
Introduction to Convex Optimization

Lieven Vandenberghe

Electrical Engineering Department, UCLA

IPAM Graduate Summer School: Computer Vision

August 5, 2013

Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

objective and inequality constraint functions fi are convex:

fi(θx+ (1− θ)y) ≤ θfi(x) + (1− θ)fi(y) for 0 ≤ θ ≤ 1

• can be solved globally, with similar low complexity as linear programs

• surprisingly many problems can be solved via convex optimization

• provides tractable heuristics and relaxations for non-convex problems

1

History

• 1940s: linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

• 1950s: quadratic programming

minimize (1/2)xTPx+ qTx
subject to aTi x ≤ bi, i = 1, . . . ,m

• 1960s: geometric programming

• since 1990: semidefinite programming, second-order cone programming,
quadratically constrained quadratic programming, robust optimization,
sum-of-squares programming, . . .

2

New applications since 1990

• linear matrix inequality techniques in control

• semidefinite programming relaxations in combinatorial optimization

• support vector machine training via quadratic programming

• circuit design via geometric programming

• ℓ1-norm optimization for sparse signal reconstruction

• applications in structural optimization, statistics, machine learning,
signal processing, communications, image processing, computer vision,
quantum information theory, finance, power distribution, . . .

3

Advances in convex optimization algorithms

Interior-point methods

• 1984 (Karmarkar): first practical polynomial-time algorithm for LP

• 1984-1990: efficient implementations for large-scale LPs

• around 1990 (Nesterov & Nemirovski): polynomial-time interior-point
methods for nonlinear convex programming

• 1990s: high-quality software packages for conic optimization

• 2000s: convex modeling software based on interior-point solvers

First-order algorithms

• fast gradient methods, based on Nesterov’s methods from 1980s

• extensions to nondifferentiable or constrained problems

• multiplier/splitting methods for large-scale and distributed optimization

4

Overview

1. Introduction to convex optimization theory

• convex sets and functions
• conic optimization
• duality

2. Introduction to first-order algorithms

• (proximal) gradient algorithm
• splitting and alternating minimization methods

2013 IPAM Graduate Summer School: Computer Vision

1. Convex optimization theory

• convex sets and functions

• conic optimization

• duality

Convex set

contains the line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

convex not convex not convex

Convex optimization theory 5

Basic examples

Affine set: solution set of linear equations Ax = b

Halfspace: solution of one linear inequality aTx ≤ b (a 6= 0)

Polyhedron: solution of finitely many linear inequalities Ax ≤ b

Ellipsoid: solution of positive definite quadratic inequality

(x− xc)
TA(x− xc) ≤ 1 (A positive definite)

Norm ball: solution of ‖x‖ ≤ R (for any norm)

Positive semidefinite cone: Sn
+ = {X ∈ Sn | X � 0}

the intersection of any number of convex sets is convex

Convex optimization theory 6

Convex function

domain dom f is a convex set and Jensen’s inequality holds:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

f is concave if −f is convex

Convex optimization theory 7

Examples

• linear and affine functions are convex and concave

• expx, − log x, x log x are convex

• xα is convex for x > 0 and α ≥ 1 or α ≤ 0; |x|α is convex for α ≥ 1

• norms are convex

• quadratic-over-linear function xTx/t is convex in x, t for t > 0

• geometric mean (x1x2 · · ·xn)
1/n is concave for x ≥ 0

• log detX is concave on set of positive definite matrices

• log(ex1 + · · · exn) is convex

Convex optimization theory 8

Differentiable convex functions

differentiable f is convex if and only if dom f is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

twice differentiable f is convex if and only if dom f is convex and

∇2f(x) � 0 for all x ∈ dom f

Convex optimization theory 9

Subgradient

g is a subgradient of a convex function f at x if

f(y) ≥ f(x) + gT (y − x) ∀y ∈ dom f

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

the set of all subgradients of f at x is called the subdifferential ∂f(x)

• ∂f(x) = {∇f(x)} if f is differentiable at x

• convex f is subdifferentiable (∂f(x) 6= ∅) on x ∈ int dom f

Convex optimization theory 10

Examples

Absolute value f(x) = |x|

f(x) = |x| ∂f(x)

x

x

1

−1

Euclidean norm f(x) = ‖x‖2

∂f(x) =
1

‖x‖2
x if x 6= 0, ∂f(x) = {g | ‖g‖2 ≤ 1} if x = 0

Convex optimization theory 11

Establishing convexity

1. verify definition

2. for twice differentiable functions, show ∇2f(x) � 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

