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Convex optimization problem

minimize  fo(x)
subject to f@( ) <0, i=1,....m
Ax =10

objective and inequality constraint functions f; are convex:

filx + (1 = 0)y) < 0fi(x) + (1 - 0)fi(y) for 0 <6 <1

e can be solved globally, with similar low complexity as linear programs
e surprisingly many problems can be solved via convex optimization

e provides tractable heuristics and relaxations for non-convex problems



History

1940s: linear programming

minimize ¢!z

subject to alx <b;, i=1,...

1950s: quadratic programming

minimize  (1/2)2! Pz + ¢'x

. T .
subjectto a;z <b;, i=1,...

1960s: geometric programming

since 1990: semidefinite programming, second-order cone programming,
quadratically constrained quadratic programming, robust optimization,

sum-of-squares programming, . . .



New applications since 1990

linear matrix inequality techniques in control

semidefinite programming relaxations in combinatorial optimization
support vector machine training via quadratic programming

circuit design via geometric programming

¢1-norm optimization for sparse signal reconstruction

applications in structural optimization, statistics, machine learning,
signal processing, communications, image processing, computer vision,
quantum information theory, finance, power distribution, . . .



Advances in convex optimization algorithms

Interior-point methods

e 1984 (Karmarkar): first practical polynomial-time algorithm for LP
e 1984-1990: efficient implementations for large-scale LPs

e around 1990 (Nesterov & Nemirovski): polynomial-time interior-point
methods for nonlinear convex programming

e 1990s: high-quality software packages for conic optimization

e 2000s: convex modeling software based on interior-point solvers

First-order algorithms

e fast gradient methods, based on Nesterov's methods from 1980s
e extensions to nondifferentiable or constrained problems

e multiplier/splitting methods for large-scale and distributed optimization



Overview

1. Introduction to convex optimization theory

e convex sets and functions
e conic optimization
e duality

2. Introduction to first-order algorithms

e (proximal) gradient algorithm
e splitting and alternating minimization methods
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1. Convex optimization theory

e convex sets and functions
e conic optimization

e duality



Convex set

contains the line segment between any two points in the set

r,10€C;, 0<0<1 = HOx1+(1—-0axeC’

convex not convex not convex

Convex optimization theory



Basic examples

Affine set: solution set of linear equations Ax = b
Halfspace: solution of one linear inequality a’z < b (a # 0)
Polyhedron: solution of finitely many linear inequalities Az < b

Ellipsoid: solution of positive definite quadratic inequality

(x — zo) Al — 20) < 1 (A positive definite)

Norm ball: solution of ||z|| < R (for any norm)
Positive semidefinite cone: S = {X € S" | X = 0}

the intersection of any number of convex sets is convex

Convex optimization theory



Convex function

domain dom f is a convex set and Jensen's inequality holds:

flz+ (1 —0)y) <0f(z)+(1—-0)f(y)

forall z,y edom f, 0 <0 <1

(y, f(y))
(x, f(x))

f is concave if —f is convex

Convex optimization theory



Examples

e linear and affine functions are convex and concave

e expx, —logx, xlogx are convex

e % is convex forx >0 and a > 1 or a < 0; |x|* is convex for a > 1
® norms are convex

e quadratic-over-linear function wa/t Is convex in x, t fort >0

e geometric mean (z122- - ,)"/™ is concave for x > 0

e logdet X is concave on set of positive definite matrices

e log(e™ + ---e"") is convex

Convex optimization theory



Differentiable convex functions
differentiable f is convex if and only if dom f is convex and

f(y) > f(x) + Vf(x)' (y —x) forall z,y € dom f

f(y)
@)+ Vf(z) (y— =)

(z, f(x))

twice differentiable f is convex if and only if dom f is convex and

V2f(z) =0 forall z € dom f

Convex optimization theory 9



Subgradient

g is a subgradient of a convex function f at = if

fly)> fz)+g" (y—=x) Vy€domf
f(x)

f(@1) + g1 (z — @1)
\ /,f(xz) + g, (z — x2)
f(x2) + g3 (x — x2)

mill CU=2
the set of all subgradients of f at x is called the subdifferential 0 f(x)

o Of(x) ={Vf(x)}if fis differentiable at x
e convex f is subdifferentiable (0f(z) # 0) on x € int dom f

