Introduction to Convex Optimization

Lieven Vandenberghe

Electrical Engineering Department, UCLA

IPAM Graduate Summer School: Computer Vision August 5, 2013

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

objective and inequality constraint functions f_i are convex:

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y) \quad \text{for } 0 \le \theta \le 1$$

- can be solved globally, with similar low complexity as linear programs
- surprisingly many problems can be solved via convex optimization
- provides tractable heuristics and relaxations for non-convex problems

History

• 1940s: linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

• 1950s: quadratic programming

minimize
$$(1/2)x^T P x + q^T x$$

subject to $a_i^T x \le b_i, \quad i = 1, \dots, m$

- 1960s: geometric programming
- since 1990: semidefinite programming, second-order cone programming, quadratically constrained quadratic programming, robust optimization, sum-of-squares programming, . . .

New applications since 1990

- linear matrix inequality techniques in control
- semidefinite programming relaxations in combinatorial optimization
- support vector machine training via quadratic programming
- circuit design via geometric programming
- ℓ_1 -norm optimization for sparse signal reconstruction
- applications in structural optimization, statistics, machine learning, signal processing, communications, image processing, computer vision, quantum information theory, finance, power distribution, . . .

Advances in convex optimization algorithms

Interior-point methods

- 1984 (Karmarkar): first practical polynomial-time algorithm for LP
- 1984-1990: efficient implementations for large-scale LPs
- around 1990 (Nesterov & Nemirovski): polynomial-time interior-point methods for nonlinear convex programming
- 1990s: high-quality software packages for conic optimization
- 2000s: convex modeling software based on interior-point solvers

First-order algorithms

- fast gradient methods, based on Nesterov's methods from 1980s
- extensions to nondifferentiable or constrained problems
- multiplier/splitting methods for large-scale and distributed optimization

Overview

1. Introduction to convex optimization theory

- convex sets and functions
- conic optimization
- duality

2. Introduction to first-order algorithms

- (proximal) gradient algorithm
- splitting and alternating minimization methods

2013 IPAM Graduate Summer School: Computer Vision

1. Convex optimization theory

- convex sets and functions
- conic optimization
- duality

Convex set

contains the line segment between any two points in the set

 $x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$

Basic examples

Affine set: solution set of linear equations Ax = b

Halfspace: solution of one linear inequality $a^T x \leq b$ $(a \neq 0)$

Polyhedron: solution of finitely many linear inequalities $Ax \leq b$

Ellipsoid: solution of positive definite quadratic inequality

$$(x - x_{\rm c})^T A(x - x_{\rm c}) \le 1$$
 (A positive definite)

Norm ball: solution of $||x|| \leq R$ (for any norm)

Positive semidefinite cone: $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$

the intersection of any number of convex sets is convex

Convex function

domain $\operatorname{dom} f$ is a convex set and Jensen's inequality holds:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

f is concave if -f is convex

Examples

- linear and affine functions are convex and concave
- $\exp x$, $-\log x$, $x \log x$ are convex
- x^{α} is convex for x > 0 and $\alpha \ge 1$ or $\alpha \le 0$; $|x|^{\alpha}$ is convex for $\alpha \ge 1$
- norms are convex
- quadratic-over-linear function $x^T x/t$ is convex in x, t for t > 0
- geometric mean $(x_1x_2\cdots x_n)^{1/n}$ is concave for $x \ge 0$
- $\log \det X$ is concave on set of positive definite matrices
- $\log(e^{x_1} + \cdots + e^{x_n})$ is convex

Differentiable convex functions

differentiable f is convex if and only if $\mathbf{dom} f$ is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{\mathbf{dom}} f$

twice differentiable f is convex if and only if $\mathbf{dom} f$ is convex and

 $abla^2 f(x) \succeq 0 \quad \text{for all } x \in \operatorname{\mathbf{dom}} f$

Subgradient

g is a **subgradient** of a convex function f at x if

the set of all subgradients of f at x is called the **subdifferential** $\partial f(x)$

- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x
- convex f is subdifferentiable $(\partial f(x) \neq \emptyset)$ on $x \in \operatorname{int} \operatorname{dom} f$

Examples

Absolute value f(x) = |x|

Euclidean norm $f(x) = ||x||_2$

$$\partial f(x) = \frac{1}{\|x\|_2} x \text{ if } x \neq 0, \qquad \partial f(x) = \{g \mid \|g\|_2 \le 1\} \text{ if } x = 0$$

Establishing convexity

- 1. verify definition
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - minimization
 - composition
 - perspective

Positive weighted sum & composition with affine function

Nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

Sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

Composition with affine function: f(Ax + b) is convex if f is convex

Examples

• logarithmic barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

$$f(x) = \max\{f_1(x), \dots, f_m(x)\}$$

is convex if f_1, \ldots, f_m are convex

Example: sum of r largest components of $x \in \mathbf{R}^n$

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex if f(x,y) is convex in x for each $y \in \mathcal{A}$

