IPAM Graduate Summer School: Computer Vision, July 2013

Inverse modelling using optimization

to solve imaging tasks

Part II

Mila Nikolova

ENS Cachan, CNRS, France

nikolova@cmla.ens-cachan.fr

Stability of the minimizers of \mathcal{F}_v

$$egin{array}{rcl} \mathcal{F}_v(u)&=&\|Au-v\|_2^2+eta\Phi(u)\ \Phi(u)&=&\sum_i arphi(\|G_iu\|_2) \end{array} \end{array}$$

$$egin{aligned} & u \in \mathbb{R}^p \ & v \in \mathbb{R}^q \end{aligned} egin{cases} & arphi : \mathbb{R}_+ o \mathbb{R} \ & arphi ext{ incresing, continuous} \ & arphi(t) > arphi(0), \ & orall t > 0 \end{aligned}$$

 $\{G_i\}$ linear operators $\mathbb{R}^p o \mathbb{R}^s$, $s \ge 1$

 $arphi'(0^+)>0 \;\; \Rightarrow \;\; \Phi \; ext{is nonsmooth} \;\; ext{on} \;\; igcup_i ig\{u:G_iu=0ig\}$

Systematically: $\ker A \cap \ker G = \{0\}$

$$G \doteq \left[egin{array}{c} G_1 \ G_2 \ \ldots \end{array}
ight]$$

Question 2 Why?

 \mathcal{F}_v nonconvex \Rightarrow there may be many local minima

- $N = \{(s,t) : t = \pm \arctan(s)\}$
- N is closed in \mathbb{R}^2 and its Lebesgue measure in \mathbb{R}^2 is $\mathbb{L}^2(N)=0$
- $(x,y) = \operatorname{random} \mathbb{R}^2$

Question 3 What is the chance that $(x, y) \in N$?

[Durand & Nikolova 06]

Assumptions: φ is piecewise $\mathcal{C}^{m \ge 2}$, edge-preserving, possibly non-convex, $\operatorname{rank}(A) = p$

• There is a closed $N \subset \mathbb{R}^q$ with $\mathbb{L}^q(N) = 0$ such that $\forall v \in \mathbb{R}^q \setminus N$, every (local) minimizer \hat{u} of \mathcal{F}_v is given by $\hat{u} = \mathcal{U}(v)$ where \mathcal{U} is a \mathcal{C}^{m-1} (local) minimizer function.

Question 4 Why knowledge on local minimizers is important?

Question 5 Compare \hat{u} and $\mathcal{U}(v + \varepsilon)$ where $\varepsilon \in \mathbb{R}^q$ is small enough.

• $\exists \ \hat{N} \subset \mathbb{R}^q$ with $\mathbb{L}^q(\hat{N}) = 0$ such that $\forall v \in \mathbb{R}^q \setminus \hat{N}$, \mathcal{F}_v has a unique global minimizer

Question 6 What can happen if $v \in \hat{N}$?

• \exists open subset of $\mathbb{R}^q \setminus \hat{N}$, dense in \mathbb{R}^q , where the global minimizer function $\hat{\mathcal{U}}$ is \mathcal{C}^{m-1} .

Question 7 If \mathcal{F}_v is strictly convex, determine N and \hat{N} .

Nonasymptotic bounds on minimizers

Assumption: φ is piecewise \mathcal{C}^1

- φ is strictly increasing <u>or</u> rank(A) = p
 - \hat{u} is a (local) minimizer of $\mathcal{F}_{v} \quad \Rightarrow \quad \|A\hat{u}\| \leqslant \|v\|$
- $\|\varphi'\|_{\infty} < \infty$ (φ is edge-preserving) and $\operatorname{rank}(A) = q \leq p$ \hat{u} is a (local) minimizer of $\mathcal{F}_{v} \Rightarrow \|v - A\hat{u}\|_{\infty} \leq \frac{\beta}{2} \|\varphi'\|_{\infty} \|(AA^{*})^{-1}A\|_{\infty} \|G\|_{1}$

$$\|arphi'\|_{\infty} = 1 ext{ and } G - 1^{\mathsf{st}} ext{ order differences:} \left\{ egin{array}{c} { ext{signal}} & \Rightarrow & \|m{v} - \hat{m{u}}\|_{\infty} \leqslant m{eta} \ { ext{image}} & \Rightarrow & \|m{v} - \hat{m{u}}\|_{\infty} \leqslant m{2m{eta}} \end{array}
ight.$$

