Inverse modelling using optimization to solve imaging tasks

Mila Nikolova

ENS Cachan, CNRS, France

nikolova@cmla.ens-cachan.fr
Stability of the minimizers of \mathcal{F}_v

$$\mathcal{F}_v(u) = \| Au - v \|_2^2 + \beta \Phi(u)$$
$$\Phi(u) = \sum_i \varphi(\| G_i u \|_2)$$

\(u \in \mathbb{R}^p \)
\(v \in \mathbb{R}^q \)

\{\(G_i \)\} linear operators \(\mathbb{R}^p \to \mathbb{R}^s, s \geq 1 \)

\(\varphi'(0^+) > 0 \Rightarrow \Phi \) is nonsmooth on \(\bigcup_i \{ u : G_i u = 0 \} \)

Systematically: \(\ker A \cap \ker G = \{0\} \)
\(G \doteq \begin{bmatrix} G_1 \\ G_2 \\ \vdots \end{bmatrix} \)

Question 2 Why?

\(\mathcal{F}_v \) nonconvex \(\Rightarrow \) there may be many local minima
• $N = \{(s,t) : t = \pm \arctan(s)\}$

• N is closed in \mathbb{R}^2 and its Lebesgue measure in \mathbb{R}^2 is $L^2(N) = 0$

• $(x,y) = \text{random } \mathbb{R}^2$

Question 3 What is the chance that $(x,y) \in N$?
Assumptions: φ is piecewise $C^{m \geq 2}$, edge-preserving, possibly non-convex, $\text{rank}(A) = p$

- There is a closed $N \subset \mathbb{R}^q$ with $L^q(N) = 0$ such that $\forall v \in \mathbb{R}^q \setminus N$, every (local) minimizer \hat{u} of F_v is given by $\hat{u} = U(v)$ where U is a C^{m-1} (local) minimizer function.

Question 4 Why knowledge on local minimizers is important?

Question 5 Compare \hat{u} and $U(v + \varepsilon)$ where $\varepsilon \in \mathbb{R}^q$ is small enough.

- $\exists \hat{N} \subset \mathbb{R}^q$ with $L^q(\hat{N}) = 0$ such that $\forall v \in \mathbb{R}^q \setminus \hat{N}$, F_v has a unique global minimizer

Question 6 What can happen if $v \in \hat{N}$?

- \exists open subset of $\mathbb{R}^q \setminus \hat{N}$, dense in \mathbb{R}^q, where the global minimizer function \hat{U} is C^{m-1}.

Question 7 If F_v is strictly convex, determine N and \hat{N}.
Nonasymptotic bounds on minimizers

Assumption: \(\varphi \) is piecewise \(C^1 \)

- \(\varphi \) is strictly increasing **or** \(\text{rank}(A) = p \)

\[\hat{u} \text{ is a (local) minimizer of } \mathcal{F}_v \quad \Rightarrow \quad \| A\hat{u} \| \leq \| v \| \]

- \(\| \varphi' \|_\infty < \infty \) (**\(\varphi \) is edge-preserving**) and \(\text{rank}(A) = q \leq p \)

\[\hat{u} \text{ is a (local) minimizer of } \mathcal{F}_v \quad \Rightarrow \quad \| v - A\hat{u} \|_\infty \leq \frac{\beta}{2} \| \varphi' \|_\infty \| (AA^*)^{-1} A \|_\infty \| G \|_1 \]

\(\| \varphi' \|_\infty = 1 \) and **1st order differences:**

\[\begin{cases}
\text{signal} & \Rightarrow \quad \| v - \hat{u} \|_\infty \leq \beta \\
\text{image} & \Rightarrow \quad \| v - \hat{u} \|_\infty \leq 2\beta
\end{cases} \]

Question 8 If \(v = u_o + n \) for \(n \) Gaussian noise, is it possible to clean \(v \) from this noise by minimizing \(\mathcal{F}_v \)?
Non-Smooth Energies, Side Derivatives, Subdifferential

Rademacher’s theorem: If $\mathcal{F}_v : \mathbb{R}^p \to \mathbb{R}$ is Lipschitz continuous, then \mathcal{F}_v is differentiable (in the usual sense) almost everywhere in \mathbb{R}^p.

