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Goal: A gentle introduction to the basic concepts  
          in information theory and a couple of   
          applications in vision 
 
Emphasis: understanding and interpretations  
                   of these concepts 
 
Reference: Elements of Information Theory  
                    by Cover and Thomas 



Topics 
• Entropy and Kullback-Leibler 
• Asymptotic equipartition property 
• Large deviation 
• Image labeling  
• Image modeling 



Entropy 
Randomness or uncertainty of a probability distribution 
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Entropy 
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Definition for both discrete and continuous 
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Interpretation 1: cardinality 
Uniform distribution ][~ AX Unif

There are          elements in 
All these choices are equally likely 

A
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Entropy can be interpreted as log of volume or size 
                   dimensional cube has          vertices  
               can also be interpreted as dimensionality 
 
What if the distribution is not uniform? 
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Asymptotic equipartition property 
Any distribution is essentially a uniform distribution  
                                in long run repetition 
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Random? 

But in some sense, it is essentially a constant! 



Law of large number 
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Asymptotic equipartition property 
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So the dimensionality per observation is  )(pH

Asymptotic equipartition property 

We can make it more rigorous 
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Typical set 
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: The set of sequences 
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Interpretation 2: coin flipping 

Flip a fair coin à {Head, Tail} 
Flip a fair coin twice independently 
                        à {HH, HT, TH, TT} 
…… 
Flip a fair coin      times independently 
                        à        equally likely sequences 
 
We may interpret entropy as the number of flips 

n
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Example 
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The above uniform distribution amounts to 2 coin flips 

Interpretation 2: coin flipping 
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Interpretation 2: coin flipping 
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Interpretation 3: coding  
Example 
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How many bits to code elements in A
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Can be made more formal using typical set 
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010011001
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100101100010àabacbd 

Prefix code 
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100101100010àabacbd 

010011001
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Sequence of coin flipping 
A completely random sequence 
Cannot be further compressed 
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Optimal code 

e.g., two words I, probability 



Optimal code 

Kk

Kk

Kk

lllll
ppppp
aaaa





21

21

21Ω

Kraft inequality for prefix code 

12 ≤∑ −

k

lk

∑==
k

kk plXlL )]([EMinimize 

Optimal length kk pl log* −=

)(* pHL =



Wrong model 
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Box: All models are wrong, but some are useful 
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Types 
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Kolmogorov complexity 
Example: a string 011011011011…011 
 
Program: for (i =1 to n/3) 
              write(011) 
         end 
Can be translated to binary machine code 
 
Kolmogorov complexity = length of shortest machine code 
                                            that reproduce the string 
                      no probability distribution involved 

If a long sequence is not compressible, then it has all  
the statistical properties of a sequence of coin flipping 

string = f(coin flippings) 



Joint and conditional entropy 
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Joint distribution 

Marginal distribution 

e.g., eye color & hair color 
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Entropy rate 

Stochastic process ,...),...,,( 21 nXXX not independent 

Markov chain: 
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(compression) 



Shannon, 1948 
 
1. Zero-order approximation 
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD.  
  
2. First-order approximation  
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL.  
  
3. Second-order approximation (digram structure as in English).  
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE 
AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.  
  
4. Third-order approximation (trigram structure as in English).  
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF 
THE REPTAGIN IS REGOACTIONA OF CRE.  
  
5. First-order word approximation.  
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL 
HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE 
MESSAGE HAD BE THESE.  
  
6. Second-order word approximation.  
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF 
THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF 
WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.  
  
 



Image labeling 



Mean Field Free Energy 



Mean Field Free Energy 



Bethe Free Energy  

Belief propagation 



Cliques for this neighborhood 

Ising model 

From Slides by S. Seitz - University of Washington 

Image Modeling 





Energy-based model 

Ising model 

Exponential family model, log-linear model 
                                              maximum entropy model 

unknown parameters 

features (may also need to be learned) 

reference distribution 

Hidden variables, layers, RBM 





Maximum Likelihood 



Maximum Entropy 

Feature learning? 



Summary 
Entropy of a distribution 
     measures randomness or uncertainty 
         log of the number of equally likely choices 
         average number of coin flips 
         average length of prefix code 
           (Kolmogorov: shortest machine code à randomness) 
 
Relative entropy from one distribution to the other 
     measure the departure from the first to the second 
           coding redundancy 
           large deviation 
 
Conditional entropy, mutual information, entropy rate 