Question 8If $v = u_o + n$ for n Gaussian noise, is it possible to clean vfrom this noise by minimizing \mathcal{F}_v ?

[Nikolova 07]

Non-Smooth Energies, Side Derivatives, Subdifferential

Rademacher's theorem: If $\mathcal{F}_v : \mathbb{R}^p \to \mathbb{R}$ is Lipschitz continuous, then \mathcal{F}_v is differentiable (in the usual sense) almost everywhere in \mathbb{R}^p .

A kink is a point u where $\nabla \mathcal{F}_v(u)$ is not defined (in the usual sense).

Question 9 What is drawn on the second row?

Question 10 Give a condition for \mathcal{F}_v to have a minimum at \hat{u} .

3 Minimizers under Non-Smooth Regularization

$$\left(\mathcal{F}_{v}(u) = \Psi(u,v) + \beta \sum_{i=1}^{r} \varphi(\|G_{i}u\|), \quad \Psi \in \mathcal{C}^{m \geqslant 2}, \ \varphi \in \mathcal{C}^{m}(\mathbb{R}^{*}_{+}), \ \mathbf{0} < \varphi'(\mathbf{0}^{+}) \leqslant \mathbf{\infty} \right)$$

 $\varphi(t) = t$ and $G_i u \approx (\nabla u)_i \Rightarrow \mathcal{F}_v(u) = \mathrm{TV}(u)$ (total variation) [Rudin, Osher, Fatemi 92]

23

Let \hat{u} be a (local) minimizer of \mathcal{F}_v . Set $\hat{h} \doteq \{i : G_i \hat{u} = 0\}$ Then $\exists O \subset \mathbb{R}^q$ open, $\exists \mathcal{U} \in \mathcal{C}^{m-1}$ (local) minimizer function so that

$$v'\in O, \;\; \hat{u}'=\mathcal{U}(v') \;\;\; \Rightarrow \;\;\; G_i\hat{u}'=0, \;\; orall \, i\in \hat{h}$$

Data v yield (local) minimizers \hat{u} of \mathcal{F}_{v} such that $G_{i}\hat{u} = 0$ for a set of indexes \hat{h}

 $G_i =
abla_i \ \Rightarrow \ \hat{u}[i] = \hat{u}[j]$ for many neighbors (i,j) (the "stair-casing" effect) $G_i u = u[i] \ \Rightarrow$ many samples $\hat{u}[i] = 0$ – highly used in Compressed Sensing

Question 11 What happens if $\{G_i\}$ yield second-order differences?

Question 12 Describe the prior that \hat{u} satisfies for a general $\{G_i\}$.

Property <u>fails</u> if \mathcal{F}_v is smooth, except for $v \in N$ where N is closed and $\mathbb{L}^q(N) = 0$.

 $\varphi(t) = \sqrt{\alpha + t^2}, \quad \varphi'(0) = 0$ (smooth at 0) $\varphi(t) = (t + \alpha \operatorname{sign}(t))^2, \quad \varphi'(0^+) = 2\alpha$

100 100

 $\varphi(t) = \alpha |t| / (1 + \alpha |t|), \quad \varphi'(0^+) = \alpha$

 $\varphi(t) = |t|, \quad \varphi'(0^+) = 1$

Let $u_o \in \mathbb{R}$ and $pdf(u_o) = \frac{1}{2}e^{-|u_o|}$ (Laplacian distribution) Question 13 Give $Pr(u_o = 0)$.

