Introduction to Convex Optimization

Lieven Vandenberghe

Electrical Engineering Department, UCLA

IPAM Graduate Summer School: Computer Vision
August 5, 2013

Convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

objective and inequality constraint functions f_{i} are convex:

$$
f_{i}(\theta x+(1-\theta) y) \leq \theta f_{i}(x)+(1-\theta) f_{i}(y) \quad \text { for } 0 \leq \theta \leq 1
$$

- can be solved globally, with similar low complexity as linear programs
- surprisingly many problems can be solved via convex optimization
- provides tractable heuristics and relaxations for non-convex problems

History

- 1940s: linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- 1950s: quadratic programming

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- 1960s: geometric programming
- since 1990: semidefinite programming, second-order cone programming, quadratically constrained quadratic programming, robust optimization, sum-of-squares programming, . . .

New applications since 1990

- linear matrix inequality techniques in control
- semidefinite programming relaxations in combinatorial optimization
- support vector machine training via quadratic programming
- circuit design via geometric programming
- ℓ_{1}-norm optimization for sparse signal reconstruction
- applications in structural optimization, statistics, machine learning, signal processing, communications, image processing, computer vision, quantum information theory, finance, power distribution, . . .

Advances in convex optimization algorithms

Interior-point methods

- 1984 (Karmarkar): first practical polynomial-time algorithm for LP
- 1984-1990: efficient implementations for large-scale LPs
- around 1990 (Nesterov \& Nemirovski): polynomial-time interior-point methods for nonlinear convex programming
- 1990s: high-quality software packages for conic optimization
- 2000s: convex modeling software based on interior-point solvers

First-order algorithms

- fast gradient methods, based on Nesterov's methods from 1980s
- extensions to nondifferentiable or constrained problems
- multiplier/splitting methods for large-scale and distributed optimization

Overview

1. Introduction to convex optimization theory

- convex sets and functions
- conic optimization
- duality

2. Introduction to first-order algorithms

- (proximal) gradient algorithm
- splitting and alternating minimization methods

1. Convex optimization theory

- convex sets and functions
- conic optimization
- duality

Convex set

contains the line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

convex

not convex

not convex

Basic examples

Affine set: solution set of linear equations $A x=b$
Halfspace: solution of one linear inequality $a^{T} x \leq b(a \neq 0)$
Polyhedron: solution of finitely many linear inequalities $A x \leq b$
Ellipsoid: solution of positive definite quadratic inequality

$$
\left(x-x_{\mathrm{c}}\right)^{T} A\left(x-x_{\mathrm{c}}\right) \leq 1 \quad(A \text { positive definite })
$$

Norm ball: solution of $\|x\| \leq R$ (for any norm)
Positive semidefinite cone: $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$
the intersection of any number of convex sets is convex

Convex function

domain $\operatorname{dom} f$ is a convex set and Jensen's inequality holds:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

f is concave if $-f$ is convex

Examples

- linear and affine functions are convex and concave
- $\exp x,-\log x, x \log x$ are convex
- x^{α} is convex for $x>0$ and $\alpha \geq 1$ or $\alpha \leq 0 ;|x|^{\alpha}$ is convex for $\alpha \geq 1$
- norms are convex
- quadratic-over-linear function $x^{T} x / t$ is convex in x, t for $t>0$
- geometric mean $\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n}$ is concave for $x \geq 0$
- $\log \operatorname{det} X$ is concave on set of positive definite matrices
- $\log \left(e^{x_{1}}+\cdots e^{x_{n}}\right)$ is convex

Differentiable convex functions

differentiable f is convex if and only if $\operatorname{dom} f$ is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

twice differentiable f is convex if and only if $\operatorname{dom} f$ is convex and

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

Subgradient

g is a subgradient of a convex function f at x if

$$
f\left(x_{1}\right)+g_{1}^{T}\left(x-x_{1}\right) \quad f(y) \geq f(x)+g^{T}(y-x) \quad \forall y \in \operatorname{dom} f
$$

the set of all subgradients of f at x is called the subdifferential $\partial f(x)$

- $\partial f(x)=\{\nabla f(x)\}$ if f is differentiable at x
- convex f is subdifferentiable $(\partial f(x) \neq \emptyset)$ on $x \in \operatorname{int} \operatorname{dom} f$

Examples

Absolute value $f(x)=|x|$

Euclidean norm $f(x)=\|x\|_{2}$

$$
\partial f(x)=\frac{1}{\|x\|_{2}} x \quad \text { if } x \neq 0, \quad \partial f(x)=\left\{g \mid\|g\|_{2} \leq 1\right\} \quad \text { if } x=0
$$

Establishing convexity

1. verify definition
2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- minimization
- composition
- perspective

Positive weighted sum \& composition with affine function

Nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

Sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals)

Composition with affine function: $f(A x+b)$ is convex if f is convex

Examples

- logarithmic barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum

$$
f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}
$$

is convex if f_{1}, \ldots, f_{m} are convex

Example: sum of r largest components of $x \in \mathbf{R}^{n}$

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex $\left(x_{[i]}\right.$ is i th largest component of $\left.x\right)$
proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

