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Stability of the minimizers of Fv�
�

�
�

Fv(u) = ∥Au− v∥2
2 + βΦ(u)

Φ(u) =
∑
i

φ(∥Giu∥2)

u ∈ Rp

v ∈ Rq


φ : R+ → R

φ incresing, continuous

φ(t) > φ(0), ∀t > 0

{Gi} linear operators Rp → Rs, s > 1

φ′(0+) > 0 ⇒ Φ is nonsmooth on
∪
i

{
u : Giu = 0

}

Systematically: kerA ∩ kerG = {0} G
.
=


G1

G2

· · ·


Question 2 Why?

Fv nonconvex ⇒ there may be many local minima
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• N = {(s, t) : t = ± arctan(s)}

• N is closed in R2 and its Lebesgue measure in R2 is L2(N) = 0

• (x, y) = random R2

Question 3 What is the chance that (x, y) ∈ N?
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[Durand & Nikolova 06]

Assumptions: φ is piecewise Cm>2, edge-preserving, possibly non-convex, rank(A) = p

• There is a closed N ⊂ Rq with Lq(N) = 0 such that ∀v ∈ Rq \N , every (local)

minimizer û of Fv is given by û = U(v) where U is a Cm−1 (local) minimizer function.

Question 4 Why knowledge on local minimizers is important?

Question 5 Compare û and U(v + ε) where ε ∈ Rq is small enough.

• ∃ N̂⊂ Rq with Lq(N̂) = 0 such that ∀v ∈ Rq\N̂ , Fv has a unique global minimizer

Question 6 What can happen if v ∈ N̂?

• ∃ open subset of Rq \ N̂ , dense in Rq, where the global minimizer function Û is Cm−1.

Question 7 If Fv is strictly convex, determine N and N̂ .
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Nonasymptotic bounds on minimizers [Nikolova 07]

Assumption: φ is piecewise C1

• φ is strictly increasing or rank(A) = p

û is a (local) minimizer of Fv ⇒ ∥Aû∥ 6 ∥v∥

• ∥φ′∥∞ < ∞ (φ is edge-preserving) and rank(A) = q 6 p

û is a (local) minimizer of Fv ⇒ ∥v −Aû∥∞ 6 β
2
∥φ′∥∞ ∥(AA∗)−1A∥∞ ∥G∥1

∥φ′∥∞ = 1 and G− 1st order differences:

 signal ⇒ ∥v − û∥∞ 6 β

image ⇒ ∥v − û∥∞ 6 2β

Question 8 If v = uo + n for n Gaussian noise, is it possible to clean v

from this noise by minimizing Fv?
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Non-Smooth Energies, Side Derivatives, Subdifferential

Rademacher’s theorem: If Fv : Rp → R is Lipschitz continuous, then Fv is differentiable (in

the usual sense) almost everywhere in Rp.

A kink is a point u where ∇Fv(u) is not defined (in the usual sense).

Example: Fv(u) =
1

2
(u− v)2 + β|u| for β = 1 > 0 and u, v ∈ R

−1 0 1

1

−1 0 1

1

−1 0 1

1

−1 0 1

v = −0.9 v = −0.2 v = 0.95 v = 1.1

−1 0 1

0

−1 0 1

0

−1 0 1

0

−1 0 1

0

û =


v + β if v < −β

0 if |v| 6 β

v − β if v > β

Question 9 What is drawn on the second row?

Question 10 Give a condition for Fv to have a minimum at û.
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3 Minimizers under Non-Smooth Regularization

�
�

�

Fv(u)=Ψ(u, v)+β

r∑
i=1

φ(∥Giu∥), Ψ∈Cm>2, φ∈Cm(R∗
+), 0<φ

′(0+)6∞

φ(t) tα, α∈(0, 1)
α t

α t + 1
ln(αt + 1) 1 − αt α ∈ (0, 1) (· · · ) , α > 0

0 10

3

t

φ

α = 0.6

0 10

1

t

α = 4

0 10

2

t

φ

α = 2

0 10

1

t

φ

α = 0.5

0 10

in
f

φ′

0 10

4

φ′

0 10

2

φ′

0 10

0.7

φ′

φ(t) = t and Giu ≈ (∇u)i ⇒ Fv(u) = TV(u) (total variation) [Rudin, Osher, Fatemi 92]
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[Nikolova 97,01]