Let $v = u_o + n$ where $pdf(n) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{n^2}{2\sigma^2}}$ (centered Gaussian distribution)

The corresponding MAP energy to recover u_o from v reads as

$$\mathcal{F}_v(u) = rac{1}{2}(u-v)^2 + eta |u| \quad ext{for} \quad eta = rac{1}{\sigma^2}$$

Question 14 Give the minimizer function \mathcal{U} for \mathcal{F}_v .

Useful reminder on p. 21.

Question 15 Determine the set $\{\nu \in \mathbb{R} : \mathcal{U}(\nu) = 0\}$. Comment the result.

TV energy: $\mathcal{F}_{v}(u) = ||Au - v||^{2} + \beta \sum_{i=1}^{r} \varphi(||G_{i}u||)$ for $\varphi(t) = t$ and G_{i} discrete gradient at pixel i

Original

Data

Restored: TV energy

D. C. Dobson and F. Santosa, "Recovery of blocky images from noisy and blurred data", SIAM J. Appl. Math., 56 (1996), pp. 1181-1199.

Minimization of $\mathcal{F}_v(u) = \|u - v\|_2^2 + \beta \mathrm{TV}(u)$, $\beta = 100$ and $\beta = 180$

Here
$$arphi(t) = \left\{egin{array}{ccc} 0 & ext{if} & t=0 \ 1 & ext{if} & t
eq 0 \end{array}
ight.$$

Question 16 Compute the global minimizer of $\mathcal{F}_{v}(u) = (u - v)^{2} + \beta \varphi(u)$ for $u, v \in \mathbb{R}$ and $\beta > 0$, according to the value of v.

Question 17 Are there any values of v so that \mathcal{F}_v has more than one global minimizer?

Consider
$$\mathcal{F}_{v}(u) = \|u - v\|_{2}^{2} + eta \sum_{i=1}^{p} \varphi(u[i])$$
 for $\beta > 0$ and $u, v \in \mathbb{R}^{p}$.

The global minimizer function $\mathcal{U}: \mathbb{R}^p \to \mathbb{R}^p$ for \mathcal{F}_v has p components which depend on v.

Question 18 Compute each component U_i

Question 19 Let $h \subset \{1, \dots, p\}$. Determine the subset $\mathcal{O}_h \subset \mathbb{R}^p$ such that if $v \in \mathcal{O}_h$ then the global minimizer \hat{u} of \mathcal{F}_v satisfies $\hat{u}[i] = 0, \forall i \in h$ and $\hat{u}[i] \neq 0$ if $i \notin h$.

Note that
$$\sum_{i=1}^{p} \varphi(u[i]) = \#\{i : u[i] \neq 0\} = \ell_0(u)$$

4 Minimizers relevant to non-smooth data-fidelity

General case

[Nikolova 01,02]

$$egin{aligned} &\mathcal{F}_{\!v}(u)\!=\!\sum_{i}\!\psi(|a_{i}u-v[i]|)+eta\Phi(u), & \Phi\!\in\!\mathcal{C}^{m}, \;\psi\!\in\!\mathcal{C}^{m}(\mathbb{R}^{*}_{+}), \;\; oldsymbol{\psi'(0^{+})}>0 \end{aligned}$$

Let \hat{u} be a (local) minimizer of \mathcal{F}_{v} . Set $\hat{h} = \{i : a_{i}\hat{u} = v[i]\}$. Then $\exists O \subset \mathbb{R}^{q}$ open, $\exists \mathcal{U} \in \mathcal{C}^{m-1}$ (local) minimizer function so that

$$v' \in O, \;\; \hat{u}' = \mathcal{U}(v') \;\;\; \Rightarrow \;\;\; \left\{ egin{array}{cc} a_i \hat{u}' = v[i], & i \in \hat{h} \ a_i \hat{u}'
eq v[i], & i \in \hat{h}^c \end{array}
ight.$$

(Local) minimizers \hat{u} of \mathcal{F}_v achieve an exact fit to (noisy) data $a_i \hat{u} = v[i]$ for a certain number of indexes i

Property <u>fails</u> if \mathcal{F} is smooth, except for $v \in N$ where N is closed and $\mathbb{L}^q(N) = 0$.