Pointwise supremum

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$

Examples

- maximum eigenvalue of symmetric matrix

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

- support function of a set C

$$
S_{C}(x)=\sup _{y \in C} y^{T} x
$$

Partial minimization

$$
h(x)=\inf _{y \in C} f(x, y)
$$

is convex if $f(x, y)$ is convex in (x, y) and C is a convex set

Examples

- distance to a convex set $C: h(x)=\inf _{y \in C}\|x-y\|$
- optimal value of linear program as function of righthand side

$$
h(x)=\inf _{y: A y \leq x} c^{T} y
$$

follows by taking

$$
f(x, y)=c^{T} y, \quad \operatorname{dom} f=\{(x, y) \mid A y \leq x\}
$$

Composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if
g convex, h convex and nondecreasing
g concave, h convex and nonincreasing
(if we assign $h(x)=\infty$ for $x \in \operatorname{dom} h$)

Examples

- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}:$

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if
g_{i} convex, h convex and nondecreasing in each argument
g_{i} concave, h convex and nonincreasing in each argument
(if we assign $h(x)=\infty$ for $x \in \operatorname{dom} h$)

Example: $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t)
$$

g is convex if f is convex on $\operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}$

Examples

- perspective of $f(x)=x^{T} x$ is quadratic-over-linear function

$$
g(x, t)=\frac{x^{T} x}{t}
$$

- perspective of negative logarithm $f(x)=-\log x$ is relative entropy

$$
g(x, t)=t \log t-t \log x
$$

Modeling software

Modeling packages for convex optimization

- CVX, YALMIP (MATLAB)
- CVXPY, CVXMOD (Python)
- MOSEK Fusion (several platforms)
assist the user in formulating convex problems, by automating two tasks:
- verifying convexity from convex calculus rules
- transforming problem in input format required by standard solvers

Related packages

general-purpose optimization modeling: AMPL, GAMS

Example

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2}+\|x\|_{1} \\
\text { subject to } & 0 \leq x_{k} \leq 1, \quad k=1, \ldots, n \\
& x^{T} P x \leq 1
\end{array}
$$

CVX code (Grant and Boyd 2008)

```
cvx_begin
    variable x(n);
    minimize( square_pos(norm(A*x - b)) + norm(x,1) )
    subject to
        x >= 0;
        x <= 1;
        quad_form(x, P) <= 1;
cvx_end
```


Outline

- convex sets and functions
- conic optimization
- duality

Conic linear program

```
minimize }\quad\mp@subsup{c}{}{T}
subject to }b-Ax\in
```

- K a convex cone (closed, pointed, with nonempty interior)
- if K is the nonnegative orthant, this is a (regular) linear program
- constraint often written as generalized linear inequality $A x \preceq_{K} b$
widely used in recent literature on convex optimization
- modeling: 3 cones (nonnegative orthant, second-order cone, positive semidefinite cone) are sufficient to represent most convex constraints
- algorithms: a convenient problem format when extending interior-point algorithms for linear programming to convex optimization

Norm cone

$$
K=\left\{(x, y) \in \mathbf{R}^{m-1} \times \mathbf{R} \mid\|x\| \leq y\right\}
$$

for the Euclidean norm this is the second-order cone (notation: \mathcal{Q}^{m})

Second-order cone program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \left\|B_{k 0} x+d_{k 0}\right\|_{2} \leq B_{k 1} x+d_{k 1}, \quad k=1, \ldots, r
\end{array}
$$

Conic LP formulation: express constraints as $A x \preceq_{K} b$

$$
K=\mathcal{Q}^{m_{1}} \times \cdots \times \mathcal{Q}^{m_{r}}, \quad A=\left[\begin{array}{c}
-B_{10} \\
-B_{11} \\
\vdots \\
-B_{r 0} \\
-B_{r 1}
\end{array}\right], \quad b=\left[\begin{array}{c}
d_{10} \\
d_{11} \\
\vdots \\
d_{r 0} \\
d_{r 1}
\end{array}\right]
$$

(assuming $B_{k 0}, d_{k 0}$ have $m_{k}-1$ rows)

Robust linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \text { for all } a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

- a_{i} uncertain but bounded by ellipsoid $\mathcal{E}_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}$
- we require that x satisfies each constraint for all possible a_{i}

SOCP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

follows from

$$
\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2}
$$

Second-order cone representable constraints

Convex quadratic constraint ($A=L L^{T}$ positive definite)

$$
\begin{gathered}
x^{T} A x+2 b^{T} x+c \leq 0 \\
\left\|L^{T} x+L^{-1} b\right\|_{2} \leq\left(b^{T} A^{-1} b-c\right)^{1 / 2}
\end{gathered}
$$

extends to positive semidefinite singular A
Hyperbolic constraint

$$
\begin{gathered}
x^{T} x \leq y z, \quad y, z \geq 0 \\
\Uparrow \mathbb{y} \\
\left\|\left[\begin{array}{c}
2 x \\
y-z
\end{array}\right]\right\|_{2} \leq y+z, \quad y, z \geq 0
\end{gathered}
$$

