathbb{R}^{p} \\
& v \in \mathbb{R}^{\boldsymbol{q}}
\end{aligned} \quad\left\{\begin{array}{l}
\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R} \\
\varphi \text { incresing, continuous } \\
\varphi(t)>\varphi(0), \quad \forall t>0
\end{array}\right.
$$

$\left\{G_{i}\right\}$ linear operators $\mathbb{R}^{p} \rightarrow \mathbb{R}^{s}, s \geqslant 1$
$\varphi^{\prime}\left(0^{+}\right)>0 \Rightarrow \Phi$ is nonsmooth on $\bigcup_{i}\left\{u: G_{i} u=0\right\}$

Systematically: $\operatorname{ker} \boldsymbol{A} \cap \operatorname{ker} G=\{0\}$

$$
G \doteq\left[\begin{array}{l}
G_{1} \\
G_{2} \\
\cdots
\end{array}\right]
$$

Question 2 Why?
\mathcal{F}_{v} nonconvex \Rightarrow there may be many local minima

- $N=\{(s, t): t= \pm \arctan (s)\}$
- N is closed in \mathbb{R}^{2} and its Lebesgue measure in \mathbb{R}^{2} is $\mathbb{L}^{2}(N)=0$
- $(x, y)=$ random \mathbb{R}^{2}

Question 3 What is the chance that $(x, y) \in N$?

Assumptions: φ is piecewise $\mathcal{C}^{m \geqslant 2}$, edge-preserving, possibly non-convex, $\operatorname{rank}(A)=p$

- There is a closed $N \subset \mathbb{R}^{q}$ with $\mathbb{L}^{q}(N)=0$ such that $\forall v \in \mathbb{R}^{q} \backslash N$, every (local) minimizer $\hat{\boldsymbol{u}}$ of $\mathcal{F}_{\boldsymbol{v}}$ is given by $\hat{\boldsymbol{u}}=\mathcal{U}(\boldsymbol{v})$ where \mathcal{U} is a \mathcal{C}^{m-1} (local) minimizer function.

Question 4 Why knowledge on local minimizers is important?

Question 5 Compare \hat{u} and $\mathcal{U}(v+\varepsilon)$ where $\varepsilon \in \mathbb{R}^{q}$ is small enough.

- $\exists \hat{N} \subset \mathbb{R}^{q}$ with $\mathbb{L}^{q}(\hat{N})=0$ such that $\forall v \in \mathbb{R}^{q} \backslash \hat{N}, \mathcal{F}_{v}$ has a unique global minimizer

Question 6 What can happen if $v \in \hat{N}$?

- \exists open subset of $\mathbb{R}^{q} \backslash \hat{N}$, dense in \mathbb{R}^{q}, where the global minimizer function $\hat{\mathcal{U}}$ is \mathcal{C}^{m-1}.

Question 7 If \mathcal{F}_{v} is strictly convex, determine N and \hat{N}.

Assumption: φ is piecewise \mathcal{C}^{1}

- φ is strictly increasing or $\operatorname{rank}(A)=p$

$$
\hat{\boldsymbol{u}} \text { is a (local) minimizer of } \mathcal{F}_{\boldsymbol{v}} \Rightarrow\|A \hat{\boldsymbol{u}}\| \leqslant\|\boldsymbol{v}\|
$$

- $\left\|\varphi^{\prime}\right\|_{\infty}<\infty \quad$ (φ is edge-preserving) and $\operatorname{rank}(A)=q \leqslant p$
\hat{u} is a (local) minimizer of $\mathcal{F}_{v} \Rightarrow\|v-A \hat{u}\|_{\infty} \leqslant \frac{\beta}{2}\left\|\varphi^{\prime}\right\|_{\infty}\left\|\left(A A^{*}\right)^{-1} A\right\|_{\infty}\|G\|_{1}$
$\left\|\varphi^{\prime}\right\|_{\infty}=\mathbf{1}$ and $G-1^{\text {st }}$ order differences: $\left\{\begin{aligned} \text { signal } & \Rightarrow\|\boldsymbol{v}-\hat{\boldsymbol{u}}\|_{\infty} \leqslant \boldsymbol{\beta} \\ \text { image } & \Rightarrow\|\boldsymbol{v}-\hat{\boldsymbol{u}}\|_{\infty} \leqslant \mathbf{2 \beta}\end{aligned}\right.$

Question 8 If $v=u_{o}+n$ for n Gaussian noise, is it possible to clean v from this noise by minimizing \mathcal{F}_{v} ?

Non-Smooth Energies, Side Derivatives, Subdifferential

Rademacher's theorem: If $\mathcal{F}_{v}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is Lipschitz continuous, then \mathcal{F}_{v} is differentiable (in the usual sense) almost everywhere in \mathbb{R}^{p}.