Examples

• maximum eigenvalue of symmetric matrix

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

• support function of a set C

$$S_C(x) = \sup_{y \in C} y^T x$$

Partial minimization

$$h(x) = \inf_{y \in C} f(x, y)$$

is convex if f(x, y) is convex in (x, y) and C is a convex set

Examples

- distance to a convex set C: $h(x) = \inf_{y \in C} ||x y||$
- optimal value of linear program as function of righthand side

$$h(x) = \inf_{y:Ay \le x} c^T y$$

follows by taking

$$f(x,y) = c^T y, \qquad \operatorname{dom} f = \{(x,y) \mid Ay \le x\}$$

Composition

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

f(x) = h(g(x))

$$f$$
 is convex if

g convex, h convex and nondecreasing g concave, h convex and nonincreasing

(if we assign $h(x) = \infty$ for $x \in \operatorname{dom} h$)

Examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if

 g_i convex, h convex and nondecreasing in each argument g_i concave, h convex and nonincreasing in each argument

(if we assign $h(x) = \infty$ for $x \in \operatorname{dom} h$)

Example:
$$\log \sum_{i=1}^{m} \exp g_i(x)$$
 is convex if g_i are convex

Perspective

the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

$$g(x,t) = tf(x/t)$$

g is convex if f is convex on $\operatorname{dom} g = \{(x,t) \mid x/t \in \operatorname{dom} f, t > 0\}$

Examples

• perspective of $f(x) = x^T x$ is quadratic-over-linear function

$$g(x,t) = \frac{x^T x}{t}$$

• perspective of negative logarithm $f(x) = -\log x$ is relative entropy

$$g(x,t) = t\log t - t\log x$$

Modeling software

Modeling packages for convex optimization

- CVX, YALMIP (MATLAB)
- CVXPY, CVXMOD (Python)
- MOSEK Fusion (several platforms)

assist the user in formulating convex problems, by automating two tasks:

- verifying convexity from convex calculus rules
- transforming problem in input format required by standard solvers

Related packages

general-purpose optimization modeling: AMPL, GAMS

Example

$$\begin{array}{ll} \mbox{minimize} & \|Ax - b\|_2^2 + \|x\|_1 \\ \mbox{subject to} & 0 \leq x_k \leq 1, \quad k = 1, \dots, n \\ & x^T P x \leq 1 \end{array}$$

CVX code (Grant and Boyd 2008)

Convex optimization theory

Outline

- convex sets and functions
- conic optimization
- duality

Conic linear program

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & b - A x \in K \end{array}$

- *K* a convex cone (closed, pointed, with nonempty interior)
- if K is the nonnegative orthant, this is a (regular) linear program
- constraint often written as generalized linear inequality $Ax \preceq_K b$

widely used in recent literature on convex optimization

- **modeling:** 3 cones (nonnegative orthant, second-order cone, positive semidefinite cone) are sufficient to represent most convex constraints
- **algorithms**: a convenient problem format when extending interior-point algorithms for linear programming to convex optimization

Norm cone

$$K = \left\{ (x, y) \in \mathbf{R}^{m-1} \times \mathbf{R} \mid ||x|| \le y \right\}$$

for the Euclidean norm this is the second-order cone (notation: Q^m)

Second-order cone program

minimize
$$c^T x$$

subject to $||B_{k0}x + d_{k0}||_2 \le B_{k1}x + d_{k1}, \quad k = 1, ..., r$

Conic LP formulation: express constraints as $Ax \preceq_K b$

$$K = \mathcal{Q}^{m_1} \times \cdots \times \mathcal{Q}^{m_r}, \qquad A = \begin{bmatrix} -B_{10} \\ -B_{11} \\ \vdots \\ -B_{r0} \\ -B_{r1} \end{bmatrix}, \qquad b = \begin{bmatrix} d_{10} \\ d_{11} \\ \vdots \\ d_{r0} \\ d_{r1} \end{bmatrix}$$

(assuming B_{k0} , d_{k0} have $m_k - 1$ rows)

Robust linear program

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m$

- a_i uncertain but bounded by ellipsoid $\mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \leq 1\}$
- we require that x satisfies each constraint for all possible a_i

SOCP formulation

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$

follows from

$$\sup_{\|u\|_{2} \le 1} (\bar{a}_{i} + P_{i}u)^{T}x = \bar{a}_{i}^{T}x + \|P_{i}^{T}x\|_{2}$$