Second-order cone representable constraints

Positive powers

$$
x^{1.5} \leq t, \quad x \geq 0 \quad \Longleftrightarrow \quad \exists z: \quad x^{2} \leq t z, \quad z^{2} \leq x, \quad x, z \geq 0
$$

- two hyperbolic constraints can be converted to SOC constraints
- extends to powers x^{p} for rational $p \geq 1$
- can be used to represent ℓ_{p}-norm constraints $\|x\|_{p} \leq t$ with rational p

Negative powers

$$
x^{-3} \leq t, \quad x>0 \quad \Longleftrightarrow \quad \exists z: \quad 1 \leq t z, \quad z^{2} \leq t x, \quad x, z \geq 0
$$

- two hyperbolic constraints on r.h.s. can be converted to SOC constraints
- extends to powers x^{p} for rational $p<0$

Example

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}+\sum_{k=1}^{N}\left\|B_{k} x\right\|_{2}
$$

arises in total-variation deblurring

SOCP formulation (auxiliary variables t_{0}, \ldots, t_{N})

$$
\begin{array}{cl}
\operatorname{minimize} & t_{0}+\sum_{i=1}^{N} t_{i} \\
\text { subject to } & \left\|\left[\begin{array}{c}
2(A x-b) \\
t_{0}-1
\end{array}\right]\right\|_{2} \leq t_{0}+1 \\
& \left\|B_{k} x\right\|_{2} \leq t_{k}, \quad k=1, \ldots, N
\end{array}
$$

first constraint is equivalent to $\|A x-b\|_{2}^{2} \leq t_{0}$

Positive semidefinite cone

$$
\begin{aligned}
\mathcal{S}^{p} & =\left\{\operatorname{vec}(X) \mid X \in \mathbf{S}_{+}^{p}\right\} \\
& =\left\{x \in \mathbf{R}^{p(p+1) / 2} \mid \boldsymbol{\operatorname { m a t }}(x) \succeq 0\right\}
\end{aligned}
$$

$\operatorname{vec}(\cdot)$ converts symmetric matrix to vector; $\boldsymbol{\operatorname { m a t }}(\cdot)$ is inverse operation

$$
\begin{gathered}
(x, y, z) \in \mathcal{S}^{2} \\
\Uparrow \\
{\left[\begin{array}{cc}
x & y / \sqrt{2} \\
y / \sqrt{2} & z
\end{array}\right] \succeq 0}
\end{gathered}
$$

Semidefinite program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} A_{11}+x_{2} A_{12}+\cdots+x_{n} A_{1 n} \preceq B_{1} \\
& \cdots \\
& x_{1} A_{r 1}+x_{2} A_{r 2}+\cdots+x_{n} A_{r n} \preceq B_{r}
\end{array}
$$

r linear matrix inequalities of order p_{1}, \ldots, p_{r}

Cone LP formulation: express constraints as $A x \preceq_{K} B$

$$
\begin{gathered}
K=\mathcal{S}^{p_{1}} \times \mathcal{S}^{p_{2}} \times \cdots \times \mathcal{S}^{p_{r}} \\
A=\left[\begin{array}{cccc}
\operatorname{vec}\left(A_{11}\right) & \operatorname{vec}\left(A_{12}\right) & \cdots & \operatorname{vec}\left(A_{1 n}\right) \\
\operatorname{vec}\left(A_{21}\right) & \operatorname{vec}\left(A_{22}\right) & \cdots & \operatorname{vec}\left(A_{2 n}\right) \\
\vdots & \vdots & & \vdots \\
\operatorname{vec}\left(A_{r 1}\right) & \operatorname{vec}\left(A_{r 2}\right) & \cdots & \operatorname{vec}\left(A_{r n}\right)
\end{array}\right], \quad b=\left[\begin{array}{c}
\operatorname{vec}\left(B_{1}\right) \\
\operatorname{vec}\left(B_{2}\right) \\
\vdots \\
\operatorname{vec}\left(B_{r}\right)
\end{array}\right]
\end{gathered}
$$

Semidefinite cone representable constraints

Matrix-fractional function

$$
\begin{gathered}
y^{T} X^{-1} y \leq t, \quad X \succ 0, \quad y \in \operatorname{range}(X) \\
\mathfrak{\Downarrow} \\
{\left[\begin{array}{cc}
X & y \\
y^{T} & t
\end{array}\right] \succeq 0}
\end{gathered}
$$

Maximum eigenvalue of symmetric matrix

$$
\lambda_{\max }(X) \leq t \quad \Longleftrightarrow \quad X \preceq t I
$$

Semidefinite cone representable constraints

Maximum singular value $\|X\|_{2}=\sigma_{1}(X)$

$$
\|X\|_{2} \leq t \quad \Longleftrightarrow \quad\left[\begin{array}{cc}
t I & X \\
X^{T} & t I
\end{array}\right] \succeq 0
$$