A kink is a point u where $\nabla \mathcal{F}_{v}(u)$ is not defined (in the usual sense).
Example: $\mathcal{F}_{v}(u)=\frac{1}{2}(u-v)^{2}+\beta|u|$ for $\beta=1>0$ and $u, v \in \mathbb{R}$

$v=-0.9$

$$
\hat{u}=\left\{\begin{array}{ccc}
v+\beta & \text { if } & v<-\beta \\
0 & \text { if } & |v| \leqslant \beta \\
v-\beta & \text { if } & v>\beta
\end{array}\right.
$$

Question 9 What is drawn on the second row?
Question 10 Give a condition for \mathcal{F}_{v} to have a minimum at \hat{u}.

3 Minimizers under Non-Smooth Regularization

$$
\mathcal{F}_{v}(u)=\Psi(u, v)+\beta \sum_{i=1}^{r} \varphi\left(\left\|G_{i} u\right\|\right), \quad \Psi \in \mathcal{C}^{m \geqslant 2}, \varphi \in \mathcal{C}^{m}\left(\mathbb{R}_{+}^{*}\right), 0<\varphi^{\prime}\left(0^{+}\right) \leqslant \infty
$$

$$
\varphi(t) \| t^{\alpha}, \alpha \in(0,1)\left|\frac{\alpha t}{\alpha t+1}\right| \ln (\alpha t+1)\left|1-\alpha^{t} \alpha \in(0,1)\right|(\cdots), \quad \alpha>0
$$

$\varphi(t)=t$ and $G_{i} u \approx(\nabla u)_{i} \Rightarrow \mathcal{F}_{v}(u)=\operatorname{TV}(u)$ (total variation) [Rudin, Osher, Fatemi 92]

Let $\hat{\boldsymbol{u}}$ be a (local) minimizer of \mathcal{F}_{v}. Set $\hat{h} \doteq\left\{i: G_{i} \hat{\boldsymbol{u}}=0\right\}$ Then $\exists O \subset \mathbb{R}^{q}$ open, $\exists \mathcal{U} \in \mathcal{C}^{m-1}$ (local) minimizer function so that

$$
v^{\prime} \in O, \quad \hat{u}^{\prime}=\mathcal{U}\left(v^{\prime}\right) \quad \Rightarrow \quad G_{i} \hat{u}^{\prime}=0, \quad \forall i \in \hat{h}
$$

> Data v yield (local) minimizers \hat{u} of \mathcal{F}_{v} such that $G_{i} \hat{u}=0$ for a set of indexes \hat{h}
$\boldsymbol{G}_{\boldsymbol{i}}=\nabla_{\boldsymbol{i}} \Rightarrow \hat{\boldsymbol{u}}[\boldsymbol{i}]=\hat{\boldsymbol{u}}[\boldsymbol{j}]$ for many neighbors $(\boldsymbol{i}, \boldsymbol{j})$ (the "stair-casing" effect)
$\boldsymbol{G}_{\boldsymbol{i}} \boldsymbol{u}=\boldsymbol{u}[\boldsymbol{i}] \Rightarrow$ many samples $\hat{\boldsymbol{u}}[\boldsymbol{i}]=\mathbf{0}$ - highly used in Compressed Sensing

Question 11 What happens if $\left\{G_{i}\right\}$ yield second-order differences?
Question 12 Describe the prior that $\hat{\boldsymbol{u}}$ satisfies for a general $\left\{G_{i}\right\}$.

Property fails if \mathcal{F}_{v} is smooth, except for $v \in N$ where N is closed and $\mathbb{L}^{q}(N)=0$.

$$
\begin{gathered}
\mathcal{F}_{v}(u)=\|u-v\|^{2} \\
+\beta \sum \varphi(|u[i]-u[i-1]|)
\end{gathered}
$$

$\varphi(t)=\sqrt{\alpha+t^{2}}, \quad \varphi^{\prime}(0)=0$
(smooth at 0)

$\varphi(t)=(t+\alpha \operatorname{sign}(t))^{2}, \quad \varphi^{\prime}\left(0^{+}\right)=2 \alpha$
$\varphi(t)=|t|, \quad \varphi^{\prime}\left(0^{+}\right)=1$

$\varphi(t)=\alpha|t| /(1+\alpha|t|), \quad \varphi^{\prime}\left(0^{+}\right)=\alpha$

Let $u_{o} \in \mathbb{R}$ and $\operatorname{pdf}\left(u_{o}\right)=\frac{1}{2} e^{-\left|u_{o}\right|} \quad$ (Laplacian distribution)
Question 13 Give $\operatorname{Pr}\left(u_{o}=0\right)$.