• nonnegative weighted sum
• composition with affine function
• pointwise maximum and supremum
• minimization
• composition
• perspective

Convex optimization theory 12

Positive weighted sum & composition with affine function

Nonnegative multiple: αf is convex if f is convex, α ≥ 0

Sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

Composition with affine function: f(Ax+ b) is convex if f is convex

Examples

• logarithmic barrier for linear inequalities

f(x) = −
m∑

i=1

log(bi − aTi x)

• (any) norm of affine function: f(x) = ‖Ax+ b‖

Convex optimization theory 13

Pointwise maximum

f(x) = max{f1(x), . . . , fm(x)}

is convex if f1, . . . , fm are convex

Example: sum of r largest components of x ∈ Rn

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}

Convex optimization theory 14

Pointwise supremum

g(x) = sup
y∈A

f(x, y)

is convex if f(x, y) is convex in x for each y ∈ A

Examples

• maximum eigenvalue of symmetric matrix

λmax(X) = sup
‖y‖2=1

yTXy

• support function of a set C

SC(x) = sup
y∈C

yTx

Convex optimization theory 15

Partial minimization

h(x) = inf
y∈C

f(x, y)

is convex if f(x, y) is convex in (x, y) and C is a convex set

Examples

• distance to a convex set C: h(x) = infy∈C ‖x− y‖
• optimal value of linear program as function of righthand side

h(x) = inf
y:Ay≤x

cTy

follows by taking

f(x, y) = cTy, dom f = {(x, y) | Ay ≤ x}

Convex optimization theory 16

Composition

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if

g convex, h convex and nondecreasing
g concave, h convex and nonincreasing

(if we assign h(x) = ∞ for x ∈ domh)

Examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive

Convex optimization theory 17

Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h (g1(x), g2(x), . . . , gk(x))

f is convex if

gi convex, h convex and nondecreasing in each argument
gi concave, h convex and nonincreasing in each argument

(if we assign h(x) = ∞ for x ∈ domh)

Example: log
m∑

i=1

exp gi(x) is convex if gi are convex

Convex optimization theory 18

Perspective

the perspective of a function f : Rn → R is the function g : Rn ×R → R,

g(x, t) = tf(x/t)

g is convex if f is convex on dom g = {(x, t) | x/t ∈ dom f, t > 0}

Examples

• perspective of f(x) = xTx is quadratic-over-linear function

g(x, t) =
xTx

t

• perspective of negative logarithm f(x) = − log x is relative entropy

g(x, t) = t log t− t log x

Convex optimization theory 19

Modeling software

Modeling packages for convex optimization

• CVX, YALMIP (MATLAB)

• CVXPY, CVXMOD (Python)

• MOSEK Fusion (several platforms)

assist the user in formulating convex problems, by automating two tasks:

• verifying convexity from convex calculus rules

• transforming problem in input format required by standard solvers

Related packages

general-purpose optimization modeling: AMPL, GAMS

Convex optimization theory 20

Example

minimize ‖Ax− b‖22 + ‖x‖1
subject to 0 ≤ xk ≤ 1, k = 1, . . . , n

xTPx ≤ 1

CVX code (Grant and Boyd 2008)

cvx_begin

variable x(n);

minimize(square_pos(norm(A*x - b)) + norm(x,1))

subject to

x >= 0;

x <= 1;

quad_form(x, P) <= 1;

cvx_end

Convex optimization theory 21

Outline

• convex sets and functions

• conic optimization

• duality

Conic linear program

minimize cTx
subject to b−Ax ∈ K

• K a convex cone (closed, pointed, with nonempty interior)

• if K is the nonnegative orthant, this is a (regular) linear program

• constraint often written as generalized linear inequality Ax �K b

widely used in recent literature on convex optimization

• modeling: 3 cones (nonnegative orthant, second-order cone, positive
semidefinite cone) are sufficient to represent most convex constraints

• algorithms: a convenient problem format when extending interior-point
algorithms for linear programming to convex optimization

Convex optimization theory 22

Norm cone

K =
{
(x, y) ∈ Rm−1 × R | ‖x‖ ≤ y

}

x1
x2

y

−1

0

1

−1

0

1
0

0.5

1

for the Euclidean norm this is the second-order cone (notation: Qm)

Convex optimization theory 23

Second-order cone program

minimize cTx

subject to ‖Bk0x+ dk0‖2 ≤ Bk1x+ dk1, k = 1, . . . , r

Conic LP formulation: express constraints as Ax �K b

K = Qm1 × · · · × Qmr, A =











−B10

−B11

...