Question 20 Suggest cases when you would like that your minimizer obeys this property.

Question 21 Propose some choices for ψ . Explain.

Question 22 Compute the minimizer of $\mathcal{F}_v(u) = |u - v| + \beta u^2$ for $u, v \in \mathbb{R}$ and $\beta > 0$.

Question 23 Explain the relationship between the properties of the minimizer when $\varphi'(0^+) > 0$ and when $\psi'(0^+) > 0$

Restoration \hat{u} for $\beta = 0.14$

Residuals $v - \hat{u}$

$$\mathcal{F}_v(u) = \sum_i |u[i]-v[i]| + eta \sum_{j\in\mathcal{N}_i} |u[i]-u[j]|^{1.1}$$

Restoration \hat{u} for $\boldsymbol{\beta}=\boldsymbol{0.25}$

Residuals $v - \hat{u}$

$$\mathcal{F}_v(u) = \sum_i ig|u[i] - v[i]ig| + eta \sum_{j \in \mathcal{N}_i} |u[i] - u[j]|^{1.1}$$

Restoration \hat{u} for $\beta=0.2$

Residuals $v - \hat{u}$

TV-like energy: $\mathcal{F}_v(u) = \sum_i (u[i] - v[i])^2 + eta \sum_{j \in \mathcal{N}_i} |u[i] - u[j]|$

Detection and cleaning of outliers using ℓ_1 data-fidelity

 φ : smooth, convex, edge-preserving

Justification based on the properties of \hat{u}

|Nikolova 04|

Original image u_o

Recursive CWM ($\|\hat{u}-u_o\|_2 = 3566$)

10% random-valued noise

PWM ($\|\hat{u} - u_o\|_2 = 3984$)

Median ($\|\hat{u}-u_o\|_2 = 4155$)

Proposed ($\|\hat{u} - u_o\|_2 = 2934$)

Recovery of frame coefficients using ℓ_1 data-fitting

- Data: $v = u_o + noise$
- Frame coefficients: $y = Wv = Wu_o +$ noise
- Hard thresholding $y_T[i] \doteq \left\{egin{array}{cc} 0 & ext{if} \ |y[i]| \leqslant T \ y[i] & ext{if} \ |y[i]| > T \end{array}
 ight.$

keeps relevant information if T small

- $ilde{u} = \widetilde{W} y_T$ Gibbs oscillations and wavelet-shaped artifacts
- Hybrid energy methods—combine fitting to y_T with prior $\Phi(u)$

[Bobichon, Bijaoui 97], [Coifman, Sowa 00], [Durand, Froment 03]...

 $\widetilde{\boldsymbol{W}} =$ left inverse of \boldsymbol{W}

[Durand, Nikolova 07]

Desiderata: \mathcal{F}_y convex and

Keep
$$\hat{x}[i] = y_T[i]$$
Restore $\hat{x}[i] \neq y_T[i]$ significant coefs: $y[i] \approx (Wu_o)[i]$ outliers: $|y[i]| \gg |(Wu_o)[i]|$ (frame-shaped artifacts)thresholded coefs: $(Wu_o)[i] \approx 0$ edge coefs: $|(Wu_o)[i]| > |y_T[i]| = 0$ ("Gibbs" oscillations)

$$\begin{array}{ll} \text{minimize} & \mathcal{F}_y(x) = \sum_i \lambda_i \big| (x - y_T)[i] \big| + \int_\Omega \varphi(|\nabla \widetilde{W} x|) & \Rightarrow \quad \hat{x} \\ \\ & \hat{u} = \widetilde{W} \hat{x} \;\; \text{for} \;\; \widetilde{W} \;\; \text{left inverse,} \; \varphi \; \text{edge-preserving} \end{array}$$

Question 24 Explain why the minimizers of \mathcal{F}_y fulfill the desiderata.

Question 25 Any open questions?