Second-order cone representable constraints

Convex quadratic constraint ($A = LL^T$ positive definite)

$$\begin{aligned} x^T A x + 2b^T x + c &\leq 0 \\ & \updownarrow \\ \left\| L^T x + L^{-1} b \right\|_2 &\leq (b^T A^{-1} b - c)^{1/2} \end{aligned}$$

extends to positive semidefinite singular A

Hyperbolic constraint

$$\begin{aligned} x^{T}x \leq yz, \quad y, z \geq 0 \\ & \uparrow \\ \left\| \begin{bmatrix} 2x \\ y-z \end{bmatrix} \right\|_{2} \leq y+z, \quad y, z \geq 0 \end{aligned}$$

Second-order cone representable constraints

Positive powers

 $x^{1.5} \le t, \quad x \ge 0 \qquad \iff \qquad \exists z: \quad x^2 \le tz, \quad z^2 \le x, \quad x, z \ge 0$

- two hyperbolic constraints can be converted to SOC constraints
- extends to powers x^p for rational $p \ge 1$
- can be used to represent ℓ_p -norm constraints $||x||_p \leq t$ with rational p

Negative powers

$$x^{-3} \le t, \quad x > 0 \qquad \iff \qquad \exists z : \quad 1 \le tz, \quad z^2 \le tx, \quad x, z \ge 0$$

- two hyperbolic constraints on r.h.s. can be converted to SOC constraints
- extends to powers x^p for rational p < 0

Example

minimize
$$||Ax - b||_2^2 + \sum_{k=1}^N ||B_kx||_2$$

arises in total-variation deblurring

SOCP formulation (auxiliary variables t_0, \ldots, t_N)

minimize
$$t_0 + \sum_{i=1}^N t_i$$

subject to $\left\| \begin{bmatrix} 2(Ax - b) \\ t_0 - 1 \end{bmatrix} \right\|_2 \le t_0 + 1$
 $\|B_k x\|_2 \le t_k, \quad k = 1, \dots, N$

first constraint is equivalent to $||Ax - b||_2^2 \le t_0$

Positive semidefinite cone

$$\mathcal{S}^p = \{ \operatorname{vec}(X) \mid X \in \mathbf{S}^p_+ \}$$
$$= \{ x \in \mathbf{R}^{p(p+1)/2} \mid \operatorname{mat}(x) \succeq 0 \}$$

 $vec(\cdot)$ converts symmetric matrix to vector; $mat(\cdot)$ is inverse operation

Semidefinite program

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & x_1 A_{11} + x_2 A_{12} + \dots + x_n A_{1n} \preceq B_1\\ & \dots\\ & x_1 A_{r1} + x_2 A_{r2} + \dots + x_n A_{rn} \preceq B_r \end{array}$$

r linear matrix inequalities of order p_1, \ldots, p_r

Cone LP formulation: express constraints as $Ax \preceq_K B$

$$K = \mathcal{S}^{p_1} \times \mathcal{S}^{p_2} \times \cdots \times \mathcal{S}^{p_r}$$

$$A = \begin{bmatrix} \operatorname{vec}(A_{11}) & \operatorname{vec}(A_{12}) & \cdots & \operatorname{vec}(A_{1n}) \\ \operatorname{vec}(A_{21}) & \operatorname{vec}(A_{22}) & \cdots & \operatorname{vec}(A_{2n}) \\ \vdots & \vdots & & \vdots \\ \operatorname{vec}(A_{r1}) & \operatorname{vec}(A_{r2}) & \cdots & \operatorname{vec}(A_{rn}) \end{bmatrix}, \qquad b = \begin{bmatrix} \operatorname{vec}(B_1) \\ \operatorname{vec}(B_2) \\ \vdots \\ \operatorname{vec}(B_r) \end{bmatrix}$$

Convex optimization theory

Semidefinite cone representable constraints

Matrix-fractional function

Maximum eigenvalue of symmetric matrix

$$\lambda_{\max}(X) \le t \quad \Longleftrightarrow \quad X \preceq tI$$

Semidefinite cone representable constraints

Maximum singular value $||X||_2 = \sigma_1(X)$

$$\|X\|_2 \le t \quad \Longleftrightarrow \quad \left[\begin{array}{cc} tI & X\\ X^T & tI \end{array}\right] \succeq 0$$

Trace norm (nuclear norm) $||X||_* = \sum_i \sigma_i(X)$
Exponential cone

Definition: K_{exp} is the closure of

$$K = \left\{ (x, y, z) \in \mathbf{R}^3 \mid y e^{x/y} \le z, \ y > 0 \right\}$$

Power cone

Definition: for
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m) > 0$$
, $\sum_{i=1}^m \alpha_i = 1$

$$K_{\alpha} = \left\{ (x, y) \in \mathbf{R}^{m}_{+} \times \mathbf{R} \mid |y| \le x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}} \right\}$$

Examples for m = 2

Convex optimization theory

Functions representable with exponential and power cone

Exponential cone

- exponential and logarithm
- entropy $f(x) = x \log x$

Power cone

- increasing power of absolute value: $f(x) = |x|^p$ with $p \ge 1$
- decreasing power: $f(x) = x^q$ with $q \leq 0$ and domain \mathbf{R}_{++}

• *p*-norm:
$$f(x) = ||x||_p$$
 with $p \ge 1$

Outline

- convex sets and functions
- conic optimization
- duality

Lagrange dual

Convex problem (with linear constraints for simplicity)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

Lagrangian and dual function

$$L(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \nu^T (Ax - b)$$
$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu)$$

....