Let $v=u_{o}+n$ where $\operatorname{pdf}(n)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{n^{2}}{2 \sigma^{2}}} \quad$ (centered Gaussian distribution)
The corresponding MAP energy to recover u_{o} from v reads as

$$
\mathcal{F}_{v}(u)=\frac{1}{2}(u-v)^{2}+\beta|u| \quad \text { for } \quad \beta=\frac{1}{\sigma^{2}}
$$

Question 14 Give the minimizer function \mathcal{U} for \mathcal{F}_{v}.
Useful reminder on p. 21.

Question 15 Determine the set $\{\nu \in \mathbb{R}: \mathcal{U}(\nu)=0\}$. Comment the result.

TV energy: $\mathcal{F}_{v}(u)=\|A u-v\|^{2}+\beta \sum_{i=1}^{r} \varphi\left(\left\|G_{i} u\right\|\right)$ for $\varphi(t)=t$ and G_{i} discrete gradient at pixel i

Original

Data

Restored: TV energy
D. C. Dobson and F. Santosa, "Recovery of blocky images from noisy and blurred data", SIAM J. Appl. Math., 56 (1996), pp. 1181-1199.

Minimization of $\mathcal{F}_{v}(u)=\|u-v\|_{2}^{2}+\beta \operatorname{TV}(u), \quad \beta=100$ and $\beta=180$

Here $\quad \varphi(t)=\left\{\begin{array}{lll}0 & \text { if } & t=0 \\ 1 & \text { if } & t \neq 0\end{array}\right.$
Question 16 Compute the global minimizer of $\mathcal{F}_{v}(u)=(u-v)^{2}+\beta \varphi(u)$ for $u, v \in \mathbb{R}$ and $\beta>0$, according to the value of v.

Question 17 Are there any values of v so that \mathcal{F}_{v} has more than one global minimizer?
Consider $\mathcal{F}_{\boldsymbol{v}}(\boldsymbol{u})=\|\boldsymbol{u}-\boldsymbol{v}\|_{\mathbf{2}}^{\mathbf{2}}+\boldsymbol{\beta} \sum_{i=1}^{\boldsymbol{p}} \boldsymbol{\varphi}(\boldsymbol{u}[\boldsymbol{i}])$ for $\beta>0$ and $u, v \in \mathbb{R}^{p}$.
The global minimizer function $\mathcal{U}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ for \mathcal{F}_{v} has p components which depend on v.
Question 18 Compute each component \mathcal{U}_{i}
Question 19 Let $h \subset\{1, \cdots, p\}$. Determine the subset $\mathcal{O}_{h} \subset \mathbb{R}^{p}$ such that if $v \in \mathcal{O}_{h}$ then the global minimizer \hat{u} of \mathcal{F}_{v} satisfies $\hat{u}[i]=0, \forall i \in h$ and $\hat{u}[i] \neq 0$ if $i \notin h$.

Note that $\quad \sum_{i=1}^{p} \varphi(u[i])=\#\{i: u[i] \neq 0\}=\ell_{0}(u)$

4 Minimizers relevant to non-smooth data-fidelity

General case

$$
\mathcal{F}_{v}(u)=\sum_{i} \psi\left(\left|a_{i} u-v[i]\right|\right)+\beta \Phi(u), \quad \Phi \in \mathcal{C}^{m}, \psi \in \mathcal{C}^{m}\left(\mathbb{R}_{+}^{*}\right), \quad \psi^{\prime}\left(0^{+}\right)>0
$$

Let $\hat{\boldsymbol{u}}$ be a (local) minimizer of \mathcal{F}_{v}. Set $\hat{\boldsymbol{h}}=\left\{\boldsymbol{i}: \boldsymbol{a}_{i} \hat{\boldsymbol{u}}=\boldsymbol{v}[\boldsymbol{i}]\right\}$.
Then $\exists \boldsymbol{O} \subset \mathbb{R}^{q}$ open, $\exists \mathcal{U} \in \mathcal{C}^{m-1}$ (local) minimizer function so that

$$
v^{\prime} \in O, \quad \hat{u}^{\prime}=\mathcal{U}\left(v^{\prime}\right) \quad \Rightarrow \quad \begin{cases}a_{i} \hat{u}^{\prime}=v[i], & i \in \hat{h} \\ a_{i} \hat{u}^{\prime} \neq v[i], & i \in \hat{h}^{c}\end{cases}
$$

(Local) minimizers \hat{u} of \mathcal{F}_{v} achieve an exact fit to (noisy) data

$$
a_{i} \hat{u}=v[i] \text { for a certain number of indexes } i
$$

Property fails if \mathcal{F} is smooth, except for $v \in N$ where N is closed and $\mathbb{L}^{q}(N)=0$.