Let û be a (local) minimizer of Fv. Set ĥ
.
= {i : Giû = 0}

Then ∃ O ⊂ Rq open, ∃ U ∈ Cm−1 (local) minimizer function so that

v′ ∈ O, û′ = U(v′) ⇒ Giû
′ = 0, ∀ i ∈ ĥ

�



�
	Data v yield (local) minimizers û of Fv such that

Giû = 0 for a set of indexes ĥ

Gi = ∇i ⇒ û[i] = û[j] for many neighbors (i, j) (the “stair-casing” effect)

Giu = u[i] ⇒ many samples û[i] = 0 – highly used in Compressed Sensing

Question 11 What happens if {Gi} yield second-order differences?

Question 12 Describe the prior that û satisfies for a general {Gi}.

Property fails if Fv is smooth, except for v ∈ N where N is closed and Lq(N) = 0.



24

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

φ(t) =
√
α+ t2, φ′(0) = 0 (smooth at 0) φ(t) = (t+ αsign(t))2, φ′(0+) = 2α

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

φ(t) = |t|, φ′(0+) = 1 φ(t) = α|t|/(1 + α|t|), φ′(0+) = α

Fv(u) = ∥u− v∥2

+β
∑

φ(|u[i]− u[i− 1]|)
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Let uo ∈ R and pdf(uo) =
1
2e

−|uo| (Laplacian distribution)

Question 13 Give Pr(uo = 0).

Let v = uo + n where pdf(n) = 1
σ
√
2π
e−

n2

2σ2 (centered Gaussian distribution)

The corresponding MAP energy to recover uo from v reads as

Fv(u) =
1

2
(u− v)2 + β|u| for β =

1

σ2

Question 14 Give the minimizer function U for Fv.

Useful reminder on p. 21.

Question 15 Determine the set {ν ∈ R : U(ν) = 0}. Comment the result.
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TV energy: Fv(u) = ∥Au− v∥2 + β

r∑
i=1

φ(∥Giu∥) for φ(t) = t and Gi discrete gradient at pixel i

Original Data Restored: TV energy

D. C. Dobson and F. Santosa, “Recovery of blocky images from noisy and blurred data”,

SIAM J. Appl. Math., 56 (1996), pp. 1181-1199.
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Minimization of Fv(u) = ∥u− v∥22 + βTV(u), β = 100 and β = 180
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Here φ(t) =

 0 if t = 0

1 if t ̸= 0

Question 16 Compute the global minimizer of Fv(u) = (u− v)2 + βφ(u) for u, v ∈ R

and β > 0, according to the value of v.

Question 17 Are there any values of v so that Fv has more than one global minimizer?

Consider Fv(u) = ∥u− v∥2
2 + β

p∑
i=1

φ(u[i]) for β > 0 and u, v ∈ Rp.

The global minimizer function U : Rp → Rp for Fv has p components which depend on v.

Question 18 Compute each component Ui

Question 19 Let h ⊂ {1, · · · , p}. Determine the subset Oh ⊂ Rp such that

if v ∈ Oh then the global minimizer û of Fv satisfies û[i] = 0, ∀ i ∈ h

and û[i] ̸= 0 if i ̸∈ h.

Note that

p∑
i=1

φ(u[i]) = #{i : u[i] ̸= 0} = ℓ0(u)



29

4 Minimizers relevant to non-smooth data-fidelity

General case [Nikolova 01,02]�
�

�

Fv(u)=

∑
i

ψ(|aiu− v[i]|) + βΦ(u), Φ∈Cm, ψ∈Cm(R∗
+), ψ′(0+) > 0

Let û be a (local) minimizer of Fv. Set ĥ = {i : aiû = v[i]}.
Then ∃ O ⊂ Rq open, ∃ U ∈ Cm−1 (local) minimizer function so that

v′ ∈ O, û′ = U(v′) ⇒

 aiû
′ = v[i], i ∈ ĥ

aiû
′ ̸= v[i], i ∈ ĥc

�
�

�



(Local) minimizers û of Fv achieve an exact fit to (noisy) data

aiû = v[i] for a certain number of indexes i

Property fails if F is smooth, except for v ∈ N where N is closed and Lq(N) = 0.
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Question 20 Suggest cases when you would like that your minimizer obeys this property.