(Lagrange) dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \geq 0 \end{array}$

a convex optimization problem in $\lambda,\,\nu$

Duality theorem

let p^{\star} be the primal optimal value, d^{\star} the dual optimal value

Weak duality

$$p^{\star} \ge d^{\star}$$

without exception

Strong duality

$$p^{\star} = d^{\star}$$

if a constraint qualification holds (*e.g.*, primal problem is strictly feasible)

Conjugate function

the **conjugate** of a function f is $f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$

Properties

- f^* is convex (even if f is not)
- if f is (closed) convex, $\partial f^* = \partial f^{-1}$:

$$y \in \partial f(x) \qquad \Longleftrightarrow \qquad x \in \partial f^*(y)$$

 λxy

x

 $(0, -f^*(y))$

Examples

Convex quadratic function $(A \succ 0)$

$$f(x) = \frac{1}{2}x^{T}Ax + b^{T}x \qquad f^{*}(y) = \frac{1}{2}(y-b)^{T}A^{-1}(y-b)$$

if $A \succeq 0$, but not necessarily positive definite,

$$f^{*}(y) = \begin{cases} \frac{1}{2}(y-b)^{T}A^{\dagger}(y-b) & y-b \in \operatorname{range}(A) \\ +\infty & \text{otherwise} \end{cases}$$

Negative entropy

$$f(x) = \sum_{i=1}^{n} x_i \log x_i \qquad f^*(y) = \sum_{i=1}^{n} e^{y_i} - 1$$

Examples

Norm

$$f(x) = \|x\| \qquad f^*(y) = \begin{cases} 0 & \|y\|_* \le 1 \\ +\infty & \text{otherwise} \end{cases}$$

conjugate of norm is indicator function of unit ball for dual norm

$$\|y\|_* = \sup_{\|x\| \le 1} y^T x$$

Indicator function (*C* convex)

$$f(x) = I_C(x) = \begin{cases} 0 & x \in C \\ +\infty & \text{otherwise} \end{cases} \qquad f^*(y) = \sup_{x \in C} y^T x$$

conjugate of indicator of ${\boldsymbol C}$ is support function

Duality and conjugate functions

Convex problem with composite structure

minimize f(x) + g(Ax)

f and g convex

Equivalent problem (auxiliary variable y)

 $\begin{array}{ll} \mbox{minimize} & f(x) + g(y) \\ \mbox{subject to} & Ax = y \end{array}$

Dual problem

maximize
$$-g^*(z) - f^*(-A^T z)$$

Example

Regularized norm approximation

minimize
$$f(x) + \gamma ||Ax - b||$$

a special case with $g(y) = \gamma \|y - b\|$,

$$g^*(z) = \begin{cases} b^T z & \|z\|_* \leq \gamma \\ +\infty & \text{otherwise} \end{cases}$$

Dual problem

$$\begin{array}{ll} \mbox{maximize} & -b^Tz - f^*(-A^Tz) \\ \mbox{subject to} & \|z\|_* \leq \gamma \end{array}$$

2013 IPAM Graduate Summer School: Computer Vision

2. First-order methods

- (proximal) gradient method
- splitting and alternating minimization methods

Proximal operator

the proximal operator (prox-operator) of a convex function h is

$$\operatorname{prox}_{h}(x) = \operatorname{argmin}_{u} \left(h(u) + \frac{1}{2} \|u - x\|_{2}^{2} \right)$$

•
$$h(x) = 0$$
: $\operatorname{prox}_h(x) = x$

• $h(x) = I_C(x)$ (indicator function of C): $prox_h$ is projection on C

$$\operatorname{prox}_{h}(x) = \operatorname*{argmin}_{u \in C} ||u - x||_{2}^{2} = P_{C}(x)$$

• $h(x) = ||x||_1$: prox_h is the 'soft-threshold' (shrinkage) operation

$$prox_h(x)_i = \begin{cases} x_i - 1 & x_i \ge 1\\ 0 & |x_i| \le 1\\ x_i + 1 & x_i \le -1 \end{cases}$$