−Br0

−Br1











, b =











d10

d11
...

dr0

dr1











(assuming Bk0, dk0 have mk − 1 rows)

Convex optimization theory 24

Robust linear program

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m

• ai uncertain but bounded by ellipsoid Ei = {āi + Piu | ‖u‖2 ≤ 1}
• we require that x satisfies each constraint for all possible ai

SOCP formulation

minimize cTx
subject to āTi x+ ‖PT

i x‖2 ≤ bi, i = 1, . . . ,m

follows from
sup

‖u‖2≤1

(āi + Piu)
Tx = āTi x+ ‖PT

i x‖2

Convex optimization theory 25

Second-order cone representable constraints

Convex quadratic constraint (A = LLT positive definite)

xTAx+ 2bTx+ c ≤ 0

m
∥
∥LTx+ L−1b

∥
∥
2
≤ (bTA−1b− c)1/2

extends to positive semidefinite singular A

Hyperbolic constraint

xTx ≤ yz, y, z ≥ 0

m
∥
∥
∥
∥

[
2x

y − z

]∥
∥
∥
∥
2

≤ y + z, y, z ≥ 0

Convex optimization theory 26

Second-order cone representable constraints

Positive powers

x1.5 ≤ t, x ≥ 0 ⇐⇒ ∃z : x2 ≤ tz, z2 ≤ x, x, z ≥ 0

• two hyperbolic constraints can be converted to SOC constraints

• extends to powers xp for rational p ≥ 1

• can be used to represent ℓp-norm constraints ‖x‖p ≤ t with rational p

Negative powers

x−3 ≤ t, x > 0 ⇐⇒ ∃z : 1 ≤ tz, z2 ≤ tx, x, z ≥ 0

• two hyperbolic constraints on r.h.s. can be converted to SOC constraints

• extends to powers xp for rational p < 0

Convex optimization theory 27

Example

minimize ‖Ax− b‖22 +
N∑

k=1

‖Bkx‖2

arises in total-variation deblurring

SOCP formulation (auxiliary variables t0, . . . , tN)

minimize t0 +
N∑

i=1

ti

subject to

∥
∥
∥
∥

[
2(Ax− b)
t0 − 1

]∥
∥
∥
∥
2

≤ t0 + 1

‖Bkx‖2 ≤ tk, k = 1, . . . , N

first constraint is equivalent to ‖Ax− b‖22 ≤ t0

Convex optimization theory 28

Positive semidefinite cone

Sp = {vec(X) | X ∈ Sp
+}

= {x ∈ Rp(p+1)/2 | mat(x) � 0}

vec(·) converts symmetric matrix to vector; mat(·) is inverse operation

(x, y, z) ∈ S2

m
[

x y/
√
2

y/
√
2 z

]

� 0

0

0.5

1

−1

0

1

0

0.5

1

xy

z

Convex optimization theory 29

Semidefinite program

minimize cTx
subject to x1A11 + x2A12 + · · ·+ xnA1n � B1

. . .
x1Ar1 + x2Ar2 + · · ·+ xnArn � Br

r linear matrix inequalities of order p1, . . . , pr

Cone LP formulation: express constraints as Ax �K B

K = Sp1 × Sp2 × · · · × Spr

A =







vec(A11) vec(A12) · · · vec(A1n)
vec(A21) vec(A22) · · · vec(A2n)

...
vec(Ar1) vec(Ar2) · · · vec(Arn)






, b =







vec(B1)
vec(B2)

...
vec(Br)







Convex optimization theory 30

Semidefinite cone representable constraints

Matrix-fractional function

yTX−1y ≤ t, X ≻ 0, y ∈ range(X)

m
[

X y
yT t

]

