A* Talk
A.L. Yuille (UCLA)
Three Examples of A*

- Example 1: Interactive Segmentation.
- Example 2: Road Tracking – Geman and Jedynak 1996.
- Example 3: A* for Hierarchical Object Models (Kokkinos).
Example 1: Interactive Segmentation.

• Graph is the Image lattice.
• Two points on the graph are specified – A & B.
• Find shortest path between A & B.
• Now go to hand-written notes.
Example 2: Road Tracking

• Inspired by Geman and Jedynak (1996).
• Find a road in an aerial photograph.
Road Tracking

- Example:
How to search for the road?

• There are an exponential number of possible paths.
• You do not have time to search them all.
• You must select a search strategy that is efficient.
• Geman and Jedynak proposed a new strategy based on information theory.
• Their strategy is to search so as to maximize the expected gain in information – see Jedynak’s talks on Wednesday.
• Coughlan and Yulle analyzed the algorithm – and showed that it was a variant of an inadmissible A* algorithm.
Third Example: Detecting Object in Image

• Hierarchical Models of Objects.
• A* over rules for combining subparts of objects to build a complete object.
• This is used to detect objects – cars – in images.

• Why hierarchical models? (more in week 3).
• More robust than “flat models” – can detect even if subparts of the object are missing (occluded or undetected).
• Ability to share parts (not used in this example).
Example 1: Interactive Segmentation

Image lattice

Set X_A at A

Set X_B at B

Path $X = X_A, X_1, \ldots, X_n, X_B$

where X_i, X_{i+1} are neighbors on the graph C

Find best curve between A and B.

Best Curve: Smoother (geometry)

Elginess - evidence for edges on curve.
Energy Cost. \[E(X) = \frac{1}{2} \sum_{i=1}^{N} \varphi_i(X_i) + \sum_{i=1}^{N-1} \varphi_i(X_i, X_{i+1}) + \varphi_r(X_A, X_i) + \varphi_B(X_N, X_B). \]

- Unary + Binary terms (e.g. see Boykov)
- Binary term imposes geometry – e.g. the curve is smooth.
- Unary term imposes image term – e.g. the curve goes through pixels where there is evidence for an edge (e.g. \(|\nabla I|\) is big)

Task: Solve \[\hat{X} = \arg \min_X E(X) \]
we cannot search exhaustively over all curves – too many. (exponential)
(iii) **A* Algorithm**.

Partial path \(X^t = (X_A, X_1, \ldots, X_t) \) has cost
\[
\frac{t}{2} \sum_{i=1}^{t} \phi_i(X_i) + \phi_A(X_A, X_1) + \sum_{i=1}^{t-1} \phi_i(X_i, X_{i+1})
\]
plus heuristic cost \(f(x^t, x^b) \), measured.

Apply A*.

What heuristic cost? Depends on form of \(\phi_i \)’s.

Admissible heuristic: An underestimate of cost to get from \(X_t \) to \(X_b \)
\[
\min_{\text{all paths}} \left\{ \frac{t}{2} \sum_{i=1}^{t} \phi_i(X_i, X_{i+1}) + \phi_T(X_t, X_b) \right\}
\]
(iv) In some cases, we can set $f(X_t, X_b) = 0$ if $\varphi \geq 0$.

E.g., Dijkstra's Algorithm (Geiger & Liu, 1996)

Set of partial curves at time t. X_t can expand all nodes X_b.

Which node to expand?

Node which minimizes Cost of Partial Curve + Cost of Heuristic.

Guaranteed to converge to minimum cost path (if heuristic is admissible)
(1) Example 2: Find a road (highway) from Aerial Image

Model: road consists of segments.
(e.g. length 8 pixels)

Start of Road is given.

A road path is a sequence of N segments

\[\text{e.g. } \overrightarrow{\text{or } \overrightarrow{\text{or }} } \]

There are an exponential no. of possible road paths

\[\rightarrow 3^N \text{ road paths} \]
(2) Probability distribution over road paths.

representation: \(X = (x_1, \ldots, x_N) \)

position of first segment (specified)

\[P(X_{t+1} | X_t) \rightarrow \begin{cases} \frac{1}{2} & \text{straight} \\ \frac{1}{4} & \text{left} \\ \frac{1}{4} & \text{right} \end{cases} \]

\[P(X) = \prod_{t=1}^{N-1} P(X_{t+1} | X_t) \quad \text{Markov property} \]

Prob for the complete road path.
Image Model:

Set of all possible segments \(a \in A \).

Test \(Y_a \) - image filter applied to segment \(a \).

E.g., edge detail of filter (unimportant) or anything else.

\[
P(Y_{\text{on}} | a \text{ on road}) \quad P(Y_{\text{off}} | a \text{ off road})
\]

Local cues are ambiguous distribution overlap.
Bayes' Formula:

\[P(Y|X) = \prod_{a \in A} P(y_a|X_a) \]
\[P(X) = \prod_{t=1}^{T} P(x_{t+1}|x_t) \]

Assume that the image filter responses are independent.