A **kink** is a point u where $\nabla \mathcal{F}_v(u)$ is not defined (in the usual sense).

Example: $\mathcal{F}_v(u) = \frac{1}{2}(u-v)^2 + \beta |u|$ for $\beta = 1 > 0$ and $u, v \in \mathbb{R}$

\[\hat{u} = \begin{cases}
 v + \beta & \text{if } v < -\beta \\
 0 & \text{if } |v| \leq \beta \\
 v - \beta & \text{if } v > \beta
\end{cases} \]

Question 9 What is drawn on the second row?

Question 10 Give a condition for \mathcal{F}_v to have a minimum at \hat{u}.
3 Minimizers under Non-Smooth Regularization

\[\mathcal{F}_v(u) = \Psi(u, v) + \beta \sum_{i=1}^{r} \varphi(\|G_i u\|), \quad \Psi \in C^{m>2}, \varphi \in C^m(\mathbb{R}^*_+), \quad 0 < \varphi'(0^+) \leq \infty \]

\[\varphi(t) \begin{array}{c|c|c|c|c} t^\alpha, \alpha \in (0, 1) \hspace{1cm} \frac{\alpha t}{\alpha t + 1} \hspace{1cm} \ln(\alpha t + 1) \hspace{1cm} 1 - \alpha^t \end{array} \alpha \in (0, 1) \hspace{1cm} (\cdots), \hspace{1cm} \alpha > 0 \]

\[\varphi(t) = t \text{ and } G_i u \approx (\nabla u)_i \Rightarrow \mathcal{F}_v(u) = TV(u) \text{ (total variation)} \quad [\text{Rudin, Osher, Fatemi 92}] \]
Let \(\hat{u} \) be a (local) minimizer of \(\mathcal{F}_v \). Set \(\hat{h} \doteq \{i : G_i \hat{u} = 0\} \)

Then \(\exists \, O \subset \mathbb{R}^q \text{ open, } \exists \, U \in C^{m-1} \) (local) minimizer function so that

\[
v' \in O, \quad \hat{u}' = U(v') \Rightarrow G_i \hat{u}' = 0, \quad \forall \, i \in \hat{h}
\]

Data \(v \) yield (local) minimizers \(\hat{u} \) of \(\mathcal{F}_v \) such that \(G_i \hat{u} = 0 \) for a set of indexes \(\hat{h} \)

\[
G_i = \nabla_i \Rightarrow \hat{u}[i] = \hat{u}[j] \text{ for many neighbors } (i, j) \text{ (the "stair-casing" effect)}
\]

\[
G_i u = u[i] \Rightarrow \text{many samples } \hat{u}[i] = 0 - \text{highly used in Compressed Sensing}
\]

Question 11 What happens if \(\{G_i\} \) yield second-order differences?

Question 12 Describe the prior that \(\hat{u} \) satisfies for a general \(\{G_i\} \).

Property **fails** if \(\mathcal{F}_v \) is smooth, except for \(v \in N \) where \(N \) is closed and \(\mathbb{L}^q(N) = 0 \).
\[\mathcal{F}_v(u) = ||u - v||^2 + \beta \sum \varphi(|u[i] - u[i - 1]|) \]

\[\varphi(t) = \sqrt{\alpha + t^2}, \quad \varphi'(0) = 0 \quad \text{(smooth at 0)} \]

\[\varphi(t) = (t + \alpha \text{sign}(t))^2, \quad \varphi'(0^+) = 2\alpha \]

\[\varphi(t) = |t|, \quad \varphi'(0^+) = 1 \]

\[\varphi(t) = \alpha |t|/(1 + \alpha |t|), \quad \varphi'(0^+) = \alpha \]
Let $u_o \in \mathbb{R}$ and $\text{pdf}(u_o) = \frac{1}{2}e^{-|u_o|}$ (Laplacian distribution)

Question 13 Give $\text{Pr}(u_o = 0)$.