� 0

Maximum eigenvalue of symmetric matrix

λmax(X) ≤ t ⇐⇒ X � tI

Convex optimization theory 31

Semidefinite cone representable constraints

Maximum singular value ‖X‖2 = σ1(X)

‖X‖2 ≤ t ⇐⇒
[

tI X
XT tI

]

� 0

Trace norm (nuclear norm) ‖X‖∗ =
∑

i σi(X)

‖X‖∗ ≤ t

m

∃U, V :

[
U X
XT V

]

� 0, trU + trV ≤ 2t

Convex optimization theory 32

Exponential cone

Definition: Kexp is the closure of

K =
{

(x, y, z) ∈ R3 | yex/y ≤ z, y > 0
}

−2
−1

0
1

0

1

2

3
0

0.5

1

x
y

z

Convex optimization theory 33

Power cone

Definition: for α = (α1, α2, . . . , αm) > 0,
m∑

i=1

αi = 1

Kα =
{
(x, y) ∈ Rm

+ × R | |y| ≤ xα1
1 · · ·xαm

m

}

Examples for m = 2

α = (12,
1
2) α = (23,

1
3) α = (34,

1
4)

0
0.5

1 0 0.5 1

−0.4

−0.2

0

0.2

0.4

x1 x2

y

0
0.5

1 0 0.5 1

−0.5

0

0.5

x1 x2

y

0
0.5

1 0 0.5 1

−0.5

0

0.5

x1 x2

y

Convex optimization theory 34

Functions representable with exponential and power cone

Exponential cone

• exponential and logarithm

• entropy f(x) = x log x

Power cone

• increasing power of absolute value: f(x) = |x|p with p ≥ 1

• decreasing power: f(x) = xq with q ≤ 0 and domain R++

• p-norm: f(x) = ‖x‖p with p ≥ 1

Convex optimization theory 35

Outline

• convex sets and functions

• conic optimization

• duality

Lagrange dual

Convex problem (with linear constraints for simplicity)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Lagrangian and dual function

L(x, λ, ν) = f(x) +

m∑

i=1

λifi(x) + νT (Ax− b)

g(λ, ν) = inf
x

L(x, λ, ν)

(Lagrange) dual problem

maximize g(λ, ν)
subject to λ ≥ 0

a convex optimization problem in λ, ν

Convex optimization theory 36

Duality theorem

let p⋆ be the primal optimal value, d⋆ the dual optimal value

Weak duality
p⋆ ≥ d⋆

without exception

Strong duality
p⋆ = d⋆

if a constraint qualification holds (e.g., primal problem is strictly feasible)

Convex optimization theory 37

Conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

Properties

• f∗ is convex (even if f is not)

• if f is (closed) convex, ∂f∗ = ∂f−1:

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y)

Convex optimization theory 38

Examples

Convex quadratic function (A ≻ 0)

f(x) =
1

2
xTAx+ bTx f∗(y) =

1

2
(y − b)TA−1(y − b)

if A � 0, but not necesssarily positive definite,

f∗(y) =

{
1
2(y − b)TA†(y − b) y − b ∈ range(A)
+∞ otherwise

Negative entropy

f(x) =

n∑

i=1

xi log xi f∗(y) =

n∑

i=1

eyi − 1

Convex optimization theory 39

Examples

Norm

f(x) = ‖x‖ f∗(y) =

{
0 ‖y‖∗ ≤ 1
+∞ otherwise

conjugate of norm is indicator function of unit ball for dual norm

‖y‖∗ = sup
‖x‖≤1

yTx

Indicator function (C convex)

f(x) = IC(x) =

{
0 x ∈ C
+∞ otherwise

f∗(y) = sup
x∈C

yTx

conjugate of indicator of C is support function

Convex optimization theory 40

Duality and conjugate functions

Convex problem with composite structure

minimize f(x) + g(Ax)

f and g convex

Equivalent problem (auxiliary variable y)

minimize f(x) + g(y)
subject to Ax = y

Dual problem
maximize −g∗(z)− f∗(−ATz)

