NEW VARIATIONAL METHODS IN COMPUTER VISION

Roadmap

\square Distance transforms
\square Calculus of variations
\square Lagrangians and Hamiltonians
\square Nonlinear Hamilton-Jacobi equation
\square Linear Schrödinger wave equation
\square Approximating the eikonal via linear solvers
\square The method of stationary phase
\square Distance transform gradient density

Distance transforms

\square Distance transforms: Ubiquitous shape representation
\square Level sets, fast marching methods etc. standard tropes
\square Relationship to classical physics (Hamilton-Jacobi theory) well established

Euclidean distance functions

\square Given a point-set $\left\{Y_{k}\right\}_{k=1}^{K}$ and grid points X, the Euclidean distance function is

$$
S(X)=\min _{k}\left\|X-Y_{k}\right\|
$$

Calculus of Variations

\square Consider the following variational problem
\square The Lagrangian L is defined as

$$
L=\frac{1}{2} \quad \frac{d q_{1}}{d t} \div+\frac{d q_{2}}{d t} \div \frac{2}{\vdots} \div
$$

Lagrangians and Hamilton-Jacobi

\square What is the difference between

$$
I[q]==_{t_{0}}^{t_{1}} L\left(q, \frac{d q}{d t}, t\right) d t \text { and } S(q(t))={ }_{t_{0}}^{t} L\left(q, \frac{d q}{d t}, t\right) d t ?
$$

\square Former can be evaluated for any curve, latter only for optimal curve.
\square Former has fixed endpoints, latter has variable endpoints.
\square Latter leads to Hamilton-Jacobi equation.

The Hamilton-Jacobi equation

\square Two variable endpoint problems:

$$
S(q(t))=\int_{t_{0}}^{t} L\left(q, \frac{d q}{d t}, t\right) d t \quad S(q(t+t))=\int_{t_{0}}^{t+} L\left(q, \frac{d q}{d t}, t\right) d t
$$

\square Both curves $q(t)$ and $q(t+\Delta t)$ optimal
\square Rate of change of optimal value: $\frac{d S}{d t}$

$$
\frac{d S}{d t}=\frac{S}{t}+\frac{S}{q} \frac{d q}{d t}=L\left(q, \frac{d q}{d t}, t\right)
$$

\square For Euclidean distance function problem

$$
\frac{\partial S}{\partial t}=\frac{1}{2}\left[\left(\frac{\partial S}{\partial q_{1}}\right)^{2}+\left(\frac{\partial S}{\partial q_{2}}\right)^{2}\right]=\frac{1}{2} \Rightarrow\|\nabla S\|=1
$$

Nonlinear Hamilton-Jacobi (HJ)

\square Euclidean distance function formulated as HJ equation

$$
\|\nabla S\|=1
$$

\square Fast marching and fast sweeping - efficient solutions
\square Zero level set is original shape
\square Signed and unsigned distance functions
\square Analytical solution unavailable
From Calculus of Variations to Hamilton-Jacobi

Visualizing the Distance Transform S

Parallel nature of Hamilton - Jacobi solution

Computed "simultaneously" for all points X inside the given domain Ω.

The Schrödinger Distance Transform

From Hamilton-Jacobi to Schrödinger

Schrödinger wave equation

\square Famous wave equation for particles

$$
i \hbar \frac{\partial \psi}{\partial t}=-\hbar^{2} \nabla^{2} \psi+V \psi
$$

\square Static Schrödinger equation for free particle

$$
-\hbar^{2} \nabla^{2} \psi+\psi=0
$$

\square Solve Schrödinger via Fast Fourier Transform (FFT)
\square Quantization: Relationship between nonlinear Hamilton-Jacobi and linear Schrödinger.

Schrödinger and Hamilton-Jacobi

On Hamilton-Jacobi Theory as a Classical Root of Quantum Theory

J. Butterfield ${ }^{1}$
All Souls College
Oxford OX1 4AL

27 February 2003

Abstract

This paper gives a technically elementary treatment of some aspects of HamiltonJacobi theory, especially in relation to the calculus of variations. The second half of the paper describes the application to geometric optics, the optico-mechanical analogy and the transition to quantum mechanics. Finally, I report recent work of Holland providing a Hamiltonian formulation of the pilot-wave theory.