Question 20 Suggest cases when you would like that your minimizer obeys this property.

Question 21 Propose some choices for ψ. Explain.

Question 22 Compute the minimizer of $\mathcal{F}_{v}(u)=|u-v|+\beta u^{2}$ for $u, v \in \mathbb{R}$ and $\beta>0$.

Question 23 Explain the relationship between the properties of the minimizer when $\varphi^{\prime}\left(0^{+}\right)>0$ and when $\psi^{\prime}\left(0^{+}\right)>0$

Original u_{o}

Data $v=u_{o}+$ outliers

Restoration \hat{u} for $\boldsymbol{\beta}=\mathbf{0 . 1 4}$

Residuals $v-\hat{u}$

$$
\mathcal{F}_{v}(u)=\sum_{i}|u[i]-v[i]|+\beta \sum_{j \in \mathcal{N}_{i}}|u[i]-u[j]|^{1.1}
$$

Restoration \hat{u} for $\boldsymbol{\beta}=\mathbf{0 . 2 5}$

Residuals $v-\hat{u}$

$$
\mathcal{F}_{v}(u)=\sum_{i}|u[i]-v[i]|+\beta \sum_{j \in \mathcal{N}_{i}}|u[i]-u[j]|^{1.1}
$$

Restoration \hat{u} for $\beta=0.2$

Residuals $v-\hat{u}$

TV-like energy: $\mathcal{F}_{v}(u)=\sum_{i}(u[i]-v[i])^{2}+\beta \sum_{j \in \mathcal{N}_{i}}|u[i]-u[j]|$

Detection and cleaning of outliers using ℓ_{1} data-fidelity
[Nikolova 04]

$$
\mathcal{F}_{v}(u)=\sum_{i=1}^{p}|u[i]-v[i]|+\frac{\beta}{2} \sum_{i=1}^{p} \sum_{j \in \mathcal{N}_{i}} \varphi(|u[i]-u[j]|)
$$

φ : smooth, convex, edge-preserving
Assumptions: $\quad\left\{\begin{array}{l}\text { data } v \text { contain uncorrupted samples } v[i] \\ \boldsymbol{v}[i] \text { is outlier if }|\boldsymbol{v}[i]-\boldsymbol{v}[j]| \gg 0, \quad \forall j \in \mathcal{N}_{\boldsymbol{i}}\end{array}\right.$
$v \in \mathbb{R}^{p} \Rightarrow \hat{\boldsymbol{u}}=\arg \min _{\boldsymbol{u}} \mathcal{F}_{\boldsymbol{v}}(u)$

$$
\hat{h}=\{i: \hat{u}[i]=v[i]\}
$$

$$
\begin{cases}v[i] \text { is regular } & \text { if } i \in \hat{\boldsymbol{h}} \\ \boldsymbol{v}[\boldsymbol{i}] \text { is outlier } & \text { if } \boldsymbol{i} \in \hat{\boldsymbol{h}}^{c}\end{cases}
$$

Outlier detector: $\quad v \rightarrow \hat{\boldsymbol{h}}^{c}(v)=\{i: \hat{u}[i] \neq \boldsymbol{v}[i]\}$
Smoothing: $\quad \hat{\boldsymbol{u}}[i]$ for $i \in \hat{\boldsymbol{h}}^{c}=$ estimate of the outlier
Justification based on the properties of $\hat{\boldsymbol{u}}$

Original image u_{o}

Recursive CWM $\left(\left\|\hat{u}-u_{o}\right\|_{2}=3566\right)$

10% random-valued noise

$\operatorname{PWM}\left(\left\|\hat{u}-u_{o}\right\|_{2}=3984\right)$

Median $\left(\left\|\hat{u}-u_{o}\right\|_{2}=4155\right)$

Proposed $\left(\left\|\hat{u}-u_{o}\right\|_{2}=2934\right)$

Recovery of frame coefficients using ℓ_{1} data-fitting

- Data: $\boldsymbol{v}=\boldsymbol{u}_{\boldsymbol{o}}+$ noise
- Frame coefficients: $\boldsymbol{y}=\boldsymbol{W} \boldsymbol{v}=\boldsymbol{W} \boldsymbol{u}_{\boldsymbol{o}}+$ noise
$\widetilde{W}=$ left inverse of \boldsymbol{W}
- Hard thresholding $\quad y_{T}[i] \doteq \begin{cases}0 & \text { if }|y[i]| \leqslant T \\ y[i] & \text { if }|y[i]|>T\end{cases}$
keeps relevant information if $\underline{T \text { small }}$
- $\tilde{\boldsymbol{u}}=\widetilde{\boldsymbol{W}} \boldsymbol{y}_{\boldsymbol{T}}$ - Gibbs oscillations and wavelet-shaped artifacts
- Hybrid energy methods—combine fitting to $\boldsymbol{y}_{\boldsymbol{T}}$ with prior $\boldsymbol{\Phi}(\boldsymbol{u})$
[Bobichon, Bijaoui 97], [Coifman, Sowa 00], [Durand, Froment 03]...
[Durand, Nikolova 07]
Desiderata: \mathcal{F}_{y} convex and