Convex optimization theory 41

Example

Regularized norm approximation

minimize f(x) + γ‖Ax− b‖

a special case with g(y) = γ‖y − b‖,

g∗(z) =

{
bTz ‖z‖∗ ≤ γ
+∞ otherwise

Dual problem
maximize −bTz − f∗(−ATz)
subject to ‖z‖∗ ≤ γ

Convex optimization theory 42

2013 IPAM Graduate Summer School: Computer Vision

2. First-order methods

• (proximal) gradient method

• splitting and alternating minimization methods

43

Proximal operator

the proximal operator (prox-operator) of a convex function h is

proxh(x) = argmin
u

(

h(u) +
1

2
‖u− x‖22

)

• h(x) = 0: proxh(x) = x

• h(x) = IC(x) (indicator function of C): proxh is projection on C

proxh(x) = argmin
u∈C

‖u− x‖22 = PC(x)

• h(x) = ‖x‖1: proxh is the ‘soft-threshold’ (shrinkage) operation

proxh(x)i =







xi − 1 xi ≥ 1
0 |xi| ≤ 1
xi + 1 xi ≤ −1

First-order methods 44

Proximal gradient method

minimize f(x) = g(x) + h(x)

• g convex, differentiable, with dom g = Rn

• h convex, possibly nondifferentiable, with inexpensive prox-operator

Algorithm (update from x = x(k−1) to x+ = x(k))

x+ = proxth (x− t∇g(x))

= argmin
u

(

g(x) +∇g(x)T (u− x) +
t

2
‖u− x‖22 + h(x)

)

t > 0 is step size, constant or determined by line search

First-order methods 45

Examples

Gradient method: h(x) = 0, i.e., minimize g(x)

x+ = x− t∇g(x)

Gradient projection method: h(x) = IC(x), i.e., minimize g(x) over C

x+ = PC (x− t∇g(x))
C

x

x− t∇g(x)
x+

First-order methods 46

Iterative soft-thresholding: h(x) = ‖x‖1

x+ = proxth (x− t∇g(x))

where

proxth(u)i =







ui − t ui ≥ t
0 −t ≤ ui ≤ t
ui + t ui ≤ −t

ui
t

−t

proxth(u)i

First-order methods 47

Properties of proximal operator

proxh(x) = argmin
u

(

h(u) +
1

2
‖u− x‖22

)

assume h is closed and convex (i.e., convex with closed epigraph)

• proxh(x) is uniquely defined for all x

• proxh is nonexpansive

‖proxh(x)− proxh(y)‖2 ≤ ‖x− y‖2

• Moreau decomposition

x = proxh(x) + proxh∗(x)

(surveys in Bauschke & Combettes 2011, Parikh & Boyd 2013)

First-order methods 48

Examples of inexpensive projections

• hyperplanes and halfspaces

• rectangles
{x | l ≤ x ≤ u}

• probability simplex
{x | 1Tx = 1, x ≥ 0}

• norm ball for many norms (Euclidean, 1-norm, . . .)

• nonnegative orthant, second-order cone, positive semidefinite cone

First-order methods 49

Examples of inexpensive prox-operators

Euclidean norm: h(x) = ‖x‖2

proxth(x) =

(

1− t

‖x‖2

)

x if ‖x‖2 ≥ t, proxth(x) = 0 otherwise

Logarithmic barrier

h(x) = −
n∑

i=1

log xi, proxth(x)i =
xi +

√

x2
i + 4t

2
, i = 1, . . . , n

Euclidean distance: d(x) = infy∈C ‖x− y‖2 (C closed convex)

proxtd(x) = θPC(x) + (1− θ)x, θ =
t

max{d(x), t}

generalizes soft-thresholding operator

First-order methods 50

Prox-operator of conjugate

proxth(x) = x− t proxh∗/t(x/t)

• follows from Moreau decomposition

• of interest when prox-operator of h∗ is inexpensive

Example: norms

h(x) = ‖x‖, h∗(y) = IC(y)

where C is unit ball for dual norm ‖ · ‖∗

• proxh∗/t is projection on C

• formula useful for prox-operator of ‖ · ‖ if projection on C is inexpensive

First-order methods 51

Support function

many convex functions can be expressed as support functions

h(x) = SC(x) = sup
y∈C

xTy

with C closed, convex

• conjugate is indicator function of C: h∗(y) = IC(y)