Schrödinger Distance Transform

\square Forced version of Schrödinger equation

$$
\hbar^{2} \nabla^{2}+=0
$$

$\square \quad{ }_{0}$ is peaked on shape, close to zero elsewhere
\square Analytical solution in 2D

$$
(X)={ }_{k=1}^{K} K_{0} \frac{\left\|X \quad Y_{k}\right\|}{\hbar} \div
$$

\square Schrödinger [tance Transform (SDT)

$$
S(X)=\hbar \log (X)=\hbar \log { }_{k=1}^{K} K_{0} \frac{\left\|X \quad Y_{k}\right\|}{\hbar} \div
$$

\square Fast convolution solution via FFT

Comparison and Computation

Hamilion-Jacobi	Schrödinger		
Non-linear	Linear		
$\\|\nabla S\\|=1$	$\hbar^{2} \nabla^{2}+=0$		
$S(X)=0$ on source	$\Psi(X) \approx 1$ on source		
Fast marching and Fast sweeping	Fast convolution via Fast Fourier Transform (FFT)		
No smoothness control	Control over smoothness using \hbar		

Linear approximation to the eikonal

\square Approx. the eikonal similar to distance transforms.

$$
\|\nabla S(X)\|=f(X), X \in
$$

\square Linear Schrodinger (inhomog. screened Poisson).

$$
\hbar^{2} \nabla^{2}+f^{2}={ }_{0}
$$

\square Use relation:

$$
(X)=\exp \quad \frac{S(X)}{\hbar} \div
$$

\square Discretize and solve sparse linear system.

Parallel nature of Hamilton - Jacobi solution

Computed "simultaneously" for all points X inside the given domain Ω.

Solve linear Schrödinger instead of nonlinear Hamilton-Jacobi

Showcase

The linear differential eq. ecosystem

\square Crane et al. (Geodesic Heat '12)
\square Dimitrov and Zucker (linear diff. eq. '05)
\square Gilboa, Sochen, Zeevi (complex diff. eq. '04)
\square Ronen Basri and collaborators (Poisson '05)
\square Rangarajan, Gurumoorthy, Peter et al. (Schrödinger ‘10)
\square Sibel Tari and collaborators (screened Poisson '97!)
\square Luminita Vese and collaborators (nonlocal Ambrosio-Tortorelli etc.)

Gradient Density Estimation

Moving from space to frequency

Distance transform gradient density

\square Distance transform gradients are unit vectors since $\|\nabla S\|=1$
\square Gradient density - related to HOG - is one dimensional and defined on orientations
\square Detail wave function approach to gradient density computation
\square Gradient density related to Fourier transform of normalized wave function

HOGging the Distance Transform

\square Complex Wave Rep. (CWR) of Distance Transform

$$
(X)=\exp i \frac{S(X)}{\hbar}
$$

\square Fourier Transform (FT) of CWR

$$
F(u)=\text { Fourier Transform }\{(X)\}
$$

\square Normalized power spectrum $=$ HOG

$$
P(u)=F(u) \overline{F(u)}
$$

\square Spatial frequencies are gradient histogram bins

$$
\nabla S=h u
$$

1D Derivative Density Example

\square Let X be a uniformly distributed random variable on $\Omega=[a, b]$.
\square Define a random variable $Y=S^{\prime}(X) . S^{\prime}$ behaves like the transformation function.
\square The probability density of Y corresponds to the derivative density function of S^{\prime}.

Derivative density

\square The probability density function for the derivative (Y) is given by

$$
Q\left(u_{0}\right)=\frac{1}{L} \sum_{S^{\prime}\left(x_{k}\right)=u_{0}} \frac{1}{\left|S^{\prime \prime}\left(x_{k}\right)\right|}
$$

\square Summation is over the set of locations $x_{k} \in \Omega$ where $S^{\prime}\left(x_{k}\right)=u_{0}$.

Stationary phase approximation

$$
\begin{aligned}
& { }^{b} \exp \frac{i S(x)}{\hbar} \div \exp \frac{i u x}{\hbar} \div d x \\
& \exp \frac{i S\left(x_{0}\right)}{\hbar} \div \exp \frac{i u x_{0}}{\hbar} \div \exp \frac{i^{b}}{2 \hbar}\left(x \quad x_{0}\right)^{2} S^{\prime \prime}\left(x_{0}\right) \div d x \\
& \exp \frac{i S\left(x_{0}\right) \quad i u x_{0}}{\hbar} \div \frac{\sqrt{2} \hbar}{\sqrt{\left|S^{\prime \prime}\left(x_{0}\right)\right|}} \exp \pm \frac{i}{4} \div \quad \text { as } \hbar \rightarrow 0
\end{aligned}
$$

Integral peaked at $S^{\prime}\left(x_{0}\right)=u$

Rigorously shown by F.W.J. Olver, Asymptotics and special functions, 1D
R. Wong, Asymptotic Approximations of Integrals, 2D and higher