Let $v = u_o + n$ where $\text{pdf}(n) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{n^2}{2\sigma^2}}$ (centered Gaussian distribution)

The corresponding MAP energy to recover u_o from v reads as

$$\mathcal{F}_v(u) = \frac{1}{2}(u - v)^2 + \beta |u| \quad \text{for} \quad \beta = \frac{1}{\sigma^2}$$

Question 14 Give the minimizer function \mathcal{U} for \mathcal{F}_v.

Useful reminder on p. 21.

Question 15 Determine the set $\{\nu \in \mathbb{R} : \mathcal{U}(\nu) = 0\}$. Comment the result.
TV energy: $F_v(u) = \|Au - v\|^2 + \beta \sum_{i=1}^{r} \varphi(\|G_i u\|)$ for $\varphi(t) = t$ and G_i discrete gradient at pixel i.

Minimization of \(F_v(u) = \|u - v\|^2_2 + \beta \text{TV}(u) \), \(\beta = 100 \) and \(\beta = 180 \)
Here \(\varphi(t) = \begin{cases}
0 & \text{if } t = 0 \\
1 & \text{if } t \neq 0
\end{cases} \)

Question 16 Compute the global minimizer of \(F_v(u) = (u - v)^2 + \beta \varphi(u) \) for \(u, v \in \mathbb{R} \) and \(\beta > 0 \), according to the value of \(v \).

Question 17 Are there any values of \(v \) so that \(F_v \) has more than one global minimizer?

Consider \(F_v(u) = \|u - v\|_2^2 + \beta \sum_{i=1}^{p} \varphi(u[i]) \) for \(\beta > 0 \) and \(u, v \in \mathbb{R}_p \).

The global minimizer function \(U : \mathbb{R}^p \rightarrow \mathbb{R}^p \) for \(F_v \) has \(p \) components which depend on \(v \).

Question 18 Compute each component \(U_i \)

Question 19 Let \(h \subset \{1, \cdots, p\} \). Determine the subset \(O_h \subset \mathbb{R}^p \) such that

- if \(v \in O_h \) then the global minimizer \(\hat{u} \) of \(F_v \) satisfies \(\hat{u}[i] = 0 \), \(\forall i \in h \)
- and \(\hat{u}[i] \neq 0 \) if \(i \notin h \).

Note that \(\sum_{i=1}^{p} \varphi(u[i]) = \#\{i : u[i] \neq 0\} = \ell_0(u) \)
4 Minimizers relevant to non-smooth data-fidelity

General case

\[\mathcal{F}_v(u) = \sum_i \psi(|a_iu - v[i]|) + \beta \Phi(u), \quad \Phi \in C^m, \; \psi \in C^m(\mathbb{R}^*_+), \; \psi'(0^+) > 0 \]

Let \(\hat{u} \) be a (local) minimizer of \(\mathcal{F}_v \). Set \(\hat{h} = \{ i : a_i\hat{u} = v[i] \} \).

Then \(\exists \; O \subset \mathbb{R}^q \text{ open}, \; \exists \; U \in C^{m-1} \) (local) minimizer function so that

\[v' \in O, \; \hat{u}' = U(v') \Rightarrow \begin{cases} a_i \hat{u}' = v[i], & i \in \hat{h} \\ a_i \hat{u}' \neq v[i], & i \in \hat{h}^c \end{cases} \]

(Local) minimizers \(\hat{u} \) of \(\mathcal{F}_v \) achieve an exact fit to (noisy) data \(a_i \hat{u} = v[i] \) for a certain number of indexes \(i \).

Property fails if \(\mathcal{F} \) is smooth, except for \(v \in N \) where \(N \) is closed and \(\mathbb{L}^q(N) = 0 \).
Question 20 Suggest cases when you would like that your minimizer obeys this property.

Question 21 Propose some choices for ψ. Explain.

Question 22 Compute the minimizer of $F_v(u) = |u - v| + \beta u^2$ for $u, v \in \mathbb{R}$ and $\beta > 0$.