Keep $\hat{\boldsymbol{x}}[\boldsymbol{i}]=\boldsymbol{y}_{T}[\boldsymbol{i}]$	Restore $\hat{\boldsymbol{x}}[\boldsymbol{i}] \neq \boldsymbol{y}_{\boldsymbol{T}}[\boldsymbol{i}]$	
significant coefs: $\boldsymbol{y}[\boldsymbol{i}] \approx\left(\boldsymbol{W} \boldsymbol{u}_{\boldsymbol{o}}\right)[\boldsymbol{i}]$	outliers: $\|\boldsymbol{y}[\boldsymbol{i}]\| \gg\left\|\left(\boldsymbol{W} \boldsymbol{u}_{\boldsymbol{o}}\right)[\boldsymbol{i}]\right\|$	(frame-shaped artifacts)
thresholded coefs: $\left(\boldsymbol{W} \boldsymbol{u}_{\boldsymbol{o}}\right)[\boldsymbol{i}] \approx \mathbf{0}$	edge coefs: $\left\|\left(\boldsymbol{W} \boldsymbol{u}_{\boldsymbol{o}}\right)[i]\right\|>\left\|\boldsymbol{y}_{\boldsymbol{T}}[\boldsymbol{i}]\right\|=\mathbf{0} \quad$ ("Gibbs" oscillations)	

Then:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{F}_{y}(x)=\sum_{i} \lambda_{i}\left|\left(x-y_{T}\right)[i]\right|+\int_{\Omega} \varphi(|\nabla \widetilde{W} x|) \Rightarrow \hat{x} \\
& \hat{\boldsymbol{u}}=\widetilde{W} \hat{x} \text { for } \widetilde{W} \text { left inverse, } \varphi \text { edge-preserving }
\end{array}
$$

Question 24 Explain why the minimizers of \mathcal{F}_{y} fulfill the desiderata.
Question 25 Any open questions?

Original and data

Total variation

Sure-shrink method

The proposed method

Hard thresholding

Magnitude of coefficients

Restored signal (-), original signal (- -).

Fast 2-stage restoration under impulse noise
[R.Chan, Nikolova et al. 04, 05, 08]

1. Approximate the outlier-detection stage by rank-order filter (e.g. adaptive or center-weighted median)

Corrupted pixels $\hat{\boldsymbol{h}}^{c}=\{\boldsymbol{i}: \hat{\boldsymbol{v}}[\boldsymbol{i}] \neq \boldsymbol{v}[\boldsymbol{i}]\}$ where $\hat{\boldsymbol{v}}=$ Rank-Order Filter (\boldsymbol{v}) \Rightarrow improve speed and accuracy
2. Restore $\hat{\boldsymbol{u}}$ (denoise, deblur) using an edge-preserving energy method subject to $a_{i} \hat{\boldsymbol{u}}=\boldsymbol{v}[\boldsymbol{i}]$ for all $\boldsymbol{i} \in \hat{\boldsymbol{h}}$

$$
50 \% \text { RV noise }
$$

ACWMF

DPVM
Our method

70 \%SP noise(6.7dB)
L. Bar, A. Brook, N. Sochen and N. Kiryati, "Deblurring of Color Images Corrupted by Impulsive Noise", IEEE Trans. on Image Processing, 2007

$$
\mathcal{F}_{v}(u)=\|A u-v\|_{1}+\beta \Phi(u)
$$

blurred, noisy (r.-v.)

zoom - restored

- Image $\boldsymbol{u} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$, rows $\boldsymbol{u}_{\boldsymbol{i}}$, its pixels $\boldsymbol{u}_{\boldsymbol{i}}[\boldsymbol{j}]$
- Data $\boldsymbol{v}_{\boldsymbol{i}}[\boldsymbol{j}]=\boldsymbol{u}_{\boldsymbol{i}}\left[\boldsymbol{j}+\boldsymbol{d}_{\boldsymbol{i}}\right], \quad \boldsymbol{d}_{\boldsymbol{i}}$ integer, $\left|\boldsymbol{d}_{\boldsymbol{i}}\right| \leqslant \boldsymbol{M}$, typically $M \leqslant 20$.
- Restore $\hat{\boldsymbol{u}} \equiv$ restore $\hat{\boldsymbol{d}_{\boldsymbol{i}}}, \mathbf{1} \leqslant \boldsymbol{i} \leqslant \boldsymbol{m}$

Original

(b) One column

Jittered
(b) The same column in the original (left) and in the jittered (right) image

The gray-values of the columns of natural images can be seen as large pieces of $2^{\text {nd }}$ (or $3^{\text {rd }}$) order polynomials which is false for their jittered versions.