Restored signal (--), original signal (--).

Fast 2-stage restoration under impulse noise [R.Chan, Nikolova et al. 04, 05, 08]

1. Approximate the outlier-detection stage by rank-order filter

(e.g. adaptive or center-weighted median)

Corrupted pixels $\hat{h}^c = \{i: \hat{v}[i]
eq v[i]\}$ where \hat{v} =Rank-Order Filter (v)

- \Rightarrow improve speed and accuracy
- 2. Restore \hat{u} (denoise, deblur) using an edge-preserving energy method subject to $a_i \hat{u} = v[i]$ for all $i \in \hat{h}$

50% RV noise

ACWMF

DPVM

Our method

70 %SP noise(6.7dB)

Adapt.med.(25.8dB)

Our method(29.3dB)

Original Lena

L. Bar, A. Brook, N. Sochen and N. Kiryati, "Deblurring of Color Images Corrupted by Impulsive Noise", IEEE Trans. on Image Processing, 2007

 $\mathcal{F}_v(u) = \|Au - v\|_1 + \beta \Phi(u)$

blurred, noisy (r.-v.)

zoom - restored

One-step real-time dejittering of digital video

- Image $\, u \in \mathbb{R}^{m imes n}$, rows u_i , its pixels $u_i[j]$
- Data $v_i[j] = u_i[j + d_i]$, d_i integer, $|d_i| \leq M$, typically $M \leq 20$.
- Restore $\hat{u}~\equiv~$ restore $\hat{d}_i,~1\leqslant i\leqslant m$

Original (b) One column Jittered (b) The same column in the original (left) and in the jittered (right) image

The gray-values of the columns of natural images can be seen as large pieces of 2^{nd} (or 3^{rd}) order polynomials which is false for their jittered versions.

Each column \hat{u}_i is restored using $\ \ \hat{d}_i = rg \min_{|d_i| \leqslant N} \mathcal{F}(d_i)$

$$\mathcal{F}(d_i) = \sum_{j=N+1}^{c-N} ig| oldsymbol{v}_i[j+d_i] - 2 \hat{u}_{i-1}[j] + \hat{u}_{i-2}[j] ig|^lpha, \;\; lpha \in \{0.5,1\}, \;\; N > M$$

- Question 26 Explain why the minimizers of \mathcal{F} can solve the problem as stated.
- Question 27 What changes if $\alpha = 1$ or if $\alpha = 0.5$?
- Question 28 Is it easy to solve the numerical problem?
- A Monte-Carlo experiment shows that in almost all cases, lpha=0.5 is the best choice.

Jittered, [-20, 20] $\alpha = 1$ Jitter: $6 \sin\left(\frac{n}{4}\right)$ $\alpha = \mathbf{1} \equiv \text{Original}$

Jitter $\{-15,..,15\}$

lpha=1, lpha=0.5

Bayesian TV

Bake & Shake

Original

Our: $\alpha = 0.5$

Our: Error $u_o - \hat{u}$

[Kokaram98, Laborelli03, Shen04, Kang06, Scherzer11]

Comparison with Smooth Energies

 $\mathcal{F}_v(u) = \Psi(u,v) + eta \Phi(u), \ \mathcal{F} \in \mathcal{C}^{m \geqslant 2} + ext{easy assumptions.}$ If $h
eq arnothing extsf{if} \Rightarrow$

 $egin{aligned} \{m{v}\in\mathbb{R}^q:\mathcal{F}_v-& ext{minimum at } \hat{m{u}},\ m{G}_{m{i}}\hat{m{u}}=m{0},\ orall m{i}\inm{h}\} & ext{closed and} \ \{m{v}\in\mathbb{R}^q:\mathcal{F}_v-& ext{minimum at } \hat{m{u}},\ ar{m{a}}_i,\hat{m{u}}
ightarrow=m{v}_{m{i}},\ orall m{i}\inm{h}\} & ext{negligible in } \mathbb{R}^q \end{aligned}$

For \mathcal{F}_v smooth, the chance that noisy data v yield a minimizer \hat{u} of \mathcal{F}_v which for some i satisfies exactly $G_i \hat{u} = 0$ or $\langle a_i, \hat{u} \rangle = v_i$ is negligible

Nearly all $v \in \mathbb{R}^q$ lead to $\hat{u} = \mathcal{U}(v)$ satisfying $G_i \hat{u} \neq 0$, $\forall i$ and $\langle a_i, \hat{u} \rangle \neq v_i$, $\forall i$

Question 29What are the consequences if one approximates a nonsmooth energyby a smooth energy?