Convex optimization theory 10



Absolute value f(z) = |x|

Examples

f(z) = |z Of (x)
1
* 1
Euclidean norm f(x) = ||z||2
1
Of () = TP ifz#0,  0f(x) =g llglla <1}

Convex optimization theory

if x =0

11



Establishing convexity

1. verify definition
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
minimization

composition

perspective

Convex optimization theory
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Positive weighted sum & composition with affine function

Nonnegative multiple: o f is convex if f is convex, a > 0
Sum: f1 + fy convex if fi, fo convex (extends to infinite sums, integrals)
Composition with affine function: f(Axz + b) is convex if f is convex

Examples

e logarithmic barrier for linear inequalities

flz) = - Z log(b; — a z)

e (any) norm of affine function: f(x) = ||Ax + b||

Convex optimization theory 13



Pointwise maximum

f(x) = max{ fi(x)...., ()}

is convex if f1, ..., f,, are convex

Example: sum of r largest components of 2 € R"”
fla) =axpp+ g+ + 2y

is convex (x; is ith largest component of x)

proof:

flx) =max{z; +zi+ - +x;, |1 <i1 <ia < - <ip <n}

Convex optimization theory
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Pointwise supremum

g(z) = sup f(z,y)
yeA

is convex if f(x,y) is convex in x for each y € A

Examples

e maximum eigenvalue of symmetric matrix

)\maX(X): Sup yTXy
lyll2=1

e support function of a set C

Sc(x) = supy’x
yel

Convex optimization theory 15



Partial minimization

h(z) = inf f(z,y)

yel

is convex if f(x,y) is convex in (x,y) and C'is a convex set

Examples

e distance to a convex set C: h(x) = inf,cc |z — v

e optimal value of linear program as function of righthand side

o T
h(x) _y;i@fgxc Y

follows by taking
flz,y)=c'y,  domf={(z,y)| Ay <z}

Convex optimization theory
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Composition

composition of g : R — R and h: R — R:

f is convex if

g convex, h convex and nondecreasing
g concave, h convex and nonincreasing

(if we assign h(x) = oo for x € dom h)

Examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive

Convex optimization theory

17



Vector composition

composition of ¢ : R® = R* and h : R* = R:

f(x) = h(g(x)) = h(g1(x), g2(x), ..., gr(x))

f is convex if

g; convex, h convex and nondecreasing in each argument
g; concave, h convex and nonincreasing in each argument

(if we assign h(x) = oo for x € dom h)

m
Example: log ) exp g;(x) is convex if g; are convex
i=1

Convex optimization theory
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Perspective

the perspective of a function f : R®™ — R is the function ¢ : R” x R — R,

g(z,t) =tf(z/t)
g is convex if f is convex on domg = {(x,t) | x/t € dom f, t > 0}

Examples

T

e perspective of f(x) = x' = is quadratic-over-linear function

ZBTZE

g(xvt) — T

e perspective of negative logarithm f(x) = —logz is relative entropy

g(x,t) =tlogt —tlogx

Convex optimization theory 19



Modeling software

Modeling packages for convex optimization

e CVX, YALMIP (MATLAB)
e CVXPY, CVXMOD (Python)
e MOSEK Fusion (several platforms)

assist the user in formulating convex problems, by automating two tasks:
e verifying convexity from convex calculus rules

e transforming problem in input format required by standard solvers

Related packages

general-purpose optimization modeling: AMPL, GAMS

Convex optimization theory 20



Example

minimize  ||Az — b||3 + ||z1
subjectto 0<zx: <1, k=1,....n
' Pr <1

CVX code (Grant and Boyd 2008)

Cvx_begin
variable x(n);
minimize( square_pos(norm(A*x - b)) + norm(x,1) )

subject to
x >= 0;
x <= 1;

quad_form(x, P) <= 1;
cvx_end

Convex optimization theory

21



Outline

e convex sets and functions
e conic optimization

e duality



Conic linear program

minimize clzx

subjectto b— Axr € K

e K a convex cone (closed, pointed, with nonempty interior)
e if K is the nonnegative orthant, this is a (regular) linear program

e constraint often written as generalized linear inequality Ax <g b

widely used in recent literature on convex optimization

e modeling: 3 cones (nonnegative orthant, second-order cone, positive
semidefinite cone) are sufficient to represent most convex constraints

e algorithms: a convenient problem format when extending interior-point
algorithms for linear programming to convex optimization