Trace norm (nuclear norm) $\|X\|_{*}=\sum_{i} \sigma_{i}(X)$

$$
\begin{gathered}
\|X\|_{*} \leq t \\
\Uparrow
\end{gathered}
$$

Exponential cone

Definition: $K_{\exp }$ is the closure of

$$
K=\left\{(x, y, z) \in \mathbf{R}^{3} \mid y e^{x / y} \leq z, y>0\right\}
$$

Power cone

Definition: for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)>0, \sum_{i=1}^{m} \alpha_{i}=1$

$$
K_{\alpha}=\left\{(x, y) \in \mathbf{R}_{+}^{m} \times \mathbf{R}| | y \mid \leq x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}\right\}
$$

Examples for $m=2$

$$
\alpha=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

$$
\alpha=\left(\frac{2}{3}, \frac{1}{3}\right)
$$

$$
\alpha=\left(\frac{3}{4}, \frac{1}{4}\right)
$$

Functions representable with exponential and power cone

Exponential cone

- exponential and logarithm
- entropy $f(x)=x \log x$

Power cone

- increasing power of absolute value: $f(x)=|x|^{p}$ with $p \geq 1$
- decreasing power: $f(x)=x^{q}$ with $q \leq 0$ and domain \mathbf{R}_{++}
- p-norm: $f(x)=\|x\|_{p}$ with $p \geq 1$

Outline

- convex sets and functions
- conic optimization
- duality

Lagrange dual

Convex problem (with linear constraints for simplicity)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

Lagrangian and dual function

$$
\begin{aligned}
L(x, \lambda, \nu) & =f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} L(x, \lambda, \nu)
\end{aligned}
$$

(Lagrange) dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

a convex optimization problem in λ, ν

Duality theorem

let p^{\star} be the primal optimal value, d^{\star} the dual optimal value

Weak duality

$$
p^{\star} \geq d^{\star}
$$

without exception

Strong duality

$$
p^{\star}=d^{\star}
$$

if a constraint qualification holds (e.g., primal problem is strictly feasible)

Conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

Properties

- f^{*} is convex (even if f is not)
- if f is (closed) convex, $\partial f^{*}=\partial f^{-1}$:

$$
y \in \partial f(x) \quad \Longleftrightarrow \quad x \in \partial f^{*}(y)
$$

Examples

Convex quadratic function $(A \succ 0)$

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x \quad f^{*}(y)=\frac{1}{2}(y-b)^{T} A^{-1}(y-b)
$$

if $A \succeq 0$, but not necesssarily positive definite,

$$
f^{*}(y)= \begin{cases}\frac{1}{2}(y-b)^{T} A^{\dagger}(y-b) & y-b \in \operatorname{range}(A) \\ +\infty & \text { otherwise }\end{cases}
$$

Negative entropy

$$
f(x)=\sum_{i=1}^{n} x_{i} \log x_{i} \quad f^{*}(y)=\sum_{i=1}^{n} e^{y_{i}}-1
$$

Examples

Norm

$$
f(x)=\|x\| \quad f^{*}(y)= \begin{cases}0 & \|y\|_{*} \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

conjugate of norm is indicator function of unit ball for dual norm

$$
\|y\|_{*}=\sup _{\|x\| \leq 1} y^{T} x
$$

Indicator function (C convex)

$$
f(x)=I_{C}(x)=\left\{\begin{array}{ll}
0 & x \in C \\
+\infty & \text { otherwise }
\end{array} \quad f^{*}(y)=\sup _{x \in C} y^{T} x\right.
$$

conjugate of indicator of C is support function

Duality and conjugate functions

Convex problem with composite structure

$$
\operatorname{minimize} \quad f(x)+g(A x)
$$

f and g convex

Equivalent problem (auxiliary variable y)

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+g(y) \\
\text { subject to } & A x=y
\end{array}
$$

Dual problem

$$
\text { maximize }-g^{*}(z)-f^{*}\left(-A^{T} z\right)
$$

Example

Regularized norm approximation

$$
\operatorname{minimize} \quad f(x)+\gamma\|A x-b\|
$$

a special case with $g(y)=\gamma\|y-b\|$,

$$
g^{*}(z)= \begin{cases}b^{T} z & \|z\|_{*} \leq \gamma \\ +\infty & \text { otherwise }\end{cases}
$$

Dual problem

$$
\begin{array}{ll}
\text { maximize } & -b^{T} z-f^{*}\left(-A^{T} z\right) \\
\text { subject to } & \|z\|_{*} \leq \gamma
\end{array}
$$

2. First-order methods

- (proximal) gradient method
- splitting and alternating minimization methods

Proximal operator

the proximal operator (prox-operator) of a convex function h is

$$
\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)
$$

- $h(x)=0: \operatorname{prox}_{h}(x)=x$
- $h(x)=I_{C}(x)$ (indicator function of C): prox $_{h}$ is projection on C

$$
\operatorname{prox}_{h}(x)=\underset{u \in C}{\operatorname{argmin}}\|u-x\|_{2}^{2}=P_{C}(x)
$$