Question 23 Explain the relationship between the properties of the minimizer when $\varphi'(0^+) > 0$ and when $\psi'(0^+) > 0$.
Original u_o

Data $v = u_o + \text{outliers}$

Restoration \hat{u} for $\beta = 0.14$

Residuals $v - \hat{u}$

$$\mathcal{F}_v(u) = \sum_i |u[i] - v[i]| + \beta \sum_{j \in \mathcal{N}_i} |u[i] - u[j]|^{1.1}$$
Restoration \(\hat{u} \) for \(\beta = 0.25 \)

Residuals \(v - \hat{u} \)

\[
\mathcal{F}_v(u) = \sum_i |u[i] - v[i]| + \beta \sum_{j \in \mathcal{N}_i} |u[i] - u[j]|^{1.1}
\]

Restoration \(\hat{u} \) for \(\beta = 0.2 \)

Residuals \(v - \hat{u} \)

TV-like energy: \(\mathcal{F}_v(u) = \sum_i (u[i] - v[i])^2 + \beta \sum_{j \in \mathcal{N}_i} |u[i] - u[j]| \)
Detection and cleaning of outliers using ℓ_1 data-fidelity

\[
\mathcal{F}_v(u) = \sum_{i=1}^{p} |u[i] - v[i]| + \frac{\beta}{2} \sum_{i=1}^{p} \sum_{j \in \mathcal{N}_i} \varphi(|u[i] - u[j]|)
\]

φ: smooth, convex, edge-preserving

Assumptions: \[
\begin{cases}
\text{data } v \text{ contain uncorrupted samples } v[i] \\
v[i] \text{ is outlier if } |v[i] - v[j]| \gg 0, \forall j \in \mathcal{N}_i
\end{cases}
\]

$v \in \mathbb{R}^p \Rightarrow \hat{u} = \arg \min_u \mathcal{F}_v(u) \quad \begin{cases}
v[i] \text{ is regular if } i \in \hat{h} \\
v[i] \text{ is outlier if } i \in \hat{h}^c
\end{cases}
\hat{h} = \{i : \hat{u}[i] = v[i]\}

Outlier detector: \[v \rightarrow \hat{h}^c(v) = \{i : \hat{u}[i] \neq v[i]\}\]

Smoothing: \[\hat{u}[i] \text{ for } i \in \hat{h}^c = \text{estimate of the outlier}\]

Justification based on the properties of \hat{u}
Original image u_o

10% random-valued noise

Median ($\|\hat{u} - u_o\|_2 = 4155$)

Recursive CWM ($\|\hat{u} - u_o\|_2 = 3566$)

PWM ($\|\hat{u} - u_o\|_2 = 3984$)

Proposed ($\|\hat{u} - u_o\|_2 = 2934$)
Recovery of frame coefficients using ℓ_1 data-fitting

- Data: $v = u_o + \text{noise}$
- Frame coefficients: $y = Wv = Wu_o + \text{noise}$

 $\tilde{W} =$ left inverse of W

- Hard thresholding $y_T[i] = \begin{cases}
0 & \text{if } |y[i]| \leq T \\
 y[i] & \text{if } |y[i]| > T
\end{cases}$

 keeps relevant information if T small

- $\tilde{u} = \tilde{W}y_T$ — Gibbs oscillations and wavelet-shaped artifacts

- Hybrid energy methods—combine fitting to y_T with prior $\Phi(u)$

 [Bobichon, Bijaoui 97], [Coifman, Sowa 00], [Durand, Froment 03]...
Desiderata: \mathcal{F}_y convex and

<table>
<thead>
<tr>
<th>Keep $\hat{x}[i] = y_T[i]$</th>
<th>Restore $\hat{x}[i] \neq y_T[i]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>significant coefs: $y[i] \approx (Wu_o)[i]$</td>
<td>outliers: $</td>
</tr>
<tr>
<td>thresholded coefs: $(Wu_o)[i] \approx 0$</td>
<td>edge coefs: $</td>
</tr>
</tbody>
</table>

Then:

$$\minimize \quad \mathcal{F}_y(x) = \sum_i \lambda_i |(x - y_T)[i]| + \int_{\Omega} \varphi(|\nabla \tilde{W} x|) \quad \Rightarrow \quad \hat{x}$$

$$\hat{u} = \tilde{W} \hat{x} \quad \text{for} \quad \tilde{W} \quad \text{left inverse,} \quad \varphi \quad \text{edge-preserving}$$

Question 24 Explain why the minimizers of \mathcal{F}_y fulfill the desiderata.