Let $u \in \mathbb{R}^p$ and $v \in \mathbb{R}^q$.

Consider that $A \in \mathbb{R}^{q \times p}$ and $G \in \mathbb{R}^{r \times p}$ satisfy $\ker(A) \cap \ker(G) = \{0\}$.

$$\mathcal{F}_{v}(u) = \|Au - v\|_{2}^{2} + \beta \|Gu\|_{2}^{2}$$
 for $\beta > 0$

Question **30** Calculate
$$\nabla \mathcal{F}_v(u)$$
.

Question 31 Determine the minimizer function \mathcal{U} .

Let $G_i \in \mathbb{R}^{1 \times p}$ denote the *i*th row of *G*.

Question 32 Characterize the set $\mathcal{K} = \{ \nu \in \mathbb{R}^p : G_i \mathcal{U}(\nu) = 0 \}.$

Let $a_i \in \mathbb{R}^{1 \times p}$ denote the *i*th row of *A*.

Question 33 Characterize the set $\mathcal{L} = \{ \nu \in \mathbb{R}^p : a_i \mathcal{U}(\nu) = \nu[i] \}.$

5 Nonconvex Regularization: Why Edges are Sharp?

$$egin{aligned} \mathcal{F}_{m{v}}(m{u}) &= \|m{A}m{u} - m{v}\|^2 + eta \sum_{m{i} \in J} arphi(\|m{G}_{m{i}}m{u}\|) \end{pmatrix} \quad J = \{1, \cdots, r\} \end{aligned}$$

Standard assumptions on φ : \mathcal{C}^2 on \mathbb{R}_+ and $\lim_{t\to\infty} \varphi''(t) = 0$, as well as:

 $\varphi'(0) = 0 \ (\Phi \text{ is smooth})$ 1 $\varphi(t) = \frac{\alpha t^2}{1 \perp \alpha t^2}$ Ο 1 $\varphi''(t)$ · **()** $au \ au$ 0 increase, $\leqslant 0$ 0 1

 $\varphi'(0^+) > 0$ (Φ is nonsmooth)

Sharp edge property

There exist $heta_0 \geqslant 0$ and $heta_1 > heta_0$ such that any (local) minimizer \hat{u} of \mathcal{F}_v satisfies

either $\|G_i \hat{u}\| \leqslant heta_0$ or $\|G_i \hat{u}\| \geqslant heta_1$ $orall i \in J$

$$egin{array}{rcl} \widehat{h}_{0} &=& ig\{i: \|G_{i}\hat{u}\| \leqslant heta_{0}ig\} & ext{homogeneous regions} \ \widehat{h}_{1} &=& ig\{i: \|G_{i}\hat{u}\| \geqslant heta_{1}ig\} & ext{edges} \end{array}$$

When β increases, then θ_0 decreases and θ_1 increases.

In particular

 $\varphi'(0^+) > 0 \implies \theta_0 = 0$ fully segmented image $(G_i \hat{u} = 0, \forall i \in \hat{h}_0)$

Question 34 Explain the prior model involved in \mathcal{F}_v when φ is nonconvex with $\varphi'(0) = 0$ and with $\varphi'(0^+) > 0$.