Proximal gradient method

minimize
$$f(x) = g(x) + h(x)$$

- g convex, differentiable, with $\operatorname{dom} g = \mathbf{R}^n$
- *h* convex, possibly nondifferentiable, with inexpensive prox-operator

Algorithm (update from $x = x^{(k-1)}$ to $x^+ = x^{(k)}$)

$$x^{+} = \operatorname{prox}_{th} \left(x - t \nabla g(x) \right)$$

=
$$\operatorname{argmin}_{u} \left(g(x) + \nabla g(x)^{T} (u - x) + \frac{t}{2} \|u - x\|_{2}^{2} + h(x) \right)$$

t > 0 is step size, constant or determined by line search

Examples

Gradient method: h(x) = 0, *i.e.*, minimize g(x)

$$x^+ = x - t\nabla g(x)$$

Gradient projection method: $h(x) = I_C(x)$, *i.e.*, minimize g(x) over C

Iterative soft-thresholding: $h(x) = ||x||_1$

$$x^{+} = \operatorname{prox}_{th} \left(x - t \nabla g(x) \right)$$

Properties of proximal operator

$$\operatorname{prox}_{h}(x) = \operatorname{argmin}_{u} \left(h(u) + \frac{1}{2} \|u - x\|_{2}^{2} \right)$$

assume h is closed and convex (*i.e.*, convex with closed epigraph)

- $\operatorname{prox}_h(x)$ is uniquely defined for all x
- prox_h is nonexpansive

$$\|\operatorname{prox}_{h}(x) - \operatorname{prox}_{h}(y)\|_{2} \le \|x - y\|_{2}$$

• Moreau decomposition

$$x = \operatorname{prox}_h(x) + \operatorname{prox}_{h^*}(x)$$

(surveys in Bauschke & Combettes 2011, Parikh & Boyd 2013)

First-order methods

Examples of inexpensive projections

- hyperplanes and halfspaces
- rectangles

$$\{x \mid l \le x \le u\}$$

• probability simplex

$$\{x \mid \mathbf{1}^T x = 1, x \ge 0\}$$

- norm ball for many norms (Euclidean, 1-norm, . . .)
- nonnegative orthant, second-order cone, positive semidefinite cone

Examples of inexpensive prox-operators

Euclidean norm: $h(x) = ||x||_2$

$$\operatorname{prox}_{th}(x) = \left(1 - \frac{t}{\|x\|_2}\right) x \quad \text{if } \|x\|_2 \ge t, \qquad \operatorname{prox}_{th}(x) = 0 \quad \text{otherwise}$$

Logarithmic barrier

$$h(x) = -\sum_{i=1}^{n} \log x_i, \quad \text{prox}_{th}(x)_i = \frac{x_i + \sqrt{x_i^2 + 4t}}{2}, \quad i = 1, \dots, n$$

Euclidean distance: $d(x) = \inf_{y \in C} ||x - y||_2$ (*C* closed convex)

$$\operatorname{prox}_{td}(x) = \theta P_C(x) + (1 - \theta)x, \qquad \theta = \frac{t}{\max\{d(x), t\}}$$

generalizes soft-thresholding operator

First-order methods

Prox-operator of conjugate

$$\operatorname{prox}_{th}(x) = x - t \operatorname{prox}_{h^*/t}(x/t)$$

- follows from Moreau decomposition
- of interest when prox-operator of h^* is inexpensive

Example: norms

$$h(x) = ||x||, \qquad h^*(y) = I_C(y)$$

where C is unit ball for dual norm $\|\cdot\|_*$

- $\operatorname{prox}_{h*/t}$ is projection on C
- formula useful for prox-operator of $\|\cdot\|$ if projection on C is inexpensive

Support function

many convex functions can be expressed as support functions

$$h(x) = S_C(x) = \sup_{y \in C} x^T y$$

with C closed, convex

- conjugate is indicator function of C: $h^*(y) = I_C(y)$
- hence, can compute $prox_{th}$ via projection on C

Example: h(x) is sum of largest r components of x

$$h(x) = x_{[1]} + \dots + x_{[r]} = S_C(x), \qquad C = \{y \mid 0 \le y \le 1, 1^T y = r\}$$

Convergence of proximal gradient method

minimize
$$f(x) = g(x) + h(x)$$

Assumptions

• ∇g is Lipschitz continuous with constant L > 0

$$\|\nabla g(x) - \nabla g(y)\|_2 \le L \|x - y\|_2 \quad \forall x, y$$

• optimal value f^* is finite and attained at x^* (not necessarily unique)

Result: with fixed step size $t_k = 1/L$

$$f(x^{(k)}) - f^* \le \frac{L}{2k} \|x^{(0)} - x^*\|_2^2$$

- compare with $1/\sqrt{k}$ rate of subgradient method
- can be extended to include line searches