Question 21 Propose some choices for ψ. Explain.

Question 22 Compute the minimizer of Fv(u) = |u− v|+ βu2 for u, v ∈ R and β > 0.

Question 23 Explain the relationship between the properties of the minimizer

when φ′(0+) > 0 and when ψ′(0+) > 0
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Original uo Data v = uo+outliers

Restoration û for β = 0.14 Residuals v − û

Fv(u) =
∑
i

|u[i] − v[i]| + β
∑
j∈Ni

|u[i] − u[j]|1.1
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Restoration û for β = 0.25 Residuals v − û

Fv(u) =
∑
i

∣∣u[i] − v[i]
∣∣ + β

∑
j∈Ni

|u[i] − u[j]|1.1

Restoration û for β = 0.2 Residuals v − û

TV-like energy: Fv(u) =
∑
i

(u[i] − v[i])2 + β
∑
j∈Ni

|u[i] − u[j]|
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Detection and cleaning of outliers using ℓ1 data-fidelity [Nikolova 04]

Fv(u) =

p∑
i=1

|u[i] − v[i]| +
β

2

p∑
i=1

∑
j∈Ni

φ(|u[i] − u[j]|) tid d dNid d d
d d d

dd
d
dd
db b bbb
b

φ: smooth, convex, edge-preserving

Assumptions:

 data v contain uncorrupted samples v[i]

v[i] is outlier if |v[i] − v[j]| ≫ 0, ∀j ∈ Ni

v ∈ Rp ⇒ û = argmin
u

Fv(u)

ĥ = {i : û[i] = v[i]}

 v[i] is regular if i ∈ ĥ

v[i] is outlier if i ∈ ĥc

�
�

�
�

Outlier detector: v → ĥc(v) = {i : û[i] ̸= v[i]}
Smoothing: û[i] for i ∈ ĥc = estimate of the outlier

Justification based on the properties of û
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Original image uo 10% random-valued noise Median (∥û−uo∥2=4155)

Recursive CWM (∥û−uo∥2=3566) PWM (∥̂u−uo∥2=3984) Proposed (∥û−uo∥2 = 2934)
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Recovery of frame coefficients using ℓ1 data-fitting

• Data: v = uo + noise

• Frame coefficients: y = Wv = Wuo+ noise W̃ =left inverse of W

• Hard thresholding yT [i]
.
=

 0 if |y[i]| 6 T

y[i] if |y[i]| > T

keeps relevant information if T small

• ũ = W̃yT — Gibbs oscillations and wavelet-shaped artifacts

• Hybrid energy methods—combine fitting to yT with prior Φ(u)

[Bobichon, Bijaoui 97], [Coifman, Sowa 00], [Durand, Froment 03]...
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[Durand, Nikolova 07]

Desiderata: Fy convex and

Keep x̂[i] = yT [i] Restore x̂[i] ̸= yT [i]

significant coefs: y[i] ≈ (Wuo)[i] outliers: |y[i]| ≫ |(Wuo)[i]| (frame-shaped artifacts)

thresholded coefs: (Wuo)[i]≈0 edge coefs: |(Wuo)[i]|> |yT [i]|=0 (“Gibbs” oscillations)

Then:
minimize Fy(x) =

∑
i

λi

∣∣(x− yT )[i]
∣∣+ ∫

Ω

φ(|∇W̃x|) ⇒ x̂

û = W̃ x̂ for W̃ left inverse, φ edge-preserving

Question 24 Explain why the minimizers of Fy fulfill the desiderata.

Question 25 Any open questions?
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1 250 500

0

100

1 250 500

0

100

1 250 500

0

100

Original and data Sure-shrink method Hard thresholding

1 250 500

0

100

1 250 500

0

100

410 425

23

50

◦ original
× threshold
∗ restored

Total variation The proposed method Magnitude of coefficients

Restored signal (—), original signal (- -).
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Fast 2-stage restoration under impulse noise [R.Chan, Nikolova et al. 04, 05, 08]

1. Approximate the outlier-detection stage by rank-order filter

(e.g. adaptive or center-weighted median)

Corrupted pixels ĥc =
{
i : v̂[i] ̸= v[i]

}
where v̂=Rank-Order Filter (v)

⇒ improve speed and accuracy

2. Restore û (denoise, deblur) using an edge-preserving energy method

subject to aiû = v[i] for all i ∈ ĥ
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50% RV noise ACWMF DPVM Our method