• hence, can compute proxth via projection on C

Example: h(x) is sum of largest r components of x

h(x) = x[1] + · · ·+ x[r] = SC(x), C = {y | 0 ≤ y ≤ 1,1Ty = r}

First-order methods 52

Convergence of proximal gradient method

minimize f(x) = g(x) + h(x)

Assumptions

• ∇g is Lipschitz continuous with constant L > 0

‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2 ∀x, y

• optimal value f⋆ is finite and attained at x⋆ (not necessarily unique)

Result: with fixed step size tk = 1/L

f(x(k))− f⋆ ≤ L

2k
‖x(0) − x⋆‖22

• compare with 1/
√
k rate of subgradient method

• can be extended to include line searches

First-order methods 53

Fast (proximal) gradient methods

• Nesterov (1983, 1988, 2005): three gradient projection methods with
1/k2 convergence rate

• Beck & Teboulle (2008): FISTA, a proximal gradient version of
Nesterov’s 1983 method

• Nesterov (2004 book), Tseng (2008): overview and unified analysis of
fast gradient methods

• several recent variations and extensions

This lecture: FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

First-order methods 54

FISTA

minimize f(x) = g(x) + h(x)

• g convex differentiable with dom g = Rn

• h convex with inexpensive prox-operator

Algorithm: choose any x(0) = x(−1); for k ≥ 1, repeat the steps

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtkh (y − tk∇g(y))

First-order methods 55

Interpretation

• first two iterations (k = 1, 2) are proximal gradient steps at x(k−1)

• next iterations are proximal gradient steps at extrapolated points y

x(k−2) x(k−1) y

x(k) = proxtkh (y − tk∇g(y))

sequence x(k) remains feasible (in domh); y may be outside domh

First-order methods 56

Convergence of FISTA

minimize f(x) = g(x) + h(x)

Assumptions

• dom g = Rn and ∇g is Lipschitz continuous with constant L > 0

• h is closed (implies proxth(u) exists and is unique for all u)

• optimal value f⋆ is finite and attained at x⋆ (not necessarily unique)

Result: with fixed step size tk = 1/L

f(x(k))− f⋆ ≤ 2L

(k + 1)2
‖x(0) − f⋆‖22

• compare with 1/k convergence rate for proximal gradient method

• can be extended to include line searches

First-order methods 57

Example

minimize log
m∑

i=1

exp(aTi x+ bi)

randomly generated data with m = 2000, n = 1000, same fixed step size

0 50 100 150 20010-6

10-5

10-4

10-3

10-2

10-1

100

gradient
FISTA

k

f
(x

(k
))
−

f
⋆

|f
⋆
|

0 50 100 150 20010-6

10-5

10-4

10-3

10-2

10-1

100

gradient
FISTA

k

FISTA is not a descent method

First-order methods 58

Proximal point algorithm

to minimize h(x), apply fixed-point iteration to proxth

x+ = proxth(x)

• proximal gradient method with zero g

• implementable if inexact prox-evaluations are used

Convergence

• O(1/ǫ) iterations to reach h(x)− h(x⋆) ≤ ǫ (rate 1/k)

• O(1/
√
ǫ) iterations with accelerated (1/k2) algorithm (Güler 1992)

First-order methods 59

Smoothing interpretation

Moreau-Yosida regularization of h

h(t)(x) = inf
u

(

h(u) +
1

2t
‖u− x‖22

)

• convex, with full domain

• differentiable with 1/t-Lipschitz continuous gradient

∇h(t)(x) =
1

t
(x− proxth(x)) = proxh∗/t(x/t)

Proximal point algorithm (with constant t): gradient method for h(t)

x+ = proxth(x) = x− t∇h(t)(x)

First-order methods 60

Examples

Indicator function (of closed convex set C): squared Euclidean distance

h(x) = IC(x), h(t)(x) =
1

2t
dist(x)2

1-Norm: Huber penalty

h(x) = ‖x‖1, h(t)(x) =

n∑

k=1

φt(xk)

φt(z) =

{
z2/(2t) |z| ≤ t
|z| − t/2 |z| ≥ t

t/2−t/2 z

φ
t(
z
)