Convex optimization theory 22



Norm cone

K = {(z,y) € """ xR |z] <y}

for the Euclidean norm this is the second-order cone (notation: Q™)

Convex optimization theory

23



Second-order cone program

minimize clzx

subject to HBkO«x‘i‘dkOHQ < Bpix+dg1, k=1,...,r

Conic LP formulation: express constraints as Az < b

| By dio
— B4 d11
K=90™M™ x...x Qmr, A= : : b=
—Bg dro
— B dr1

(assuming By, dio have my — 1 rows)

Convex optimization theory 24



Robust linear program

minimize clx

subject to alx <b;foralla; €&, i=1,...,m
e a; uncertain but bounded by ellipsoid & = {a; + Pu | ||u]l2 < 1}

e we require that z satisfies each constraint for all possible a;

SOCP formulation

minimize ¢!z

subject to alx + ||Plx|s <b;, i=1,...,m

follows from

sup (a; + Pq;’U,)TCI? — c_z;;r:v + ||PZ-T.CEH2
|ul|2<1

Convex optimization theory

25



Second-order cone representable constraints

Convex quadratic constraint (A = LL’ positive definite)

2T Ax + 2072+ ¢ <0

)

L% + L71||, < (b7 A7) — ¢) /2
extends to positive semidefinite singular A

Hyperbolic constraint

cle <yz, vy,z>0

2x
H[ ] <y+z yz=20
y—=z
Convex optimization theory 26
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Second-order cone representable constraints

Positive powers

e two hyperbolic constraints can be converted to SOC constraints
e extends to powers zP for rational p > 1

e can be used to represent £,-norm constraints ||z||, < ¢ with rational p

Negative powers

x>0 — Jz: 1<tz, z*<tx, x,2>0

e two hyperbolic constraints on r.h.s. can be converted to SOC constraints

e extends to powers zP for rational p < 0

Convex optimization theory 27



Example

N
minimize |[Az — bH% + Z | Brx||2

k=1
arises in total-variation deblurring
SOCP formulation (auxiliary variables tg, . . ., tn)
N
minimize to+ > t;
i=1
. 2(Ax —
subject to (Az — ) <ty+1
to— 1 )
kaHggtk, kzl,...,N

first constraint is equivalent to ||Axz — b||3 < tg

Convex optimization theory

28



Positive semidefinite cone

SP = {vec(X)|X €St}

= {z¢c Rp(r+1)/2 | mat(z) = 0}

vec(-) converts symmetric matrix to vector; mat(-) is inverse operation

(z,y,2) € §*

Convex optimization theory 29



Semidefinite program

minimize cl'x

subject to 21411 + x2A12+ -+ 241, X By
331147"1 + xQATQ + e T anrn j Br

r linear matrix inequalities of order p1, . .., p,

Cone LP formulation: express constraints as Ax <g B

K:Sp1x8p2><...><5pr

vec(A11) vec(Ais) vec(A1,) vec(B1)
A VeC(EAgl) vec(:Agg) Vec(EAgn) - VecE(Bg)
| vec(A,1) vec(Ar2) vec(A,,) | - vec(B,) |

Convex optimization theory

30




Semidefinite cone representable constraints

Matrix-fractional function

y!' X1y < t, X =0, y € range(X)

Maximum eigenvalue of symmetric matrix

Amax(X) <t — X =<tI

Convex optimization theory
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Semidefinite cone representable constraints

Maximum singular value || X||2 = 01(X)