Question 25 Any open questions?
Original and data

Sure-shrink method

Hard thresholding

Total variation

The proposed method

Magnitude of coefficients

Restored signal (—), original signal (−−).
Fast 2-stage restoration under impulse noise
[R.Chan, Nikolova et al. 04, 05, 08]

1. Approximate the outlier-detection stage by rank-order filter (e.g. adaptive or center-weighted median)
 Corrupted pixels $\hat{h}^c = \{ i : \hat{v}[i] \neq v[i] \}$ where $\hat{v}=$Rank-Order Filter (v)
 \Rightarrow improve speed and accuracy

2. Restore \hat{u} (denoise, deblur) using an edge-preserving energy method
 subject to $a_i \hat{u} = v[i]$ for all $i \in \hat{h}$
50% RV noise | ACWMF | DPVM | Our method
---|---|---|---
70% SP noise (6.7dB) | Adapt.med. (25.8dB) | Our method (29.3dB) | Original Lena
L. Bar, A. Brook, N. Sochen and N. Kiryati,
“Deblurring of Color Images Corrupted by Impulsive Noise”,
IEEE Trans. on Image Processing, 2007

\[F_v(u) = \|Au - v\|_1 + \beta \Phi(u) \]
One-step real-time dejittering of digital video

- Image \(u \in \mathbb{R}^{m \times n} \), rows \(u_i \), its pixels \(u_i[j] \)
- Data \(v_i[j] = u_i[j + d_i] \), \(d_i \) integer, \(|d_i| \leq M \), typically \(M \leq 20 \).
- Restore \(\hat{u} \equiv \text{restore } \hat{d}_i, 1 \leq i \leq m \)

The gray-values of the columns of natural images can be seen as large pieces of 2\(^{nd}\) (or 3\(^{rd}\)) order polynomials which is false for their jittered versions.
Each column \(\hat{u}_i \) is restored using

\[
\hat{d}_i = \arg \min_{|d_i| \leq N} \mathcal{F}(d_i)
\]

\[
\mathcal{F}(d_i) = \sum_{j=N+1}^{c-N} |v_i[j + d_i] - 2\hat{u}_{i-1}[j] + \hat{u}_{i-2}[j]|^\alpha, \quad \alpha \in \{0.5, 1\}, \quad N > M
\]

Question 26 Explain why the minimizers of \(\mathcal{F} \) can solve the problem as stated.

Question 27 What changes if \(\alpha = 1 \) or if \(\alpha = 0.5 \)?

Question 28 Is it easy to solve the numerical problem?

A Monte-Carlo experiment shows that in almost all cases, \(\alpha = 0.5 \) is the best choice.
Jitter \{-15,\ldots,15\} \quad \alpha = 1, \ \alpha = 0.5 \quad \text{Original image}
Jitter Image Bayesian TV Bake & Shake

Jitter Jittered Image Bayesian TV Bake & Shake

Original Our: \(\alpha = 0.5 \) Our: Error \(u_o - \hat{u} \)

[Kokaram98, Laborelli03, Shen04, Kang06, Scherzer11]
Comparison with Smooth Energies

\[F_v(u) = \Psi(u, v) + \beta \Phi(u), \quad F \in C^{m \geq 2} + \text{easy assumptions.} \]

If \(h \neq \emptyset \) \(\Rightarrow \)

\[\{ v \in \mathbb{R}^q : F_v - \text{minimum at } \hat{u}, \ G_i \hat{u} = 0, \ \forall i \in h \} \]

\[\{ v \in \mathbb{R}^q : F_v - \text{minimum at } \hat{u}, \ \langle a_i, \hat{u} \rangle = v_i, \ \forall i \in h \} \]

\(\text{closed and negligible in } \mathbb{R}^q \)