Want to maximize

\[P(X|Y) = P(Y|X)P(X) \propto P(Y|X)P(X) \]

Solve:

\[X^* = \text{argmax}_{X} \frac{P(Y)}{P(X)} \] proportional to \[P(Y|X) \]
(5) Cannot solve $\hat{X} = \text{arg max}_X \prod P(Y|X)P(X)$ by exhaustive search.

There are too many possibilities → 3^N road paths.
Can't evaluate all these paths, can't even store them.

$\hat{X} = \text{arg max}_X \left\{ \log P(Y|X) + \log P(X) \right\}$

or $\hat{X} = \text{arg max}_X \left\{ -\log P(Y|X) - \log P(X) \right\}$
(6) The form of $P(X)$ and $P(Y|X)$ enables us to use A^*.

Note: this is like Mr. Korf's road search problem with GPS.

End node

Note: In G2S, there is no end node. So we pretend that we have one.

What is cost for each segment?

Two terms: (i) output of image filter: $- \log P(Ya|a \text{ on road})$.

(ii) geometry (depends on previous node): $P(Ya|a \text{ off road})$.

15% \rightarrow $\log P(X^{t+1}|X^t)$. X^{t+1} is segment a.

or \rightarrow \cdots.
(7) To apply A* we need a heuristic.

Score: \[\frac{1}{t=1} \sum_{t=1}^{T} \log P(X_{t+1}|X_{t}) - \frac{1}{a=1} \sum_{a=1}^{T} \log \frac{P(Y_{a}|a \text{ on road})}{P(Y_{a}|a \text{ off road})} \]

Heuristic is lower bound of the rest of the path.

Need to lower bound \[\min \left\{ -\frac{1}{T+t} \sum_{t=T+1}^{T} \log P(X_{t+1}|X_{t}) \right\} \]

\[-\frac{1}{a=T+1} \sum_{a=T+1}^{T} \log \frac{P(Y_{a}|a \text{ on road})}{P(Y_{a}|a \text{ off road})} \]
Special Case.

One idea: let the heuristic be \((N - M) C\), where \(N\) is the total length of the road, \(M\) is the no. of segments we have travelled so far, and \(C\) is a constant. \(\leq\) cost so far.

Our cost is \[-\sum_{t=1}^{M} \left(\log P(X^{t+1}|X^t) + \log P(Y^t|X^t) \right) + (N-M)C \leq \text{heuristic cost}\]

\[= -\sum_{t=1}^{M} \left(\log P(X^{t+1}|X^t) + \log P(Y^t|X^t) + C \right) + NC \leq \text{Note: independent of path and of \(M\).}\]
(9) This choice of heuristic means that we do not need to have an end node; i.e., drop the NC term. We can continue for ever.

Intuition: expand a road path by adding a segment, compute its extra cost: \(- \log P(x^n|x^M) - \log (y^n|x^n)\). Subtract \(c\)

Path AEF is longer than path AE (by one segment). But subtracting \(c\) penalizes the length.

Hence
What choice of heuristic?

If admissible, then \(-c \leq \min_{x^t, y^t} \left(-\log P(x^{t+1}|x^t) - \log P(y^t|x^t) \right)\).

But, this is bad for this example.

Why, because it means we are not satisfied with any segment.

Expand this segment, measure \(-c\) as \(-\log P(x^{t+1}|x^t) - \log P(y^t|x^t)\). Add heuristic \(-c\), get result \(\leq 0\).

So do not expand A further. Instead expand B, (same result) then expand D.
Problem with this heuristic \(\Rightarrow \) reduces to breadth-first search.

Intuition \(\Rightarrow \) we are never satisfied with the local maximum:

\[- \log P(x_{t+1} | x_t) - \log P(x_{t+1} | x_t) \] because it is worse than \(C \).

So we go back and expand an earlier path.

\(\ell \) not good enough

\(\ell \) not good enough

\(\ast \) Expand \(\ell \) again.

This requires searching \(3^n \) paths.

Exponential \(\Rightarrow \) impossible
This is an unusual case \(\rightarrow \) Not standard A*

What to do?

- Inadmissible Heuristic.
 Cannot guarantee convergence to best solution
 But can make statistical guarantees (Coughlin and Yinill)
- With high probability we can find a path
 which is close to the true path in \(O(N) \) time

Like Probably Approximately Correct (PAC) Theorem in Machine Learning
(Vapnik/Valiant, McAlester)
How to do this?

Brief Sketch.

Problem formulation assumes probability distributions $P(X)$ and $P(Y|X)$.

Can use these distributions to analyze the algorithm.

Start:

```
partial path $X_t$ → An admissible heuristic gives a lower bound of cost from $X_t$ to $X_b$.
```

Instead, specify a heuristic cost for each segment (not a lower bound) and compute the probability that the algorithm wastes time exploring false paths.
Some intuition. \[
\text{cost of segment } \leq \frac{1}{3},
\]

There is a probability \[P(3 \text{ on road})\]
probably \[P(3 \text{ off road})\]
specified by \[P(x), P(y|x)\]
specified by \[-\log P(3 | \text{on}) - \log P(1)\]
\[
P(3 | \text{off})
\]
Admissible Heuristic is \[\leq (N-M) \min \{P(3)\}\]

But it is very unlikely that we will have this cost.