IX|ly <t <= [” X]>O

Trace norm (nuclear norm) || X |, =) . 0;(X)

| Xl <t
i
U X
aU,V.[XT V]zo, trU +trV < 2t

Convex optimization theory

32



Exponential cone

Definition: K.y is the closure of

K = {(:U,y,Z) € R? | ye®/¥ < 2, y>0}

Convex optimization theory

33



Power cone

Definition: for a = (a1, a9, ...,a,) >0, > a; =1
i=1

Ko ={(z,9) € RY xR ||y < af'- 23}

Examples for m = 2




Functions representable with exponential and power cone

Exponential cone

e exponential and logarithm

e entropy f(x) = xlogx

Power cone

e increasing power of absolute value: f(x) = |z|P with p > 1
e decreasing power: f(x) = x? with ¢ <0 and domain R,

e p-norm: f(z) = ||x||, with p > 1

Convex optimization theory 35



Outline

e convex sets and functions
e conic optimization

e duality



Lagrange dual

Convex problem (with linear constraints for simplicity)

minimize  fy(x)

subject to  fi(x) <0, i=1,...,m

Ax = b
Lagrangian and dual function
L(x,\v) = —|—Z)\ fi(x T(Ax —b)
g\, v) = me(x, )\, V)

(Lagrange) dual problem

maximize g(\,v)
subjectto A >0

a convex optimization problem in A, v

Convex optimization theory

36



Duality theorem

let p* be the primal optimal value, d* the dual optimal value

Weak duality

p* 2 d*
without exception
Strong duality

p* — d*

if a constraint qualification holds (e.g., primal problem is strictly feasible)

Convex optimization theory

37



Conjugate

the conjugate of a function f is

f*y)= sup (y'z— f(z))

xedom f

Properties

e f*is convex (even if f is not)

o if fis (closed) convex, Of* = Of

y € 0f(x)

Convex optimization theory
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Examples

Convex quadratic function (A > 0)

1 1

f(z) = 2" Ax 4+ bTa F) = sy —)TA " (y - b)

2

if A > 0, but not necesssarily positive definite,

F(y) = 5(y—b)TAN(y —b) y —b € range(A)
+00 otherwise

Convex optimization theory

39



Examples

Norm
0 lyll« <1

flz) = [l I (y) = { +00 otherwise

conjugate of norm is indicator function of unit ball for dual norm

Iyl = sup y'a
ol <1

Indicator function (C convex)

0 reC o .
+00 otherwise () —ilellgy X

) = Iole) = {

conjugate of indicator of C' is support function

Convex optimization theory



Duality and conjugate functions

Convex problem with composite structure
minimize f(z) + g(Ax)

f and g convex

Equivalent problem (auxiliary variable y)
minimize  f(x) + g(y)

subject to Az =y

Dual problem
maximize —g*(z2) — f*(—Al2)

Convex optimization theory

41



Example

Regularized norm approximation

minimize f(x) + v||Ax — b||

a special case with g(y) = ||y — b|,

oy b 2l <y
9°(2) _{ +00 otherwise
Dual problem
maximize —blz — f*(—ATz)

subject to  ||z]|« <7

Convex optimization theory

42
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2. First-order methods

e (proximal) gradient method

e splitting and alternating minimization methods

43



Proximal operator

the proximal operator (prox-operator) of a convex function h is

1
prox, (r) = argmin (h(u) + §Hu — :U||§)

e h(x) =0: prox,(z) ==
e h(x) = Ic(z) (indicator function of C'): prox,, is projection on C

prox; (x) = argmin ||u — z||3 = Po(x)
ueC

e h(x) = ||z||1: prox, is the ‘soft-threshold’ (shrinkage) operation
prox,(z); = ¢ 0 ;| <1

First-order methods 44



Proximal gradient method

minimize f(x) = g(x) + h(x)

e ¢ convex, differentiable, with dom g = R"

e h convex, possibly nondifferentiable, with inexpensive prox-operator

Algorithm (update from z = 2(*=1) to z+ = 2(¥)

vt = proxy, (z —tVg(z))

— argmin <g($) +Vg(x)' (u—2a) + %Hu — x5+ h(:r;))

u

t > 0 is step size, constant or determined by line search

First-order methods 45



Examples

Gradient method: h(z) =0, i.e., minimize g(x)

vt =1 —tVg(x)

Gradient projection method: h(z) = Io(x), i.e., minimize g(x) over C

x" = Po (v —tVg(z))

First-order methods 46



Iterative soft-thresholding: h(z) = ||z

" = prox,, (v — tVg(z))

where prox,, (u);