Each column $\hat{\boldsymbol{u}}_{i}$ is restored using $\hat{d}_{i}=\arg \min _{\left|d_{i}\right| \leqslant N} \mathcal{F}\left(d_{i}\right)$

$$
\mathcal{F}\left(d_{i}\right)=\sum_{j=N+1}^{c-N}\left|v_{i}\left[j+d_{i}\right]-2 \hat{u}_{i-1}[j]+\hat{u}_{i-2}[j]\right|^{\alpha}, \quad \alpha \in\{0.5,1\}, \quad N>M
$$

Question 26 Explain why the minimizers of \mathcal{F} can solve the problem as stated.
Question 27 What changes if $\alpha=1$ or if $\alpha=0.5$?
Question 28 Is it easy to solve the numerical problem?
A Monte-Carlo experiment shows that in almost all cases, $\alpha=\mathbf{0 . 5}$ is the best choice.

Jittered, $[-20,20]$

$$
\alpha=1
$$

Jitter: $6 \sin \left(\frac{n}{4}\right)$
$\alpha=1 \equiv$ Original

Jitter $\{-15, . ., 15\}$
$\alpha=1, \alpha=0.5$
Original image

Jitter

Original

Bayesian TV

Our: $\alpha=0.5$

Bake \& Shake

Our: Error $u_{o}-\hat{u}$
[Kokaram98, Laborelli03, Shen04, Kang06, Scherzer11]

Comparison with Smooth Energies

$\mathcal{F}_{\boldsymbol{v}}(\boldsymbol{u})=\Psi(\boldsymbol{u}, \boldsymbol{v})+\boldsymbol{\beta} \Phi(\boldsymbol{u}), \quad \mathcal{F} \in \mathcal{C}^{m \geqslant 2}+$ easy assumptions. If $\boldsymbol{h} \neq \varnothing \Rightarrow$ $\left\{\boldsymbol{v} \in \mathbb{R}^{q}: \mathcal{F}_{v}\right.$ —minimum at $\left.\hat{\boldsymbol{u}}, \boldsymbol{G}_{i} \hat{\boldsymbol{u}}=\mathbf{0}, \forall i \in \boldsymbol{h}\right\} \quad$ closed and $\left\{\boldsymbol{v} \in \mathbb{R}^{q}: \mathcal{F}_{v}\right.$-minimum at $\left.\hat{\boldsymbol{u}},\left\langle\boldsymbol{a}_{i}, \hat{\boldsymbol{u}}\right\rangle=\boldsymbol{v}_{\boldsymbol{i}}, \forall i \in \boldsymbol{h}\right\} \quad$ negligible in \mathbb{R}^{q}

For \mathcal{F}_{v} smooth, the chance that noisy data \boldsymbol{v} yield a minimizer $\hat{\boldsymbol{u}}$ of \mathcal{F}_{v} which for some \boldsymbol{i} satisfies exactly $G_{i} \hat{\boldsymbol{u}}=\mathbf{0}$ or $\left\langle a_{i}, \hat{\boldsymbol{u}}\right\rangle=\boldsymbol{v}_{\boldsymbol{i}}$ is negligible

Nearly all $v \in \mathbb{R}^{q}$ lead to $\hat{u}=\mathcal{U}(v)$ satisfying $\boldsymbol{G}_{\boldsymbol{i}} \hat{\boldsymbol{u}} \neq \mathbf{0}, \forall \boldsymbol{i}$ and $\left\langle\boldsymbol{a}_{\boldsymbol{i}}, \hat{\boldsymbol{u}}\right\rangle \neq \boldsymbol{v}_{\boldsymbol{i}}, \forall \boldsymbol{i}$
Question 29 What are the consequences if one approximates a nonsmooth energy by a smooth energy?