IMAGE RECONSTRUCTION IN EMISSION TOMOGRAPHY

Original phantom

Emission tomography simulated data

 φ is smooth (Huber function)

arphi(t)=t/(lpha+t) (non-smooth, non-convex)

Reconstructions using $\mathcal{F}_v(u) = \Psi(u, v) + \beta \sum_{j \in \mathcal{N}_i} \varphi(|u[i] - u[j]|)$, $\Psi = \text{smooth, convex}$

• Assumption:
$$\beta > -\frac{2}{\min_{t \in \mathbb{R}} \varphi''(t)}$$
 (if $\varphi'(0^+) > 0$ then $\min_{t \in \mathbb{R}} \varphi''(t) = \varphi''(0^+)$).

Question 35 Determine the sign of β , i.e. > 0 or < 0.

•
$$C_{\beta} \doteq \left\{ t \in (0, +\infty) : \varphi''(t) < -\frac{2}{\beta} \right\}$$

• Recall: \mathcal{F}_v has a (local) minimum at a \hat{u} where \mathcal{F}_v is twice differentiable if and only if

$$\mathcal{F}'_v(\hat{u}) = 0$$
 and $\mathcal{F}''_v(\hat{u}) \ge 0$

Question 36 Show that $\forall v \in \mathbb{R}$, if \hat{u} is a (local) minimizer of \mathcal{F}_v , then $|\hat{u}| \notin C_\beta$.

Comparison with Convex Edge-Preserving Regularization

Question 37 Why edges are sharper when φ is nonconvex?

Question 38 How to describe the global minimizer when v increases?

6. Nonsmooth data-fidelity and regularization

Consequence of §3 and §4: if Φ and Ψ non-smooth, $\begin{cases} G_i \hat{u} = 0 & \text{for} \quad i \in \hat{h}_{\varphi} \neq \emptyset \\ a_i \hat{u} = v[i] & \text{for} \quad i \in \hat{h}_{\psi} \neq \emptyset \end{cases}$

The L_1 -TV energy

T. F. Chan and S. Esedoglu, "Aspects of Total Variation Regularized L^1 Function Approximation", SIAM J. on Applied Mathematics, 2005

$$\mathcal{F}_{v}(u) = \|u - \mathbb{1}_{\Omega}\|_{1} + \beta \int_{\mathbb{R}^{d}} \|\nabla u(x)\|_{2} dx \text{ where } \mathbb{1}_{\Omega}(x) \doteq \begin{cases} 1 & \text{if } x \in \Omega \\ 0 & \text{else} \end{cases}$$

- $\exists \hat{u} = \mathbb{1}_{\Sigma}$ (Ω convex \Rightarrow $\Sigma \subset \Omega$ and \hat{u} unique for almost every $\beta > 0$)
- contrast invariance: if \hat{u} minimizes for $v = \mathbb{1}_{\Omega}$ then $c\hat{u}$ minimizes \mathcal{F}_{cv} the contrast of image features is more important than their shapes
- critical values $\beta^* \begin{cases} \beta < \beta^* \Rightarrow \text{objects in } \hat{u} \text{ with good contrast} \\ \beta > \beta^* \Rightarrow \text{they suddenly disappear} \end{cases}$
 - \Rightarrow data-driven scale selection

Binary images by L1 – TV

[T. Chan, S. Esedoglu, Nikolova 06]

Classical approach to find a binary image $\hat{u} = 1_{\hat{\Sigma}}$ from binary data 1_{Ω} , $\Omega \subset \mathbb{R}^2$

$$\hat{\Sigma} = \arg\min_{\Sigma} \left\{ \|\mathbb{1}_{\Sigma} - \mathbb{1}_{\Omega}\|_{2}^{2} + \beta \mathrm{TV}(\mathbb{1}_{\Sigma}) \right\} \qquad \text{nonconvex problem} \quad (\star)$$

usual techniques (curve evolution, level-sets) fail

 $\hat{\Sigma}$ solves $(\star) \Leftrightarrow \hat{u} = \mathbb{1}_{\hat{\Sigma}}$ minimizes $\|u - \mathbb{1}_{\Omega}\|_1 + \beta \operatorname{TV}(u)$ (convex)

Data

Restored