U; — t (7 Z t
prox,,(u); = ¢ 0 —t <w; <t
u; +t u; < —t

First-order methods ol



Properties of proximal operator

1
prox,(r) = argmin (h(u) + §Hu — x||§>

u

assume h is closed and convex (i.e., convex with closed epigraph)

e proxy,(x) is uniquely defined for all x

® Drox; IS nonexpansive

Iprox, () — proxy, (y)ll; < [z =yl

e Moreau decomposition

xr = prox,(x) 4+ prox;,«(x)

(surveys in Bauschke & Combettes 2011, Parikh & Boyd 2013)

First-order methods

48



Examples of inexpensive projections

e hyperplanes and halfspaces

e rectangles
{z |l <z<u}

e probability simplex
{z |17z =1,2>0}

e norm ball for many norms (Euclidean, 1-norm, . . . )

e nonnegative orthant, second-order cone, positive semidefinite cone

First-order methods

49



Examples of inexpensive prox-operators

Euclidean norm: h(x) = ||x||2
t . :
prox,,(r) = | 1 — T2l x if ||z||2 > t, prox,,(z) =0 otherwise

Logarithmic barrier

- T+ o7 +4t
' (LU)z: 9 ) ’L:].,.

)

Euclidean distance: d(z) = inf,cc ||z — y||2 (C closed convex)

t
max{d(x),t}

prox,,(x) = 0Pc(x) + (1 — 0)x, 0 =

generalizes soft-thresholding operator

First-order methods



Prox-operator of conjugate

ProxX, () = « — t proxXy« 4 (z/1)

e follows from Moreau decomposition

e of interest when prox-operator of A* is inexpensive

Example: norms

hz) = [lzfl,  h*(y) = Lc(y)

where C' is unit ball for dual norm || - ||«

® DProxy, , is projection on C

e formula useful for prox-operator of || - || if projection on C' is inexpensive

First-order methods
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Support function

many convex functions can be expressed as support functions

h(z) = Sc(z) = supz’y
yel

with C closed, convex

e conjugate is indicator function of C: h*(y) = Ico(y)

e hence, can compute prox,, via projection on C

Example: h(x) is sum of largest r components of x

h(a:)::c[l]+---+x[r]:Sc(a:), C:{y\Ogygl,lTy:r}

First-order methods

52



Convergence of proximal gradient method

minimize f(x) = g(x) + h(x)
Assumptions

e Vg is Lipschitz continuous with constant L > 0

IVg(z) = Vg2 < L||lz—yl|l2 Vz,y

e optimal value f* is finite and attained at x* (not necessarily unique)

Result: with fixed step size t, = 1/L

* L *
Fa®) = £ < e® — 2t

e compare with 1/vk rate of subgradient method

e can be extended to include line searches

First-order methods



Fast (proximal) gradient methods

e Nesterov (1983, 1988, 2005): three gradient projection methods with
1/k? convergence rate

e Beck & Teboulle (2008): FISTA, a proximal gradient version of
Nesterov's 1983 method

e Nesterov (2004 book), Tseng (2008): overview and unified analysis of
fast gradient methods

e several recent variations and extensions

This lecture: FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

First-order methods 54



FISTA

minimize f(x) = g(x) + h(x)

e ¢ convex differentiable with dom g = R"

e h convex with inexpensive prox-operator

Algorithm: choose any z(9) = z(=1: for k > 1, repeat the steps

k—2
y = o4 @D - )

2™ = prox, , (y — teVy(y))

First-order methods
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Interpretation

e first two iterations (k = 1,2) are proximal gradient steps at (*~1)

e next iterations are proximal gradient steps at extrapolated points y

x*®) = prox, ;, (y — t:Vg(y))

x(k_Q) :B(k_l) y

sequence x*) remains feasible (in dom h); y may be outside dom h

First-order methods

56



Convergence of FISTA

minimize f(x) = g(z) + h(x)
Assumptions

e dom g = R" and Vg is Lipschitz continuous with constant L > 0
e h is closed (implies prox,, (u) exists and is unique for all u)

e optimal value f* is finite and attained at x* (not necessarily unique)