Let $u \in \mathbb{R}^{p}$ and $v \in \mathbb{R}^{q}$.
Consider that $A \in \mathbb{R}^{q \times p}$ and $G \in \mathbb{R}^{r \times p}$ satisfy $\operatorname{ker}(A) \cap \operatorname{ker}(G)=\{0\}$.

$$
\mathcal{F}_{v}(u)=\|A u-v\|_{2}^{2}+\beta\|G u\|_{2}^{2} \quad \text { for } \quad \beta>0
$$

Question 30 Calculate $\nabla \mathcal{F}_{v}(u)$.

Question 31 Determine the minimizer function \mathcal{U}.

Let $G_{i} \in \mathbb{R}^{1 \times p}$ denote the i th row of G.
Question 32 Characterize the set $\mathcal{K}=\left\{\nu \in \mathbb{R}^{p}: G_{i} \mathcal{U}(\nu)=0\right\}$.
Let $a_{i} \in \mathbb{R}^{1 \times p}$ denote the i th row of A.

Question 33 Characterize the set $\mathcal{L}=\left\{\nu \in \mathbb{R}^{p}: a_{i} \mathcal{U}(\nu)=\nu[i]\right\}$.

$$
\mathcal{F}_{v}(u)=\|A u-v\|^{2}+\beta \sum_{i \in J} \varphi\left(\left\|G_{i} u\right\|\right) \quad J=\{1, \cdots, r\}
$$

Standard assumptions on $\varphi: \quad \mathcal{C}^{2}$ on \mathbb{R}_{+}and $\lim _{t \rightarrow \infty} \varphi^{\prime \prime}(t)=0$, as well as:

$$
\varphi^{\prime}\left(0^{+}\right)>0 \quad(\Phi \text { is nonsmooth })
$$

Sharp edge property

There exist $\boldsymbol{\theta}_{\mathbf{0}} \geqslant \mathbf{0}$ and $\boldsymbol{\theta}_{\mathbf{1}}>\boldsymbol{\theta}_{\mathbf{0}}$ such that any (local) minimizer $\hat{\boldsymbol{u}}$ of $\mathcal{F}_{\boldsymbol{v}}$ satisfies

$$
\begin{aligned}
& \text { either }\left\|\boldsymbol{G}_{i} \hat{\boldsymbol{u}}\right\| \leqslant \boldsymbol{\theta}_{\mathbf{0}} \quad \text { or } \quad\left\|\boldsymbol{G}_{\boldsymbol{i}} \hat{\boldsymbol{u}}\right\| \geqslant \boldsymbol{\theta}_{\mathbf{1}} \quad \forall \boldsymbol{i} \in \boldsymbol{J} \\
& \widehat{h}_{0}=\left\{\boldsymbol{i}:\left\|\boldsymbol{G}_{i} \hat{\boldsymbol{u}}\right\| \leqslant \boldsymbol{\theta}_{0}\right\} \quad \text { homogeneous regions } \\
& \widehat{h}_{1}=\left\{\boldsymbol{i}:\left\|\boldsymbol{G}_{i} \hat{\boldsymbol{u}}\right\| \geqslant \boldsymbol{\theta}_{1}\right\} \quad \text { edges }
\end{aligned}
$$

When β increases, then θ_{0} decreases and θ_{1} increases.

In particular

$$
\varphi^{\prime}\left(\mathbf{0}^{+}\right)>\mathbf{0} \Rightarrow \theta_{0}=\mathbf{0} \quad \text { fully segmented image } \quad\left(G_{i} \hat{u}=0, \forall i \in \widehat{h}_{0}\right)
$$

Question 34 Explain the prior model involved in \mathcal{F}_{v} when φ is nonconvex with $\varphi^{\prime}(0)=0$ and with $\varphi^{\prime}\left(0^{+}\right)>0$.

Image Reconstruction in Emission Tomography

Original phantom

Emission tomography simulated data

φ is smooth (Huber function)

$$
\varphi(t)=t /(\alpha+t) \text { (non-smooth, non-convex) }
$$

Reconstructions using $\mathcal{F}_{v}(u)=\Psi(u, v)+\beta \sum_{j \in \mathcal{N}_{i}} \varphi(|u[i]-u[j]|), \quad \Psi=$ smooth, convex

$$
\mathcal{F}_{v}(u)=(u-v)^{2}+\beta \varphi(u) \quad u, v \in \mathbb{R} \quad \beta>0
$$

- Assumption: $\beta>-\frac{2}{\min _{t \in \mathbb{R}} \varphi^{\prime \prime}(t)} \quad$ (if $\varphi^{\prime}\left(0^{+}\right)>0$ then $\min _{t \in \mathbb{R}} \varphi^{\prime \prime}(t)=\varphi^{\prime \prime}\left(0^{+}\right)$).

Question 35 Determine the sign of β, i.e. >0 or <0.