- $h(x)=\|x\|_{1}: \operatorname{prox}_{h}$ is the 'soft-threshold' (shrinkage) operation

$$
\operatorname{prox}_{h}(x)_{i}= \begin{cases}x_{i}-1 & x_{i} \geq 1 \\ 0 & \left|x_{i}\right| \leq 1 \\ x_{i}+1 & x_{i} \leq-1\end{cases}
$$

Proximal gradient method

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

- g convex, differentiable, with $\operatorname{dom} g=\mathbf{R}^{n}$
- h convex, possibly nondifferentiable, with inexpensive prox-operator

Algorithm (update from $x=x^{(k-1)}$ to $x^{+}=x^{(k)}$)

$$
\begin{aligned}
x^{+} & =\operatorname{prox}_{t h}(x-t \nabla g(x)) \\
& =\underset{u}{\operatorname{argmin}}\left(g(x)+\nabla g(x)^{T}(u-x)+\frac{t}{2}\|u-x\|_{2}^{2}+h(x)\right)
\end{aligned}
$$

$t>0$ is step size, constant or determined by line search

Examples

Gradient method: $h(x)=0$, i.e., minimize $g(x)$

$$
x^{+}=x-t \nabla g(x)
$$

Gradient projection method: $h(x)=I_{C}(x)$, i.e., minimize $g(x)$ over C

$$
x^{+}=P_{C}(x-t \nabla g(x))
$$

Iterative soft-thresholding: $h(x)=\|x\|_{1}$

$$
x^{+}=\operatorname{prox}_{t h}(x-t \nabla g(x))
$$

where
$\operatorname{prox}_{t h}(u)_{i}= \begin{cases}u_{i}-t & u_{i} \geq t \\ 0 & -t \leq u_{i} \leq t \\ u_{i}+t & u_{i} \leq-t\end{cases}$

Properties of proximal operator

$$
\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)
$$

assume h is closed and convex (i.e., convex with closed epigraph)

- $\operatorname{prox}_{h}(x)$ is uniquely defined for all x
- prox_{h} is nonexpansive

$$
\left\|\operatorname{prox}_{h}(x)-\operatorname{prox}_{h}(y)\right\|_{2} \leq\|x-y\|_{2}
$$

- Moreau decomposition

$$
x=\operatorname{prox}_{h}(x)+\operatorname{prox}_{h^{*}}(x)
$$

(surveys in Bauschke \& Combettes 2011, Parikh \& Boyd 2013)

Examples of inexpensive projections

- hyperplanes and halfspaces
- rectangles

$$
\{x \mid l \leq x \leq u\}
$$

- probability simplex

$$
\left\{x \mid \mathbf{1}^{T} x=1, x \geq 0\right\}
$$

- norm ball for many norms (Euclidean, 1-norm, .. .)
- nonnegative orthant, second-order cone, positive semidefinite cone

Examples of inexpensive prox-operators

Euclidean norm: $h(x)=\|x\|_{2}$

$$
\operatorname{prox}_{t h}(x)=\left(1-\frac{t}{\|x\|_{2}}\right) x \quad \text { if }\|x\|_{2} \geq t, \quad \operatorname{prox}_{t h}(x)=0 \quad \text { otherwise }
$$

Logarithmic barrier

$$
h(x)=-\sum_{i=1}^{n} \log x_{i}, \quad \operatorname{prox}_{t h}(x)_{i}=\frac{x_{i}+\sqrt{x_{i}^{2}+4 t}}{2}, \quad i=1, \ldots, n
$$

Euclidean distance: $d(x)=\inf _{y \in C}\|x-y\|_{2}$ (C closed convex)

$$
\operatorname{prox}_{t d}(x)=\theta P_{C}(x)+(1-\theta) x, \quad \theta=\frac{t}{\max \{d(x), t\}}
$$

generalizes soft-thresholding operator

Prox-operator of conjugate

$$
\operatorname{prox}_{t h}(x)=x-t \operatorname{prox}_{h^{*} / t}(x / t)
$$

- follows from Moreau decomposition
- of interest when prox-operator of h^{*} is inexpensive

Example: norms

$$
h(x)=\|x\|, \quad h^{*}(y)=I_{C}(y)
$$

where C is unit ball for dual norm $\|\cdot\|_{*}$

- $\operatorname{prox}_{h * / t}$ is projection on C
- formula useful for prox-operator of $\|\cdot\|$ if projection on C is inexpensive

Support function

many convex functions can be expressed as support functions

$$
h(x)=S_{C}(x)=\sup _{y \in C} x^{T} y
$$

with C closed, convex

- conjugate is indicator function of $C: h^{*}(y)=I_{C}(y)$
- hence, can compute $\operatorname{prox}_{t h}$ via projection on C

Example: $h(x)$ is sum of largest r components of x

$$
h(x)=x_{[1]}+\cdots+x_{[r]}=S_{C}(x), \quad C=\left\{y \mid 0 \leq y \leq \mathbf{1}, \mathbf{1}^{T} y=r\right\}
$$