Power spectrum of $\exp (i S / \hbar)$

$$
\text { Power spectrum } \quad P\left(u_{0}\right)=F\left(u_{0}\right) \overline{F\left(u_{0}\right)}
$$

As $\hbar \rightarrow 0$ using stationary phase,
$\approx \frac{1}{L} \sum_{k=1}^{N\left(u_{0}\right)} \frac{1}{\left|S^{\prime \prime}\left(x_{k}\right)\right|} \square^{\text {Required density term }}$

$$
+\frac{1}{L} \sum_{k=1}^{N\left(u_{0}\right)} \sum_{l=1: l \neq k}^{N\left(u_{0}\right)} \frac{\cos \left(\frac{1}{\hbar}\left[S\left(x_{k}\right)-S\left(x_{l}\right)-u_{0}\left(x_{k}-x_{l}\right)\right]+\theta\left(x_{k}, x_{l}\right)\right)}{\sqrt{\left|S^{\prime \prime}\left(x_{k}\right)\right|} \sqrt{\left|S^{\prime \prime}\left(x_{l}\right)\right|}}
$$

$$
\theta\left(x_{k}, x_{l}\right)=0, \pi / 2,-\pi / 2
$$

Interval measures match

\square So,

$$
\lim _{\hbar \rightarrow 0} \int_{u_{0}}^{u_{0}+\alpha} P(u) d u=\frac{1}{L} \sum_{k=1}^{N\left(u_{0}\right)} \int_{u_{0}}^{u_{0}+\alpha} \frac{1}{\mid S^{\prime \prime}\left(x_{k}(u)\right)} d u
$$

\square Hence,

$$
\lim _{\alpha \rightarrow 0} \frac{1}{\alpha} \lim _{\hbar \rightarrow 0} \int_{\Lambda_{0}}^{u_{0}+\alpha} P(u) d u=\frac{1}{L} \sum_{k=1}^{N\left(u_{0}\right)} \frac{1}{\left|S^{\prime \prime}\left(x_{k}\right)\right|}
$$

Limit and integration order cannot be swapped

Distance transform gradient density

\square Distribution function:

$$
W(\theta \leq \omega \leq \theta+\Delta \theta)=\frac{1}{L} \sum_{k=1}^{K} \int_{\theta}^{\theta+\Delta \theta} R_{k}^{2}(\omega) d \omega
$$

\square Density function:

$$
Q(\omega)=\frac{1}{L} \sum_{k=1}^{K} R_{k}^{2}(\omega)
$$

From CWR to HOG

$S(X)$ and ∇S

FFT of $\quad(X): \quad(u, v)$

Zoomed portion

CWR: $\quad(X)=\exp i \frac{S(X)}{\hbar}$

Gradient density estimation from the Fourier transform approach

Atlas computation

From Schrödinger distance transforms to squareroot densities

Atlas Construction

A Slice from the 3D MRI of One Subject

Note: The color for different label is only for visualization purpose.

Shape Complex Atlas

Neuroanatomical structures

Smoother atlas with increasing \hbar

Summary

\square From calculus of variations to Hamilton-Jacobi.
\square From Hamilton-Jacobi to Schrödinger.
\square Schrödinger Distance Transform (SDT) by solving linear differential equation instead of nonlinear Hamilton-Jacobi.
\square Linear solver ecosystem for the eikonal.
\square Normalized power spectrum of $\exp (i S / \hbar)$ converges to distance transform gradient density as \hbar tends to zero. (Interval measures match.)

Acknowledgments

\square Collaborators
\square Ting Chen (Ventana), Shape atlases

- Karthik Gurumoorthy (GE, Bangalore), SDT, HOG
- Adrian Peter (FIT), eikonal solver
\square Manu Sethi (CISE, UF), SDT, HOG
- Baba Vemuri (CISE, UF), Shape atlases
\square Supported by NSF

Legendre transformation to obtain the Hamiltonian

\square By applying Legendre transformation to the Lagrangian i.e. defining

$$
p_{i}=\frac{\partial L}{\partial \frac{d q_{i}}{d t}}=f^{2}\left(q_{1}, q_{2}\right) \frac{d q_{i}}{d t}
$$

and writing $\frac{d q_{i}}{d t}=\frac{d q_{i}}{d t}(q, p, t)$ we get the Hamiltonian to be

$$
H(q, p)=\sum p_{i} \frac{d q_{i}}{d t}-L=\frac{1}{2 f^{2}}\left(\left(p_{1}\right)^{2}+\left(p_{2}\right)^{2}\right)
$$

Canonical transformation to obtain the

Hamilton-Jacobi equation

\square The Hamilton-Jacobi equation is obtained via a canonical transformation of the Hamiltonian.
\square In classical mechanics, a canonical transformation is defined as a change of variables which leaves the form of the Hamilton equations unchanged.
p