70 %SP noise(6.7dB) Adapt.med.(25.8dB) Our method(29.3dB) Original Lena
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L. Bar, A. Brook, N. Sochen and N. Kiryati,

“Deblurring of Color Images Corrupted by Impulsive Noise”,

IEEE Trans. on Image Processing, 2007

Fv(u) = ∥Au− v∥1 + βΦ(u)

blurred, noisy (r.-v.) zoom - restored
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One-step real-time dejittering of digital video [Nikolova 09]

• Image u ∈ Rm×n, rows ui, its pixels ui[j]

• Data vi[j] = ui[j + di], di integer,
∣∣di∣∣ 6 M , typically M 6 20.

• Restore û ≡ restore d̂i, 1 6 i 6 m

original jittered

Original (b) One column Jittered

(b) The same column in the original (left) and in the jittered (right) image

The gray-values of the columns of natural images can be seen as large pieces of 2nd (or 3rd)

order polynomials which is false for their jittered versions.
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Each column ûi is restored using d̂i = arg min
|di|6N

F(di)

F(di) =

c−N∑
j=N+1

∣∣vi[j + di] − 2ûi−1[j] + ûi−2[j]
∣∣α, α ∈ {0.5, 1}, N > M

Question 26 Explain why the minimizers of F can solve the problem as stated.

Question 27 What changes if α = 1 or if α = 0.5?

Question 28 Is it easy to solve the numerical problem?

A Monte-Carlo experiment shows that in almost all cases, α = 0.5 is the best choice.

Jittered, [−20, 20] α = 1 Jitter: 6 sin
(
n
4

)
α=1 ≡ Original
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Jitter {-15,..,15} α = 1, α = 0.5 Original image
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Jitter Jittered Image Bayesian TV Bake & Shake

Original Our: α=0.5 Our: Error uo − û

[Kokaram98, Laborelli03, Shen04, Kang06, Scherzer11]
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Comparison with Smooth Energies

Fv(u) = Ψ(u, v) + βΦ(u), F ∈ Cm>2 + easy assumptions. If h ̸= ∅ ⇒

{v ∈ Rq : Fv—minimum at û, Giû = 0, ∀i ∈ h}
{v ∈ Rq : Fv—minimum at û, ⟨ai, û⟩ = vi, ∀i ∈ h}

closed and

negligible in Rq

�
�

�



For Fv smooth, the chance that noisy data v yield a minimizer û of Fv which

for some i satisfies exactly Giû = 0 or ⟨ai, û⟩ = vi is negligible

Nearly all v ∈ Rq lead to û = U(v) satisfying Giû ̸= 0, ∀i and ⟨ai, û⟩ ̸= vi, ∀i

Question 29 What are the consequences if one approximates a nonsmooth energy

by a smooth energy?
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Let u ∈ Rp and v ∈ Rq.

Consider that A ∈ Rq×p and G ∈ Rr×p satisfy ker(A) ∩ ker(G) = {0}.

Fv(u) = ∥Au− v∥22 + β∥Gu∥22 for β > 0

Question 30 Calculate ∇Fv(u).

Question 31 Determine the minimizer function U .

Let Gi ∈ R1×p denote the ith row of G.

Question 32 Characterize the set K = {ν ∈ Rp : Gi U(ν) = 0}.

Let ai ∈ R1×p denote the ith row of A.

Question 33 Characterize the set L = {ν ∈ Rp : ai U(ν) = ν[i]}.
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5 Nonconvex Regularization: Why Edges are Sharp? [Nikolova 04, 10]�
�

�

Fv(u) = ∥Au− v∥2 + β

∑
i∈J

φ(∥Giu∥) J = {1, · · · , r}

Standard assumptions on φ: C2 on R+ and lim
t→∞

φ′′(t) = 0, as well as:

φ′(0) = 0 (Φ is smooth) φ′(0+) > 0 (Φ is nonsmooth)

0 1

1

φ(t)=
αt2

1 + αt2

0 1

0

τ T
<0

>0

increase, 60

φ′′(t)

0 1
0

1

φ(t) =
αt

1 + αt

0 1

0

increase, 60

<0

φ′′(t)
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Sharp edge property

There exist θ0 > 0 and θ1 > θ0 such that any (local) minimizer û of Fv satisfies

either ∥Giû∥ 6 θ0 or ∥Giû∥ > θ1 ∀ i ∈ J�
�

�
�

ĥ0 =
{
i : ∥Giû∥ 6 θ0

}
homogeneous regions

ĥ1 =
{
i : ∥Giû∥ > θ1

}
edges

When β increases, then θ0 decreases and θ1 increases.