Convergence of proximal gradient method

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

Assumptions

- ∇g is Lipschitz continuous with constant $L>0$

$$
\|\nabla g(x)-\nabla g(y)\|_{2} \leq L\|x-y\|_{2} \quad \forall x, y
$$

- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique)

Result: with fixed step size $t_{k}=1 / L$

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{L}{2 k}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

- compare with $1 / \sqrt{k}$ rate of subgradient method
- can be extended to include line searches

Fast (proximal) gradient methods

- Nesterov (1983, 1988, 2005): three gradient projection methods with $1 / k^{2}$ convergence rate
- Beck \& Teboulle (2008): FISTA, a proximal gradient version of Nesterov's 1983 method
- Nesterov (2004 book), Tseng (2008): overview and unified analysis of fast gradient methods
- several recent variations and extensions

This lecture: FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

FISTA

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

- g convex differentiable with $\operatorname{dom} g=\mathbf{R}^{n}$
- h convex with inexpensive prox-operator

Algorithm: choose any $x^{(0)}=x^{(-1)}$; for $k \geq 1$, repeat the steps

$$
\begin{aligned}
y & =x^{(k-1)}+\frac{k-2}{k+1}\left(x^{(k-1)}-x^{(k-2)}\right) \\
x^{(k)} & =\operatorname{prox}_{t_{k} h}\left(y-t_{k} \nabla g(y)\right)
\end{aligned}
$$

Interpretation

- first two iterations ($k=1,2$) are proximal gradient steps at $x^{(k-1)}$
- next iterations are proximal gradient steps at extrapolated points y

sequence $x^{(k)}$ remains feasible (in $\operatorname{dom} h$); y may be outside $\operatorname{dom} h$

Convergence of FISTA

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

Assumptions

- $\operatorname{dom} g=\mathbf{R}^{n}$ and ∇g is Lipschitz continuous with constant $L>0$
- h is closed (implies $\operatorname{prox}_{t h}(u)$ exists and is unique for all u)
- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique)

Result: with fixed step size $t_{k}=1 / L$

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{2 L}{(k+1)^{2}}\left\|x^{(0)}-f^{\star}\right\|_{2}^{2}
$$

- compare with $1 / k$ convergence rate for proximal gradient method
- can be extended to include line searches

Example

$$
\operatorname{minimize} \quad \log \sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)
$$

randomly generated data with $m=2000, n=1000$, same fixed step size

FISTA is not a descent method

Proximal point algorithm

to minimize $h(x)$, apply fixed-point iteration to prox $_{t h}$

$$
x^{+}=\operatorname{prox}_{t h}(x)
$$

- proximal gradient method with zero g
- implementable if inexact prox-evaluations are used

Convergence

- $O(1 / \epsilon)$ iterations to reach $h(x)-h\left(x^{\star}\right) \leq \epsilon($ rate $1 / k)$
- $O(1 / \sqrt{\epsilon})$ iterations with accelerated $\left(1 / k^{2}\right)$ algorithm (Güler 1992)

Smoothing interpretation

Moreau-Yosida regularization of h

$$
h_{(t)}(x)=\inf _{u}\left(h(u)+\frac{1}{2 t}\|u-x\|_{2}^{2}\right)
$$

- convex, with full domain
- differentiable with $1 / t$-Lipschitz continuous gradient

$$
\nabla h_{(t)}(x)=\frac{1}{t}\left(x-\operatorname{prox}_{t h}(x)\right)=\operatorname{prox}_{h^{*} / t}(x / t)
$$

Proximal point algorithm (with constant t): gradient method for $h_{(t)}$

$$
x^{+}=\operatorname{prox}_{t h}(x)=x-t \nabla h_{(t)}(x)
$$

Examples

Indicator function (of closed convex set C): squared Euclidean distance

$$
h(x)=I_{C}(x), \quad h_{(t)}(x)=\frac{1}{2 t} \operatorname{dist}(x)^{2}
$$

1-Norm: Huber penalty

$$
h(x)=\|x\|_{1}, \quad h_{(t)}(x)=\sum_{k=1}^{n} \phi_{t}\left(x_{k}\right)
$$

$$
\phi_{t}(z)= \begin{cases}z^{2} /(2 t) & |z| \leq t \\ |z|-t / 2 & |z| \geq t\end{cases}
$$

Monotone operator

Monotone (set-valued) operator. $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ with

$$
(y-\hat{y})^{T}(x-\hat{x}) \geq 0 \quad \forall x, \hat{x}, y \in F(x), \hat{y} \in F(\hat{x})
$$

Examples

- subdifferential $F(x)=\partial f(x)$ of closed convex function
- linear function $F(x)=B x$ with $B+B^{T}$ positive semidefinite