Fast (proximal) gradient methods

- Nesterov (1983, 1988, 2005): three gradient projection methods with $1/k^2$ convergence rate
- Beck & Teboulle (2008): FISTA, a proximal gradient version of Nesterov's 1983 method
- Nesterov (2004 book), Tseng (2008): overview and unified analysis of fast gradient methods
- several recent variations and extensions

This lecture: FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

FISTA

minimize
$$f(x) = g(x) + h(x)$$

- g convex differentiable with $\operatorname{dom} g = \mathbf{R}^n$
- h convex with inexpensive prox-operator

Algorithm: choose any $x^{(0)} = x^{(-1)}$; for $k \ge 1$, repeat the steps

$$y = x^{(k-1)} + \frac{k-2}{k+1} (x^{(k-1)} - x^{(k-2)})$$
$$x^{(k)} = \operatorname{prox}_{t_k h} (y - t_k \nabla g(y))$$

Interpretation

- first two iterations (k = 1, 2) are proximal gradient steps at $x^{(k-1)}$
- next iterations are proximal gradient steps at extrapolated points y

sequence $x^{(k)}$ remains feasible (in **dom** h); y may be outside **dom** h

Convergence of FISTA

minimize
$$f(x) = g(x) + h(x)$$

Assumptions

- $\operatorname{dom} g = \mathbf{R}^n$ and ∇g is Lipschitz continuous with constant L > 0
- h is closed (implies $prox_{th}(u)$ exists and is unique for all u)
- optimal value f^* is finite and attained at x^* (not necessarily unique)

Result: with fixed step size $t_k = 1/L$

$$f(x^{(k)}) - f^* \le \frac{2L}{(k+1)^2} \|x^{(0)} - f^*\|_2^2$$

- compare with 1/k convergence rate for proximal gradient method
- can be extended to include line searches

First-order methods

Example

minimize
$$\log \sum_{i=1}^{m} \exp(a_i^T x + b_i)$$

randomly generated data with m = 2000, n = 1000, same fixed step size

FISTA is not a descent method

First-order methods

Proximal point algorithm

to minimize h(x), apply fixed-point iteration to $prox_{th}$

 $x^+ = \operatorname{prox}_{th}(x)$

- proximal gradient method with zero g
- implementable if inexact prox-evaluations are used

Convergence

- $O(1/\epsilon)$ iterations to reach $h(x) h(x^*) \le \epsilon$ (rate 1/k)
- $O(1/\sqrt{\epsilon})$ iterations with accelerated $(1/k^2)$ algorithm (Güler 1992)

Smoothing interpretation

Moreau-Yosida regularization of h

$$h_{(t)}(x) = \inf_{u} \left(h(u) + \frac{1}{2t} ||u - x||_2^2 \right)$$

- convex, with full domain
- differentiable with 1/t-Lipschitz continuous gradient

$$\nabla h_{(t)}(x) = \frac{1}{t}(x - \operatorname{prox}_{th}(x)) = \operatorname{prox}_{h^*/t}(x/t)$$

Proximal point algorithm (with constant t): gradient method for $h_{(t)}$

$$x^+ = \operatorname{prox}_{th}(x) = x - t\nabla h_{(t)}(x)$$

Examples

Indicator function (of closed convex set C): squared Euclidean distance

$$h(x) = I_C(x), \qquad h_{(t)}(x) = \frac{1}{2t} \operatorname{dist}(x)^2$$

1-Norm: Huber penalty

$$h(x) = ||x||_1, \qquad h_{(t)}(x) = \sum_{k=1}^n \phi_t(x_k)$$

$$\phi_t(z) = \begin{cases} z^2/(2t) & |z| \le t \\ |z| - t/2 & |z| \ge t \end{cases}$$

Monotone operator

Monotone (set-valued) operator. $F : \mathbb{R}^n \to \mathbb{R}^n$ with

 $(y - \hat{y})^T (x - \hat{x}) \ge 0 \qquad \forall x, \ \hat{x}, \ y \in F(x), \ \hat{y} \in F(\hat{x})$

Examples

- subdifferential $F(x) = \partial f(x)$ of closed convex function
- linear function F(x) = Bx with $B + B^T$ positive semidefinite

Proximal point algorithm for monotone inclusion

to solve $0 \in F(x)$, run fixed-point iteration

$$x^{+} = (I + tF)^{-1}(x)$$

the mapping $(I + tF)^{-1}$ is called the **resolvent** of F

- $x = (I + tF)^{-1}(\hat{x})$ is (unique) solution of $\hat{x} \in x + tF(x)$
- resolvent of subdifferential $F(x) = \partial h(x)$ is prox-operator:

$$(I + t\partial h)^{-1}(x) = \operatorname{prox}_{th}(x)$$

• converges if F has a zero and is maximal monotone

Outline

- (proximal) gradient method
- splitting and alternating minimization methods

Convex optimization with composite structure

Primal and dual problems

minimize f(x) + g(Ax) maximize $-g^*(z) - f^*(-A^Tz)$

f and g are 'simple' convex functions, with conjugates $f^{\ast}\text{, }g^{\ast}$