- $C_{\beta} \doteq\left\{t \in(0,+\infty): \varphi^{\prime \prime}(t)<-\frac{2}{\beta}\right\}$
- Recall: \mathcal{F}_{v} has a (local) minimum at a \hat{u} where \mathcal{F}_{v} is twice differentiable if and only if

$$
\mathcal{F}_{v}^{\prime}(\hat{u})=0 \quad \text { and } \quad \mathcal{F}_{v}^{\prime \prime}(\hat{u}) \geqslant 0
$$

Question 36 Show that $\forall v \in \mathbb{R}$, if \hat{u} is a (local) minimizer of \mathcal{F}_{v}, then $|\hat{u}| \notin C_{\beta}$.

Comparison with Convex Edge-Preserving Regularization

Data $v=u_{o}+n$

$\varphi(t)=|t|$

$\varphi(t)=\alpha|t| /(1+\alpha|t|)$

original

data

$\varphi(t)=|t|^{1.4}$

$\varphi(t)=\min \left\{\alpha t^{2}, 1\right\}$

Question 37 Why edges are sharper when φ is nonconvex?

$$
\mathcal{F}_{v}(u)=(u-v)^{2}+\beta \frac{\alpha|u|}{(1+\alpha|u|)}
$$

global function (∞)

$$
\mathcal{F}_{v}(u)=(u-v)^{2}+\beta \frac{\alpha u^{2}}{\left(1+\alpha u^{2}\right)}
$$

global minimizer functions (∞) unique minimizer function (∞)

Each blue curve curve: $\boldsymbol{u} \rightarrow \mathcal{F}_{\boldsymbol{v}}(\boldsymbol{u})$ for $\boldsymbol{v} \in\{0,2, \cdots\}$

Question 38 How to describe the global minimizer when v increases?

6. Nonsmooth data-fidelity and regularization

Consequence of $\S 3$ and $\S 4$: if Φ and Ψ non-smooth, $\left\{\begin{array}{lll}G_{i} \hat{u}=0 & \text { for } & i \in \hat{h}_{\varphi} \neq \varnothing \\ a_{i} \hat{u}=v[i] & \text { for } & i \in \hat{h}_{\psi} \neq \varnothing\end{array}\right.$
The L_{1}-TV energy
T. F. Chan and S. Esedoglu, "Aspects of Total Variation Regularized L^{1} Function Approximation", SIAM J. on Applied Mathematics, 2005

$$
\mathcal{F}_{v}(u)=\left\|u-\mathbb{1}_{\Omega}\right\|_{1}+\beta \int_{\mathbb{R}^{d}}\|\nabla u(x)\|_{2} d x \text { where } \mathbb{1}_{\Omega}(x) \doteq\left\{\begin{array}{lll}
1 & \text { if } & x \in \Omega \\
0 & \text { else }
\end{array}\right.
$$

- $\exists \hat{u}=\mathbb{1}_{\Sigma} \quad(\Omega$ convex $\Rightarrow \quad \Sigma \subset \Omega$ and \hat{u} unique for almost every $\beta>0)$
- contrast invariance: if \hat{u} minimizes for $v=\mathbb{1}_{\Omega}$ then $c \hat{u}$ minimizes $\mathcal{F}_{c v}$ the contrast of image features is more important than their shapes
- critical values $\beta^{*}\left\{\begin{array}{lll}\beta<\beta^{*} & \Rightarrow & \text { objects in } \hat{u} \text { with good contrast } \\ \beta>\beta^{*} & \Rightarrow & \text { they suddenly disappear }\end{array}\right.$ \Rightarrow data-driven scale selection

Binary images by L1 - TV
[T. Chan, S. Esedoglu, Nikolova 06]
Classical approach to find a binary image $\hat{\boldsymbol{u}}=\mathbb{1}_{\hat{\Sigma}}$ from binary data $\mathbb{1}_{\Omega}, \Omega \subset \mathbb{R}^{2}$

$$
\hat{\Sigma}=\arg \min _{\Sigma}\left\{\left\|\mathbb{1}_{\Sigma}-\mathbb{1}_{\Omega}\right\|_{2}^{2}+\beta \operatorname{TV}\left(\mathbb{1}_{\Sigma}\right)\right\} \quad \text { nonconvex problem } \quad(\star)
$$

usual techniques (curve evolution, level-sets) fail

$$
\hat{\Sigma} \text { solves }(\star) \Leftrightarrow \hat{\boldsymbol{u}}=\mathbb{1}_{\hat{\boldsymbol{\Sigma}}} \text { minimizes }\left\|u-\mathbb{1}_{\Omega}\right\|_{1}+\beta \operatorname{TV}(u) \quad \text { (convex) }
$$

Data

Restored