Proximal point algorithm for monotone inclusion

to solve $0 \in F(x)$, run fixed-point iteration

$$
x^{+}=(I+t F)^{-1}(x)
$$

the mapping $(I+t F)^{-1}$ is called the resolvent of F

- $x=(I+t F)^{-1}(\hat{x})$ is (unique) solution of $\hat{x} \in x+t F(x)$
- resolvent of subdifferential $F(x)=\partial h(x)$ is prox-operator:

$$
(I+t \partial h)^{-1}(x)=\operatorname{prox}_{t h}(x)
$$

- converges if F has a zero and is maximal monotone

Outline

- (proximal) gradient method
- splitting and alternating minimization methods

Convex optimization with composite structure

Primal and dual problems

$$
\text { minimize } f(x)+g(A x) \quad \text { maximize } \quad-g^{*}(z)-f^{*}\left(-A^{T} z\right)
$$

f and g are 'simple' convex functions, with conjugates f^{*}, g^{*}

Optimality conditions

- primal: $0 \in \partial f(x)+A^{T} \partial g(A x)$
- dual: $0 \in \partial g^{*}(z)-A \partial f^{*}\left(-A^{T} z\right)$
- primal-dual:

$$
0 \in\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{c}
\partial f(x) \\
\partial g^{*}(z)
\end{array}\right]
$$

Examples

Equality constraints: $g=I_{\{b\}}$, indicator of $\{b\}$

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array} \quad \text { maximize }-b^{T} z-f^{*}\left(-A^{T} z\right)
$$

Set constraint: $g=I_{C}$, indicator of convex C, with support function S_{C}

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x \in C
\end{array} \quad \text { maximize }-S_{C}(z)-f^{*}\left(-A^{T} z\right)
$$

Regularized norm approximaton: $g(y)=\gamma\|y-b\|$ minimize $f(x)+\|A x-b\| \quad$ maximize $\quad-b^{T} z-f^{*}\left(-A^{T} z\right)$ subject to $\|z\|_{*} \leq 1$

Augmented Lagrangian method

the proximal-point algorithm applied to the dual

$$
\operatorname{maximize}-g^{*}(z)-f^{*}\left(-A^{T} z\right)
$$

1. minimize augmented Lagrangian

$$
\left(x^{+}, y^{+}\right)=\underset{\tilde{x}, \tilde{y}}{\operatorname{argmin}}\left(f(\tilde{x})+g(\tilde{y})+\frac{t}{2}\|A \tilde{x}-\tilde{y}+z / t\|_{2}^{2}\right)
$$

2. dual update: $z^{+}=z+t\left(A x^{+}-y^{+}\right)$

- equivalent to gradient method applied to Moreau-Yosida smoothed dual
- also known as Bregman iteration (Yin et al. 2008)
- practical if inexact minimization is used in step 1

Proximal method of multipliers

apply proximal point algorithm to primal-dual optimality condition

$$
0 \in\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{c}
\partial f(x) \\
\partial g^{*}(z)
\end{array}\right]
$$

Algorithm (Rockafellar 1976)

1. minimize generalized augmented Lagrangian

$$
\left(x^{+}, y^{+}\right)=\underset{\tilde{x}, \tilde{y}}{\operatorname{argmin}}\left(f(\tilde{x})+g(\tilde{y})+\frac{t}{2}\|A \tilde{x}-\tilde{y}+z / t\|_{2}^{2}+\frac{1}{2 t}\|\tilde{x}-x\|_{2}^{2}\right)
$$

2. dual update: $z^{+}=z+t\left(A x^{+}-y^{+}\right)$

Douglas-Rachford splitting algorithm

$$
0 \in F(x)=F_{1}(x)+F_{2}(x)
$$

with F_{1} and F_{2} maximal monotone operators

Algorithm (Lions and Mercier 1979, Eckstein and Bertsekas 1992)

$$
\begin{aligned}
& x^{+}=\left(I+t F_{1}\right)^{-1}(z) \\
& \left.y^{+}=\left(I+t F_{2}\right)^{-1}\right)\left(2 x^{+}-z\right) \\
& z^{+}=z+y^{+}-x^{+}
\end{aligned}
$$

- useful when resolvents of F_{1} and F_{2} are inexpensive, but not $(I+t F)^{-1}$
- under weak conditions (existence of solution), x converges to solution

Alternating direction method of multipliers (ADMM)

Douglas-Rachford splitting applied to optimality condition for dual

$$
\text { maximize }-g^{*}(z)-f^{*}\left(-A^{T} z\right)
$$

1. alternating minimization of augmented Lagrangian

$$
\begin{aligned}
x^{+} & =\underset{\tilde{x}}{\operatorname{argmin}}\left(f(\tilde{x})+\frac{t}{2}\|A \tilde{x}-y+z / t\|_{2}^{2}\right) \\
y^{+} & =\underset{\tilde{y}}{\operatorname{argmin}}\left(g(\tilde{y})+\frac{t}{2}\left\|A x^{+}-\tilde{y}+z / t\right\|_{2}^{2}\right) \\
& =\operatorname{prox}_{g / t}\left(A x^{+}+z / t\right)
\end{aligned}
$$

2. dual update $z^{+}=z+t\left(A x^{+}-y\right)$
also known as split Bregman method (Goldstein and Osher 2009)
(recent survey in Boyd, Parikh, Chu, Peleato, Eckstein 2011)