Result: with fixed step size t, = 1/L

2L

f(x(k)> o f* < (k n 1)2HZC(O> o f*Hg

e compare with 1/k convergence rate for proximal gradient method

e can be extended to include line searches

First-order methods



minimize log
1=

Example

>

exp
1

randomly generated data with m = 2000, n = 1000, same fixed step size

fla®™) — f*

— gradient
- - FISTA

107, 50 100

k

150 200

FISTA is not a descent method

First-order methods

— gradient
- - FISTA
0 50 100 150 200
k

58



Proximal point algorithm

to minimize h(x), apply fixed-point iteration to prox,,

x" = proxy,(z)

e proximal gradient method with zero g

e implementable if inexact prox-evaluations are used

Convergence

e O(1/e) iterations to reach h(x) — h(x*) < € (rate 1/k)

e O(1/\/€) iterations with accelerated (1/k?) algorithm (Giiler 1992)

First-order methods
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Smoothing interpretation

Moreau-Yosida regularization of A

, 1
ho(@) = nf () + o u = ol

e convex, with full domain

e differentiable with 1/¢-Lipschitz continuous gradient
1
Vhy(x) = ;(5’7 — prox,,(z)) = proxh*/t(a:/t)

Proximal point algorithm (with constant ¢): gradient method for /)

x" = prox,, () = — tVh ()

First-order methods 60



Examples

Indicator function (of closed convex set C'): squared Euclidean distance

Wz) = Io(x), () = Qitdist@c)2

1-Norm: Huber penalty

h(x) =z, (@) =D i)

¢¢(2)

2% /(2t) 2] <t
Pu(2) :{ /2 |2 >t

/2 2 t)2

First-order methods 61



Monotone operator

Monotone (set-valued) operator. F': R" — R" with

(y—9) " (x—2)>0  Va, &, yc F(zx), § € F()

Examples

e subdifferential F'(x) = 0f(x) of closed convex function

e linear function F'(x) = Bz with B + B! positive semidefinite

First-order methods
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Proximal point algorithm for monotone inclusion

to solve 0 € F'(x), run fixed-point iteration
vt = (I +tF) ()

the mapping (I +tF)~ ! is called the resolvent of I

o v = (I+tF) (&) is (unique) solution of & € x + tF(x)
e resolvent of subdifferential F'(x) = Oh(x) is prox-operator:

(I +tOh)~Y(zx) = prox,, (x)

e converges if F' has a zero and is maximal monotone

First-order methods
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Outline

e (proximal) gradient method

e splitting and alternating minimization methods



Convex optimization with composite structure
Primal and dual problems
minimize f(z) + g(Ax) maximize —g*(z) — f*(—Alz2)
f and g are ‘simple’ convex functions, with conjugates f*, g*

Optimality conditions

e primal: 0 € Of(x) + AT9g(Ax)
e dual: 0 € dg*(z) — ADf*(—AT2)

e primal-dual:

First-order methods 64



Examples

Equality constraints: g = I, indicator of {b}

minimize  f(x) maximize —blz — f*(—Al%)
subject to Ax =1b

Set constraint: ¢ = I, indicator of convex C', with support function S¢

minimize  f(x) maximize —Sc(z) — f*(—Al%)
subject to Az € C

Regularized norm approximaton: g(y) = ~||y — b||

minimize f(x) + |[Ax — b maximize —blz — f*(—ATz)
subject to  ||z||« <1

First-order methods 65



Augmented Lagrangian method

the proximal-point algorithm applied to the dual
maximize —g*(z) — f*(—A'2)

1. minimize augmented Lagrangian

: - N A
() = agmin (1) +9(9) + 5145 - 5+ =/113
L,y

2. dual update: 2T =2z +t(Ax™ — y™)
e equivalent to gradient method applied to Moreau-Yosida smoothed dual

e also known as Bregman iteration (Yin et al. 2008)

e practical if inexact minimization is used in step 1

First-order methods 66



Proximal method of multipliers

apply proximal point algorithm to primal-dual optimality condition
0 Al T If ()
Oe[—A O][z]—l_[@g*(z)

Algorithm (Rockafellar 1976)

1. minimize generalized augmented Lagrangian

: - - A 1, .
() = avgmin ( £(2) + () + 3l1AT ~ 7+ 2/118 + 5] )
L,y

2. dual update: 2" = 2z + t(Azt —y™)
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Douglas-Rachford splitting algorithm