For \(F_v \) smooth, the chance that noisy data \(v \) yield a minimizer \(\hat{u} \) of \(F_v \) which for some \(i \) satisfies exactly \(G_i \hat{u} = 0 \) or \(\langle a_i, \hat{u} \rangle = v_i \) is negligible

Nearly all \(v \in \mathbb{R}^q \) lead to \(\hat{u} = U(v) \) satisfying \(G_i \hat{u} \neq 0, \ \forall i \) and \(\langle a_i, \hat{u} \rangle \neq v_i, \ \forall i \)

Question 29 What are the consequences if one approximates a nonsmooth energy by a smooth energy?
Let $u \in \mathbb{R}^p$ and $v \in \mathbb{R}^q$.

Consider that $A \in \mathbb{R}^{q \times p}$ and $G \in \mathbb{R}^{r \times p}$ satisfy $\ker(A) \cap \ker(G) = \{0\}$.

$$ \mathcal{F}_v(u) = \|Au - v\|_2^2 + \beta\|Gu\|_2^2 \quad \text{for} \quad \beta > 0 $$

Question 30 Calculate $\nabla \mathcal{F}_v(u)$.

Question 31 Determine the minimizer function \mathcal{U}.

Let $G_i \in \mathbb{R}^{1 \times p}$ denote the ith row of G.

Question 32 Characterize the set $\mathcal{K} = \{\nu \in \mathbb{R}^p : G_i \mathcal{U}(\nu) = 0\}$.

Let $a_i \in \mathbb{R}^{1 \times p}$ denote the ith row of A.

Question 33 Characterize the set $\mathcal{L} = \{\nu \in \mathbb{R}^p : a_i \mathcal{U}(\nu) = \nu[i]\}$.
5 Nonconvex Regularization: Why Edges are Sharp?

\[\mathcal{F}_v(u) = \|Au - v\|^2 + \beta \sum_{i \in J} \phi(\|G_i u\|) \quad J = \{1, \ldots, r\} \]

Standard assumptions on \(\phi \): \(C^2 \) on \(\mathbb{R}_+ \) and \(\lim_{t \to \infty} \phi''(t) = 0 \), as well as:

\[\phi'(0) = 0 \ (\Phi \text{ is smooth}) \]

\[\phi'(0^+) > 0 \ (\Phi \text{ is nonsmooth}) \]

\[\phi''(t) > 0 \quad \text{increase, } \leq 0 \]

\[\phi''(t) \quad \text{increase, } \leq 0 \]
Sharp edge property

There exist $\theta_0 > 0$ and $\theta_1 > \theta_0$ such that any (local) minimizer \hat{u} of \mathcal{F}_v satisfies

$$\text{either } \|G_i \hat{u}\| \leq \theta_0 \text{ or } \|G_i \hat{u}\| \geq \theta_1 \quad \forall i \in J$$

\[
\begin{align*}
\hat{h}_0 &= \{ i : \|G_i \hat{u}\| \leq \theta_0 \} \quad \text{homogeneous regions} \\
\hat{h}_1 &= \{ i : \|G_i \hat{u}\| \geq \theta_1 \} \quad \text{edges}
\end{align*}
\]

When β increases, then θ_0 decreases and θ_1 increases.

In particular

$$\varphi'(0^+) > 0 \Rightarrow \theta_0 = 0 \quad \text{fully segmented image} \quad (G_i \hat{u} = 0, \ \forall i \in \hat{h}_0)$$

Question 34 Explain the prior model involved in \mathcal{F}_v when φ is nonconvex with $\varphi'(0) = 0$ and with $\varphi'(0^+) > 0$.
Image Reconstruction in Emission Tomography

- **Original phantom**
- **Emission tomography simulated data**

\[\varphi \text{ is smooth (Huber function)} \]

\[\varphi(t) = \frac{t}{\alpha + t} \text{ (non-smooth, non-convex)} \]

Reconstructions using

\[\mathcal{F}_v(u) = \Psi(u, v) + \beta \sum_{j \in \mathcal{N}_i} \varphi(|u[i] - u[j]|), \quad \Psi = \text{smooth, convex} \]
\[F_v(u) = (u - v)^2 + \beta \varphi(u) \quad u, v \in \mathbb{R} \quad \beta > 0 \]

- **Assumption:** \(\beta > -\frac{2}{\min_{t \in \mathbb{R}} \varphi''(t)} \) (if \(\varphi'(0^+) > 0 \) then \(\min_{t \in \mathbb{R}} \varphi''(t) = \varphi''(0^+) \)).