Optimality conditions

- primal: $0 \in \partial f(x) + A^T \partial g(Ax)$
- dual: $0 \in \partial g^*(z) A \partial f^*(-A^T z)$
- primal-dual:

$$0 \in \left[\begin{array}{cc} 0 & A^T \\ -A & 0 \end{array} \right] \left[\begin{array}{c} x \\ z \end{array} \right] + \left[\begin{array}{c} \partial f(x) \\ \partial g^*(z) \end{array} \right]$$

Examples

Equality constraints: $g = I_{\{b\}}$, indicator of $\{b\}$

 $\begin{array}{lll} \mbox{minimize} & f(x) & \mbox{maximize} & -b^Tz - f^*(-A^Tz) \\ \mbox{subject to} & Ax = b & \end{array}$

Set constraint: $g = I_C$, indicator of convex C, with support function S_C

minimize f(x) maximize $-S_C(z) - f^*(-A^T z)$ subject to $Ax \in C$

Regularized norm approximaton: $g(y) = \gamma ||y - b||$

minimize f(x) + ||Ax - b|| maximize $-b^T z - f^*(-A^T z)$ subject to $||z||_* \le 1$

First-order methods

Augmented Lagrangian method

the proximal-point algorithm applied to the dual

maximize
$$-g^*(z) - f^*(-A^T z)$$

1. minimize augmented Lagrangian

$$(x^{+}, y^{+}) = \underset{\tilde{x}, \tilde{y}}{\operatorname{argmin}} \left(f(\tilde{x}) + g(\tilde{y}) + \frac{t}{2} \|A\tilde{x} - \tilde{y} + z/t\|_{2}^{2} \right)$$

- 2. dual update: $z^+ = z + t(Ax^+ y^+)$
- equivalent to gradient method applied to Moreau-Yosida smoothed dual
- also known as Bregman iteration (Yin *et al.* 2008)
- practical if inexact minimization is used in step 1
Proximal method of multipliers

apply proximal point algorithm to primal-dual optimality condition

$$0 \in \left[\begin{array}{cc} 0 & A^T \\ -A & 0 \end{array}\right] \left[\begin{array}{c} x \\ z \end{array}\right] + \left[\begin{array}{c} \partial f(x) \\ \partial g^*(z) \end{array}\right]$$

Algorithm (Rockafellar 1976)

1. minimize generalized augmented Lagrangian

$$(x^+, y^+) = \operatorname*{argmin}_{\tilde{x}, \tilde{y}} \left(f(\tilde{x}) + g(\tilde{y}) + \frac{t}{2} \|A\tilde{x} - \tilde{y} + z/t\|_2^2 + \frac{1}{2t} \|\tilde{x} - x\|_2^2 \right)$$

2. dual update: $z^+ = z + t(Ax^+ - y^+)$

Douglas-Rachford splitting algorithm

 $0 \in F(x) = F_1(x) + F_2(x)$

with F_1 and F_2 maximal monotone operators

Algorithm (Lions and Mercier 1979, Eckstein and Bertsekas 1992)

$$x^{+} = (I + tF_{1})^{-1}(z)$$

$$y^{+} = (I + tF_{2})^{-1}(2x^{+} - z)$$

$$z^{+} = z + y^{+} - x^{+}$$

- useful when resolvents of F_1 and F_2 are inexpensive, but not $(I + tF)^{-1}$
- under weak conditions (existence of solution), x converges to solution

Alternating direction method of multipliers (ADMM)

Douglas-Rachford splitting applied to optimality condition for dual

maximize
$$-g^*(z) - f^*(-A^T z)$$

1. alternating minimization of augmented Lagrangian

$$x^{+} = \operatorname{argmin}_{\tilde{x}} \left(f(\tilde{x}) + \frac{t}{2} ||A\tilde{x} - y + z/t||_{2}^{2} \right)$$
$$y^{+} = \operatorname{argmin}_{\tilde{y}} \left(g(\tilde{y}) + \frac{t}{2} ||Ax^{+} - \tilde{y} + z/t||_{2}^{2} \right)$$
$$= \operatorname{prox}_{g/t} (Ax^{+} + z/t)$$

2. dual update $z^+ = z + t(Ax^+ - y)$

also known as split Bregman method (Goldstein and Osher 2009) (recent survey in Boyd, Parikh, Chu, Peleato, Eckstein 2011)