First-order methods 61

Monotone operator

Monotone (set-valued) operator. F : Rn → Rn with

(y − ŷ)T (x− x̂) ≥ 0 ∀x, x̂, y ∈ F (x), ŷ ∈ F (x̂)

Examples

• subdifferential F (x) = ∂f(x) of closed convex function

• linear function F (x) = Bx with B +BT positive semidefinite

First-order methods 62

Proximal point algorithm for monotone inclusion

to solve 0 ∈ F (x), run fixed-point iteration

x+ = (I + tF)−1(x)

the mapping (I + tF)−1 is called the resolvent of F

• x = (I + tF)−1(x̂) is (unique) solution of x̂ ∈ x+ tF (x)

• resolvent of subdifferential F (x) = ∂h(x) is prox-operator:

(I + t∂h)−1(x) = proxth(x)

• converges if F has a zero and is maximal monotone

First-order methods 63

Outline

• (proximal) gradient method

• splitting and alternating minimization methods

Convex optimization with composite structure

Primal and dual problems

minimize f(x) + g(Ax) maximize −g∗(z)− f∗(−ATz)

f and g are ‘simple’ convex functions, with conjugates f∗, g∗

Optimality conditions

• primal: 0 ∈ ∂f(x) +AT∂g(Ax)

• dual: 0 ∈ ∂g∗(z)−A∂f∗(−ATz)

• primal-dual:

0 ∈
[

0 AT

−A 0

] [
x
z

]

+

[
∂f(x)
∂g∗(z)

]

First-order methods 64

Examples

Equality constraints: g = I{b}, indicator of {b}

minimize f(x)
subject to Ax = b

maximize −bTz − f∗(−ATz)

Set constraint: g = IC, indicator of convex C, with support function SC

minimize f(x)
subject to Ax ∈ C

maximize −SC(z)− f∗(−ATz)

Regularized norm approximaton: g(y) = γ‖y − b‖

minimize f(x) + ‖Ax− b‖ maximize −bTz − f∗(−ATz)
subject to ‖z‖∗ ≤ 1

First-order methods 65

Augmented Lagrangian method

the proximal-point algorithm applied to the dual

maximize −g∗(z)− f∗(−ATz)

1. minimize augmented Lagrangian

(x+, y+) = argmin
x̃,ỹ

(

f(x̃) + g(ỹ) +
t

2
‖Ax̃− ỹ + z/t‖22

)

2. dual update: z+ = z + t(Ax+ − y+)

• equivalent to gradient method applied to Moreau-Yosida smoothed dual

• also known as Bregman iteration (Yin et al. 2008)

• practical if inexact minimization is used in step 1

First-order methods 66

Proximal method of multipliers

apply proximal point algorithm to primal-dual optimality condition

0 ∈
[

0 AT

−A 0

] [
x
z

]

+

[
∂f(x)
∂g∗(z)

]

Algorithm (Rockafellar 1976)

1. minimize generalized augmented Lagrangian

(x+, y+) = argmin
x̃,ỹ

(

f(x̃) + g(ỹ) +
t

2
‖Ax̃− ỹ + z/t‖22 +

1

2t
‖x̃− x‖22

)

2. dual update: z+ = z + t(Ax+ − y+)

First-order methods 67

Douglas-Rachford splitting algorithm

0 ∈ F (x) = F1(x) + F2(x)

with F1 and F2 maximal monotone operators

Algorithm (Lions and Mercier 1979, Eckstein and Bertsekas 1992)

x+ = (I + tF1)
−1(z)

y+ = (I + tF2)
−1)(2x+ − z)

z+ = z + y+ − x+

• useful when resolvents of F1 and F2 are inexpensive, but not (I + tF)−1

• under weak conditions (existence of solution), x converges to solution

First-order methods 68

Alternating direction method of multipliers (ADMM)

Douglas-Rachford splitting applied to optimality condition for dual

maximize − g∗(z)− f∗(−ATz)

1. alternating minimization of augmented Lagrangian

x+ = argmin
x̃

(

f(x̃) +
t

2
‖Ax̃− y + z/t‖22

)

y+ = argmin
ỹ

(

g(ỹ) +
t

2
‖Ax+ − ỹ + z/t‖22

)

= proxg/t(Ax+ + z/t)

2. dual update z+ = z + t(Ax+ − y)

also known as split Bregman method (Goldstein and Osher 2009)