0€ F(x) = Fi(x) + Fs(x)

with F} and F5 maximal monotone operators

Algorithm (Lions and Mercier 1979, Eckstein and Bertsekas 1992)

zt o= (I+tF) (2)
yt = (I +tF) H(2zT —2)
T o= a4yt —at

e useful when resolvents of F; and F} are inexpensive, but not (I +tF)~1

e under weak conditions (existence of solution), & converges to solution
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Alternating direction method of multipliers (ADMM)
Douglas-Rachford splitting applied to optimality condition for dual
maximize — g*(z) — f*(—A'2)

1. alternating minimization of augmented Lagrangian

ot
rt = argmin (f(x)+§\|z4£€—y+2/t”§>
AP i
v = arguin (g5) + gllAst 5+ 2/1]3)
Yy

= prox,,(Az" + z/t)
2. dual update 2+ = 2z + t(Azx™ — y)

also known as split Bregman method (Goldstein and Osher 2009)

(recent survey in Boyd, Parikh, Chu, Peleato, Eckstein 2011)
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Primal application of Douglas-Rachford method

D-R splitting algorithm applied to optimality condition for primal problem

minimize  f(x) 4+ g(y) —  minimize f(x)+ 9(924'{{0}(14‘77 - yz
subject to Ax =y hy(2,y) ha(z,y)

Main steps

e prox-operator of h;: separate evaluations of prox; and prox,

e prox-operator of hy: projection on subspace H = {(x,y) | Az =y}

Py (z,7y) = [ i ] (I+ ATA) Y x+ ATy)

also known as method of partial inverses (Spingarn 1983, 1985)
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Primal-dual application

<[ 2o 2ot )

FQZ;,Z) Fl(‘mraz)

Main steps

e resolvent of F': prox-operator of f, g

e resolvent of F5:

B S I R P

First-order methods
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Summary: Douglas-Rachford splitting methods

minimize f(z) + g(Ax)

Most expensive steps

e Dual (ADMM)
L t 2
minimize (over z) f(x) _|_§]|Ax—y+z/t|\2

if f is quadratic, a linear equation with coefficient V2 f(z) +tAT A

e Primal (Spingarn): equation with coefficient I + AT A

e Primal-dual: equation with coefficient I + A" A

First-order methods
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Forward-backward method

0€ F(z) = Fi(x) + Fy(x)
with F; and F5 maximal monotone operators, F; single-valued

Forward-backward iteration (for single-valued F})
vt = (I +tF) (I —tF(z))
e converges if F} is co-coercive with parameter L and ¢t € (0,1/L]
(Fi(z) — Fi(2))" (z — &) > %I\Fl(l’) - Fi(@)|z V.2

this is Lipschitz continuity if F} = 0f;, a stronger condition otherwise

e Tseng's modified method (1991) only requires Lipschitz continuous F3
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Dual proximal gradient method

0€ dg*(z) — AV (—ATz)
Fy(2) Fi(z)

Proximal gradient iteration

Tz = argmin (f(Z)+2"Az) = Vf*(—A"2)

X

27 = proxy.(z +tAx)

e does not involve solution of linear equation
e first step is minimization of (unaugmented) Lagrangian
e requires Lipschitz continuous V f* (strongly convex f)

e accelerated methods: FISTA, Nesterov's methods

First-order methods
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Primal-dual (Chambolle-Pock) method

ol S [Tl

Algorithm (with parameter 6 € [0, 1]) (Chambolle & Pock 2011)

27 = prox,.(z +tAT)
xt = prox,(z — tAT2T)
Tt = 2"+ 0" —2)

e widely used in image processing
e step size fixed (¢t < 1/||A||2) or adapted by line search

e can be interpreted as pre-conditioned proximal-point algorithm
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Summary: Splitting algorithms

minimize f(x) + g(Ax)

Douglas-Rachford splitting

e can be applied to primal (Spingarn's method), dual (ADMM),
primal-dual optimality conditions

e subproblems include quadratic term ||Ax||3 in cost function

Forward-backward splitting
e (accelerated) proximal gradient algorithm applied to dual problem

e T[seng's FB algorithm applied to primal-dual optimality conditions,
semi-implicit primal-dual method (Chambolle-Pock), . . .

e only require application of A and A”

Extensions: linearized splitting methods, generalized distances, . . .
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