Question 35 Determine the sign of \(\beta \), i.e. \(> 0 \) or \(< 0 \).

- \(\mathcal{C}_\beta = \left\{ t \in (0, +\infty) : \varphi''(t) < -\frac{2}{\beta} \right\} \)

- Recall: \(F_v \) has a (local) minimum at a \(\hat{u} \) where \(F_v \) is twice differentiable if and only if

\[F'_v(\hat{u}) = 0 \quad \text{and} \quad F''_v(\hat{u}) \geq 0 \]

Question 36 Show that \(\forall v \in \mathbb{R} \), if \(\hat{u} \) is a (local) minimizer of \(F_v \), then \(|\hat{u}| \notin \mathcal{C}_\beta \).
Comparison with Convex Edge-Preserving Regularization

Data \(v = u_o + n \)

\(\varphi(t) = |t| \)

\(\varphi(t) = \frac{\alpha|t|}{1 + \alpha|t|} \)

original data

\(\varphi(t) = |t|^{1.4} \)

\(\varphi(t) = \min\{\alpha t^2, 1\} \)

Question 37 Why edges are sharper when \(\varphi \) is nonconvex?
Each blue curve curve: $u \rightarrow \mathcal{F}_v(u)$ for $v \in \{0, 2, \cdots\}$

Question 38 How to describe the global minimizer when v increases?
6. Nonsmooth data-fidelity and regularization

Consequence of §3 and §4: if \(\Phi \) and \(\Psi \) non-smooth, \[\begin{cases}
G_i \hat{u} = 0 & \text{for } i \in \hat{h}_\varphi \neq \emptyset \\
\alpha_i \hat{u} = v[i] & \text{for } i \in \hat{h}_\psi \neq \emptyset
\end{cases} \]

The \(L_1 \)-TV energy

\[\mathcal{F}_v(u) = \| u - 1_{\Omega} \|_1 + \beta \int_{\mathbb{R}^d} \| \nabla u(x) \|_2 \, dx \text{ where } 1_{\Omega}(x) = \begin{cases} 1 & \text{if } x \in \Omega \\ 0 & \text{else} \end{cases} \]

- \(\exists \hat{u} = 1_{\Sigma} \) (\(\Omega \) convex \(\Rightarrow \Sigma \subset \Omega \) and \(\hat{u} \) unique for almost every \(\beta > 0 \))
- Contrast invariance: if \(\hat{u} \) minimizes for \(v = 1_{\Omega} \) then \(c\hat{u} \) minimizes \(\mathcal{F}_{cv} \)
 - the contrast of image features is more important than their shapes

- Critical values \(\beta^* \)
 \[\begin{cases}
\beta < \beta^* & \Rightarrow \text{ objects in } \hat{u} \text{ with good contrast} \\
\beta > \beta^* & \Rightarrow \text{ they suddenly disappear}
\end{cases} \]

\(\Rightarrow \) data-driven scale selection
Binary images by L1 – TV

Classical approach to find a binary image \(\hat{u} = \mathbb{1}_\Sigma \) from binary data \(\mathbb{1}_\Omega, \ \Omega \subset \mathbb{R}^2 \)

\[
\hat{\Sigma} = \arg \min_\Sigma \left\{ \| \mathbb{1}_\Sigma - \mathbb{1}_\Omega \|^2_2 + \beta \text{TV}(\mathbb{1}_\Sigma) \right\}
\]

nonconvex problem \((\star)\)

usual techniques (curve evolution, level-sets) fail

\[
\hat{\Sigma} \text{ solves } (\star) \iff \hat{u} = \mathbb{1}_\hat{\Sigma} \text{ minimizes } \| u - \mathbb{1}_\Omega \|_1 + \beta \text{TV}(u) \quad \text{(convex)}
\]