(recent survey in Boyd, Parikh, Chu, Peleato, Eckstein 2011)

First-order methods 69

Primal application of Douglas-Rachford method

D-R splitting algorithm applied to optimality condition for primal problem

minimize f(x) + g(y)
subject to Ax = y

→ minimize f(x) + g(y)
︸ ︷︷ ︸

h1(x,y)

+ I{0}(Ax− y)
︸ ︷︷ ︸

h2(x,y)

Main steps

• prox-operator of h1: separate evaluations of proxf and proxg

• prox-operator of h2: projection on subspace H = {(x, y) | Ax = y}

PH(x, y) =

[
I
A

]

(I +ATA)−1(x+ATy)

also known as method of partial inverses (Spingarn 1983, 1985)

First-order methods 70

Primal-dual application

0 ∈
[

0 AT

−A 0

] [
x
z

]

︸ ︷︷ ︸

F2(x,z)

+

[
∂f(x)
∂g∗(z)

]

︸ ︷︷ ︸

F1(x,z)

Main steps

• resolvent of F1: prox-operator of f , g

• resolvent of F2:

[
I tAT

−tA I

]−1

=

[
0 0
0 I

]

+

[
I
tA

]

(I + t2ATA)−1

[
I

−tA

]T

First-order methods 71

Summary: Douglas-Rachford splitting methods

minimize f(x) + g(Ax)

Most expensive steps

• Dual (ADMM)

minimize (over x) f(x) +
t

2
‖Ax− y + z/t‖22

if f is quadratic, a linear equation with coefficient ∇2f(x) + tATA

• Primal (Spingarn): equation with coefficient I +ATA

• Primal-dual: equation with coefficient I + t2ATA

First-order methods 72

Forward-backward method

0 ∈ F (x) = F1(x) + F2(x)

with F1 and F2 maximal monotone operators, F1 single-valued

Forward-backward iteration (for single-valued F1)

x+ = (I + tF2)
−1(I − tF1(x))

• converges if F1 is co-coercive with parameter L and t ∈ (0, 1/L]

(F1(x)− F1(x̂))
T (x− x̂) ≥ 1

L
‖F1(x)− F1(x̂)‖22 ∀x, x̂

this is Lipschitz continuity if F1 = ∂f1, a stronger condition otherwise

• Tseng’s modified method (1991) only requires Lipschitz continuous F1

First-order methods 73

Dual proximal gradient method

0 ∈ ∂g∗(z)
︸ ︷︷ ︸

F2(z)

−A∇f∗(−ATz)
︸ ︷︷ ︸

F1(z)

Proximal gradient iteration

x = argmin
x̃

(
f(x̃) + zTAx̃

)
= ∇f∗(−ATz)

z+ = proxtg∗(z + tAx)

• does not involve solution of linear equation

• first step is minimization of (unaugmented) Lagrangian

• requires Lipschitz continuous ∇f∗ (strongly convex f)

• accelerated methods: FISTA, Nesterov’s methods

First-order methods 74

Primal-dual (Chambolle-Pock) method

0 ∈
[

0 AT

−A 0

] [
x
z

]

+

[
∂f(x)
∂g∗(z)

]

Algorithm (with parameter θ ∈ [0, 1]) (Chambolle & Pock 2011)

z+ = proxtg∗(z + tAx̄)

x+ = proxtf(x− tATz+)

x̄+ = x+ + θ(x+ − x)

• widely used in image processing

• step size fixed (t ≤ 1/‖A‖2) or adapted by line search

• can be interpreted as pre-conditioned proximal-point algorithm

First-order methods 75

Summary: Splitting algorithms

minimize f(x) + g(Ax)

Douglas-Rachford splitting

• can be applied to primal (Spingarn’s method), dual (ADMM),
primal-dual optimality conditions

• subproblems include quadratic term ‖Ax‖22 in cost function

Forward-backward splitting

• (accelerated) proximal gradient algorithm applied to dual problem

• Tseng’s FB algorithm applied to primal-dual optimality conditions,
semi-implicit primal-dual method (Chambolle-Pock), . . .

• only require application of A and AT

Extensions: linearized splitting methods, generalized distances, . . .

First-order methods 76