Primal application of Douglas-Rachford method

D-R splitting algorithm applied to optimality condition for primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+g(y) \\
\text { subject to } & A x=y
\end{array}
$$

Main steps

- prox-operator of h_{1} : separate evaluations of prox_{f} and prox_{g}
- prox-operator of h_{2} : projection on subspace $H=\{(x, y) \mid A x=y\}$

$$
P_{H}(x, y)=\left[\begin{array}{c}
I \\
A
\end{array}\right]\left(I+A^{T} A\right)^{-1}\left(x+A^{T} y\right)
$$

also known as method of partial inverses (Spingarn 1983, 1985)

Primal-dual application

$$
0 \in \underbrace{\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]}_{F_{2}(x, z)}+\underbrace{\left[\begin{array}{c}
\partial f(x) \\
\partial g^{*}(z)
\end{array}\right]}_{F_{1}(x, z)}
$$

Main steps

- resolvent of F_{1} : prox-operator of f, g
- resolvent of F_{2} :

$$
\left[\begin{array}{cc}
I & t A^{T} \\
-t A & I
\end{array}\right]^{-1}=\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{c}
I \\
t A
\end{array}\right]\left(I+t^{2} A^{T} A\right)^{-1}\left[\begin{array}{c}
I \\
-t A
\end{array}\right]^{T}
$$

Summary: Douglas-Rachford splitting methods

$$
\operatorname{minimize} f(x)+g(A x)
$$

Most expensive steps

- Dual (ADMM)

$$
\operatorname{minimize}(\operatorname{over} x) \quad f(x)+\frac{t}{2}\|A x-y+z / t\|_{2}^{2}
$$

if f is quadratic, a linear equation with coefficient $\nabla^{2} f(x)+t A^{T} A$

- Primal (Spingarn): equation with coefficient $I+A^{T} A$
- Primal-dual: equation with coefficient $I+t^{2} A^{T} A$

Forward-backward method

$$
0 \in F(x)=F_{1}(x)+F_{2}(x)
$$

with F_{1} and F_{2} maximal monotone operators, F_{1} single-valued
Forward-backward iteration (for single-valued F_{1})

$$
x^{+}=\left(I+t F_{2}\right)^{-1}\left(I-t F_{1}(x)\right)
$$

- converges if F_{1} is co-coercive with parameter L and $t \in(0,1 / L]$

$$
\left(F_{1}(x)-F_{1}(\hat{x})\right)^{T}(x-\hat{x}) \geq \frac{1}{L}\left\|F_{1}(x)-F_{1}(\hat{x})\right\|_{2}^{2} \quad \forall x, \hat{x}
$$

this is Lipschitz continuity if $F_{1}=\partial f_{1}$, a stronger condition otherwise

- Tseng's modified method (1991) only requires Lipschitz continuous F_{1}

Dual proximal gradient method

$$
0 \in \underbrace{\partial g^{*}(z)}_{F_{2}(z)} \underbrace{-A \nabla f^{*}\left(-A^{T} z\right)}_{F_{1}(z)}
$$

Proximal gradient iteration

$$
\begin{aligned}
x & =\underset{\tilde{x}}{\operatorname{argmin}}\left(f(\tilde{x})+z^{T} A \tilde{x}\right)=\nabla f^{*}\left(-A^{T} z\right) \\
z^{+} & =\operatorname{prox}_{t g^{*}}(z+t A x)
\end{aligned}
$$

- does not involve solution of linear equation
- first step is minimization of (unaugmented) Lagrangian
- requires Lipschitz continuous ∇f^{*} (strongly convex f)
- accelerated methods: FISTA, Nesterov's methods

Primal-dual (Chambolle-Pock) method

$$
0 \in\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{c}
\partial f(x) \\
\partial g^{*}(z)
\end{array}\right]
$$

Algorithm (with parameter $\theta \in[0,1]$) (Chambolle \& Pock 2011)

$$
\begin{aligned}
z^{+} & =\operatorname{prox}_{t g^{*}}(z+t A \bar{x}) \\
x^{+} & =\operatorname{prox}_{t f}\left(x-t A^{T} z^{+}\right) \\
\bar{x}^{+} & =x^{+}+\theta\left(x^{+}-x\right)
\end{aligned}
$$

- widely used in image processing
- step size fixed $\left(t \leq 1 /\|A\|_{2}\right)$ or adapted by line search
- can be interpreted as pre-conditioned proximal-point algorithm

Summary: Splitting algorithms

$$
\operatorname{minimize} \quad f(x)+g(A x)
$$

Douglas-Rachford splitting

- can be applied to primal (Spingarn's method), dual (ADMM), primal-dual optimality conditions
- subproblems include quadratic term $\|A x\|_{2}^{2}$ in cost function

Forward-backward splitting

- (accelerated) proximal gradient algorithm applied to dual problem
- Tseng's FB algorithm applied to primal-dual optimality conditions, semi-implicit primal-dual method (Chambolle-Pock), . . .
- only require application of A and A^{T}

Extensions: linearized splitting methods, generalized distances, . . .