If \(n - m\) is large, law of large numbers says that it will be closer to \[(N-M) \langle P(3) \rangle\] expected value.
Example 3

I. Kokkinos
Hierarchical Compositional Models

- **Top-down view**: object generates tokens
- **Bottom-up view**: object is composed from tokens
Compositional Detection

- View production rules as composition rules
 \[(p_{p_1}, \ldots, p_{p_n}) \rightarrow p_O\]

- Build a parse tree for the object

- Requires
 - Composition rules
 - Prioritized search
Composition of the `Back’ Structure
Composition as Climbing a Lattice

• Introduce vector indicating instantiated substructures

\[I(S) = [1, 0, 1], \quad S = (S_1, -, S_3) \]

– partial ordering among structures

\[S^i \preceq S^j \iff I_k(S^i) \leq I_k(S^j) \quad \forall k \]

• Hasse Diagram for 3-partite structure

– By acquiring a substructure, the structure climbs upwards
Composition of the `Back’ Structure

Problem: Too many options!
(Combinatorial explosion)
Analogy: Building a puzzle

• Bottom-Up solution: Combine pieces until you build the car
 – Does not exploit the box’ cover

• Top-Down solution: Try fitting each piece to the box’ cover.
 – Most pieces are uniform/irrelevant

• Bottom-Up/Top-Down solution:
 – Form car-like structures, but use cover to suggest combinations.
Best First Search

- **Dijkstra’s Algorithm**
 - Prioritize based on `cost so far`
 - For parsing: Knuth’s Lightest Derivation
- **A* Search**
 - Consider `cost to go`
 - Approximate with **heuristic** cost

![Labyrinth Diagram]

- Entry
- Exit
- Cost so far
- Cost to go
- Heuristic cost
`Cost to go’ for Parsing

- The Generalized A* Architecture, Felzenszwalb & McAllester
- Context: complement needed to get to the goal.

- Recursive derivation of contexts.

\[
\begin{align*}
\text{CON}(goal) &= 0 \\
(S_1 = w_1, S_2 = w_2) &\rightarrow (S_3 = w_3) \\
(S_1 = w_1, S_2 = w_2, S_3 = w_3, \text{CON}(S_3) = w_c) &\rightarrow \\
&\quad (\text{CON}(S_1) = w_3 + w_c - w_1) \\
&\quad (\text{CON}(S_2) = w_3 + w_c - w_2)
\end{align*}
\]
Heuristics for Parsing: Context Abstractions

• A* requires lower bound of derivation cost
• Derive context in coarser domain (abstraction)
 – Lower bound cost on fine domain

\[
\text{Cost} (\text{CON}(\text{Abs}(S_3))) \leq \text{Cost} (\text{CON}(S_3))
\]

• Use it to prioritize search

\[\text{KLD}: \ (S_1 = w_1, S_2 = w_2) \rightarrow_{w_3} (S_3 = w_3)\]

\[\text{A*} : \ (S_1 = w_1, S_2 = w_2, \text{CON}(\text{Abs}(S_3)) = w_h) \rightarrow_{w_3+w_h} (S_3 = w_3)\]
Abstractions via Structure Coarsening

- Coarsening: identify nodes of Hasse diagram

1 part suffices

- Lower bound composition cost

\[
\sum_{p \in P} \log P_{p|O}(p_{p|O}) = \sum_{p \in P} \frac{1}{2} \left[\log((2\pi)^n |\Sigma_{p,O}|) + p_{p|O}^T \Sigma_{p,O}^{-1} p_{p|O} \right] \\
\geq \frac{1}{2} \left[\log((2\pi)^n |\Sigma_{a,O}|) + p_{a|O}^T \Sigma_{a,O}^{-1} p_{a|O} \right] + \sum_{p \in P \setminus a} \max \left(\frac{1}{2} \log((2\pi)^n |\Sigma_{p,O}|), C_a \right)
\]
Coarse Level Parsing

KLD: Coarse Domain

Contexts to Fine Level

Bottom-Up

Top-Down
Fine Level Parsing

Top-Down Guidance: Heuristic, Coarse Level

Bottom-Up Composition, Fine level
A* versus Best First Parsing

- **A* Parsing**

 - Front Part
 - Middle Part
 - Back Part
 - Object
 - Goal

- **Knuth’s Lightest Derivation Parsing**
Parsing & Localization Results - I
Object – ETHZ Shape dataset
Parsing and localization results
ETHZ Benchmark results

UIUC cars

Apple logos

Bottles

Giraffes

Mugs

Swans

Recall vs. 1-Precision for different benchmarks and methods.
Forward pointers

- Learning the model parts:
 - Statistical Shape Models, 3rd week

- Learning the model parameters:
 - Latent SVM training, 3rd week

- Branch & Bound for star-shaped models:
 - Rapid Object Detection with Branch & Bound, 3rd week
 - spatial coarsening
 - score bounding