First-order methods

Primal application of Douglas-Rachford method

D-R splitting algorithm applied to optimality condition for primal problem

$$\begin{array}{lll} \mbox{minimize} & f(x) + g(y) & \rightarrow & \mbox{minimize} & \underline{f(x) + g(y)} + \underbrace{I_{\{0\}}(Ax - y)}_{h_1(x,y)} + \underbrace{I_{\{0\}}(Ax - y)}_{h_2(x,y)} \end{array}$$

Main steps

- prox-operator of h_1 : separate evaluations of prox_f and prox_g
- prox-operator of h_2 : projection on subspace $H = \{(x, y) \mid Ax = y\}$

$$P_H(x,y) = \begin{bmatrix} I \\ A \end{bmatrix} (I + A^T A)^{-1} (x + A^T y)$$

also known as method of partial inverses (Spingarn 1983, 1985)

Primal-dual application

$$0 \in \underbrace{\left[\begin{array}{cc} 0 & A^T \\ -A & 0 \end{array}\right] \left[\begin{array}{c} x \\ z \end{array}\right]}_{F_2(x,z)} + \underbrace{\left[\begin{array}{c} \partial f(x) \\ \partial g^*(z) \end{array}\right]}_{F_1(x,z)}$$

Main steps

- resolvent of F_1 : prox-operator of f, g
- resolvent of F_2 :

$$\begin{bmatrix} I & tA^T \\ -tA & I \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} I \\ tA \end{bmatrix} (I + t^2 A^T A)^{-1} \begin{bmatrix} I \\ -tA \end{bmatrix}^T$$

Summary: Douglas-Rachford splitting methods

minimize f(x) + g(Ax)

Most expensive steps

• **Dual** (ADMM)

minimize (over x)
$$f(x) + \frac{t}{2} ||Ax - y + z/t||_2^2$$

if f is quadratic, a linear equation with coefficient $\nabla^2 f(x) + tA^T A$

- **Primal** (Spingarn): equation with coefficient $I + A^T A$
- **Primal-dual**: equation with coefficient $I + t^2 A^T A$

Forward-backward method

$$0 \in F(x) = F_1(x) + F_2(x)$$

with F_1 and F_2 maximal monotone operators, F_1 single-valued

Forward-backward iteration (for single-valued F_1)

$$x^{+} = (I + tF_2)^{-1}(I - tF_1(x))$$

• converges if F_1 is co-coercive with parameter L and $t \in (0, 1/L]$

$$(F_1(x) - F_1(\hat{x}))^T (x - \hat{x}) \ge \frac{1}{L} \|F_1(x) - F_1(\hat{x})\|_2^2 \quad \forall x, \hat{x}$$

this is Lipschitz continuity if $F_1 = \partial f_1$, a stronger condition otherwise

• Tseng's modified method (1991) only requires Lipschitz continuous F_1

Dual proximal gradient method

$$0 \in \underbrace{\partial g^*(z)}_{F_2(z)} \underbrace{-A\nabla f^*(-A^T z)}_{F_1(z)}$$

Proximal gradient iteration

$$x = \operatorname{argmin}_{\tilde{x}} \left(f(\tilde{x}) + z^T A \tilde{x} \right) = \nabla f^*(-A^T z)$$
$$z^+ = \operatorname{prox}_{tg^*}(z + tAx)$$

- does not involve solution of linear equation
- first step is minimization of (unaugmented) Lagrangian
- requires Lipschitz continuous ∇f^* (strongly convex f)
- accelerated methods: FISTA, Nesterov's methods

Primal-dual (Chambolle-Pock) method

$$0 \in \begin{bmatrix} 0 & A^T \\ -A & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} \partial f(x) \\ \partial g^*(z) \end{bmatrix}$$

Algorithm (with parameter $\theta \in [0, 1]$) (Chambolle & Pock 2011)

$$z^{+} = \operatorname{prox}_{tg^{*}}(z + tA\bar{x})$$
$$x^{+} = \operatorname{prox}_{tf}(x - tA^{T}z^{+})$$
$$\bar{x}^{+} = x^{+} + \theta(x^{+} - x)$$

- widely used in image processing
- step size fixed $(t \le 1/\|A\|_2)$ or adapted by line search
- can be interpreted as pre-conditioned proximal-point algorithm

Summary: Splitting algorithms

minimize f(x) + g(Ax)

Douglas-Rachford splitting

- can be applied to primal (Spingarn's method), dual (ADMM), primal-dual optimality conditions
- subproblems include quadratic term $||Ax||_2^2$ in cost function

Forward-backward splitting

- (accelerated) proximal gradient algorithm applied to dual problem
- Tseng's FB algorithm applied to primal-dual optimality conditions, semi-implicit primal-dual method (Chambolle-Pock), . . .
- \bullet only require application of A and A^T

Extensions: linearized splitting methods, generalized distances, . . .