In particular

φ′(0+) > 0 ⇒ θ0 = 0 fully segmented image (Giû = 0, ∀i ∈ ĥ0)

Question 34 Explain the prior model involved in Fv when φ is nonconvex

with φ′(0) = 0 and with φ′(0+) > 0.
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Image Reconstruction in Emission Tomography

0

1

2

3

4

Original phantom Emission tomography simulated data

0

1

2

3

4

0

1

2

3

4

φ is smooth (Huber function) φ(t) = t/(α+ t) (non-smooth, non-convex)

Reconstructions using Fv(u) = Ψ(u, v) + β
∑
j∈Ni

φ(|u[i]− u[j]|), Ψ = smooth, convex
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Fv(u) = (u− v)2 + βφ(u) u, v ∈ R β > 0

• Assumption: β > − 2

min
t∈R

φ′′(t)
(if φ′(0+) > 0 then min

t∈R
φ′′(t) = φ′′(0+)).

Question 35 Determine the sign of β, i.e. > 0 or < 0.

• Cβ
.
=

{
t ∈ (0,+∞) : φ′′(t) < − 2

β

}
• Recall: Fv has a (local) minimum at a û where Fv is twice differentiable if and only if

F ′
v(û) = 0 and F ′′

v (û) > 0

Question 36 Show that ∀ v ∈ R, if û is a (local) minimizer of Fv, then |û| ̸∈ Cβ .
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Comparison with Convex Edge-Preserving Regularization

1 100

0

4

1 100

0

4

1 100

0

4

Data v = uo + n φ(t) = |t| φ(t) = α|t|/(1 + α|t|)

original data φ(t) = |t|1.4 φ(t) = min{αt2, 1}

Question 37 Why edges are sharper when φ is nonconvex?
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Fv(u)

u

v=0v=22

0 θ1

v=0v=22

uθ0 θ1

Fv(u)

u

Fv(u) = (u− v)2 + β
α|u|

(1+α|u|) Fv(u) = (u− v)2 + β αu2

(1+αu2)
Fv(u) = (u− v)2 + β

√
α+ u2

global function (••••) global minimizer functions (••••) unique minimizer function (••••)

Each blue curve curve: u → Fv(u) for v ∈ {0, 2, · · · }

Question 38 How to describe the global minimizer when v increases?
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6. Nonsmooth data-fidelity and regularization

Consequence of §3 and §4: if Φ and Ψ non-smooth,

 Giû = 0 for i ∈ ĥφ ̸= ∅

aiû = v[i] for i ∈ ĥψ ̸= ∅

The L1-TV energy

T. F. Chan and S. Esedoglu, “Aspects of Total Variation Regularized L1 Function

Approximation”, SIAM J. on Applied Mathematics, 2005

Fv(u) = ∥u− 1lΩ∥1 + β

∫
Rd

∥∇u(x)∥2 dx where 1lΩ(x)
.
=

 1 if x ∈ Ω

0 else

• ∃ û = 1lΣ (Ω convex ⇒ Σ ⊂ Ω and û unique for almost every β > 0)

• contrast invariance: if û minimizes for v = 1lΩ then cû minimizes Fcv

the contrast of image features is more important than their shapes

• critical values β∗

 β < β∗ ⇒ objects in û with good contrast

β > β∗ ⇒ they suddenly disappear

⇒ data-driven scale selection



54

Binary images by L1 − TV [T. Chan, S. Esedoglu, Nikolova 06]

Classical approach to find a binary image û = 1lΣ̂ from binary data 1lΩ, Ω ⊂ R2

Σ̂ = argmin
Σ

{∥∥1lΣ − 1lΩ∥22 + βTV(1lΣ)
}

nonconvex problem (⋆)

usual techniques (curve evolution, level-sets) fail

Σ̂ solves (⋆) ⇔ û = 1lΣ̂ minimizes
∥∥u− 1lΩ∥1 + β TV(u) (convex)

Data Restored