9

$$
\begin{aligned}
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} \\
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}}
\end{aligned}
$$

$$
\begin{aligned}
\dot{Q}_{i} & =\frac{\partial K}{\partial P_{i}} \\
\dot{P}_{i} & =-\frac{\partial K}{\partial Q_{i}}
\end{aligned}
$$

Type 2 Canonical transformation

\square For a type 2 canonical transformation, we have

$$
\sum p_{i} \frac{d q_{i}}{d t}-H=\sum P_{i} \frac{d Q_{i}}{d t}-K\left(Q_{1}, Q_{2}, P_{1}, P_{2}\right)+\frac{d F}{d t}
$$

where

$$
\begin{gathered}
F=-\sum Q_{i} P_{i}+S(q, P, t) \\
\frac{d F}{d t}=-\sum\left(\frac{d Q_{i}}{d t} P_{i}+Q_{i} \frac{d P_{i}}{d t}\right)+\frac{\partial S}{\partial t}+\sum\left(\frac{\partial S}{\partial q_{i}} \frac{d q_{i}}{d t}+\frac{\partial S}{\partial P_{i}} \frac{d P_{i}}{d t}\right)
\end{gathered}
$$

Hamilton-Jacobi formulation contd.

Equating and canceling out terms, we get

$$
\begin{aligned}
p_{i} & =\frac{\partial S}{\partial q_{i}} \\
Q_{i} & =\frac{\partial S}{\partial P_{i}} \\
K & =H+\frac{\partial S}{\partial t}
\end{aligned}
$$

Hamilton-Jacobi equation

\square When we pick a particular type 2 canonical transformation where in $K=0$, we get

$$
\frac{\partial S}{\partial t}+H\left(q_{1}, q_{2}, \frac{\partial S}{\partial q_{1}}, \frac{\partial S}{\partial q_{2}}\right)=0
$$

\square Substituting $\quad p_{i}=\frac{\partial S_{\mathrm{in}}}{\partial \boldsymbol{q}_{i}}, \quad H=\frac{1}{2 f^{2}}\left(\left(p_{1}\right)^{2}+\left(p_{2}\right)^{2}\right)$

$$
\frac{\partial S}{\partial t}+\frac{\|\nabla S\|^{2}}{2 f^{2}}=0
$$

Hamilton-Jacobi formulation contd.

\square Since the Hamiltonian H is independent of time, by separation of variables

$$
S(X, t)=S^{*}(X)-E t,
$$

S^{*} satisfies the relation

$$
\frac{1}{2 f^{2}}\left[\left(\frac{\partial S^{*}}{\partial q_{1}}\right)^{2}+\left(\frac{\partial S^{*}}{\partial q_{2}}\right)^{2}\right]=E .
$$

\square Setting E to be $1 / 2$, we get

$$
\|\nabla S *\|^{2}=f^{2}
$$

Modelina Fluctuating DF (1)

$$
E(\omega)=\sum_{(i, j) \in \Omega} E_{R e g}\left(\omega_{i, j}\right)+\lambda \sum_{(i, j) \in \partial \Omega} E_{B d y}\left(\omega_{i, j}\right) \quad \text { hqs }{\underset{v}{v_{\rho}}}_{\arg \min }^{\int} \int_{\Omega}[\rho \underbrace{\left|\nabla v_{\rho}(\mathbf{x})\right|^{2}}_{\begin{array}{c}
\text { local } \\
\text { interaction }
\end{array}}+\frac{1}{\rho} \underbrace{\left(v_{\rho}(\mathbf{x})-1\right)^{2}}_{\begin{array}{c}
\text { boundary/interior } \\
\text { separation }
\end{array}}] \mathrm{d} x \mathrm{~d} y
$$

$$
E_{\text {Reg }}=\underbrace{\sum_{(i, j) \in \Omega} E_{\text {Reg }}^{G}\left(\omega_{i, j}\right)}_{E_{\text {Reg }}^{G} \text { : global }}+\beta \underbrace{\sum_{(i, j) \in \Omega} E_{\text {Reg }}^{L}\left(\omega_{i, j}\right)}_{E_{\text {Reg }}^{L}: \text { local }}
$$

$\underset{\omega}{\arg \min } \iint_{\Omega} \sqrt{O(|\Omega|)}|\nabla \omega(\mathbf{x})|^{2}+\frac{1}{\sqrt{O(|\Omega|)}}(\omega(\mathbf{x})-t(\mathbf{x}))^{2}$

$$
\begin{aligned}
\frac{\mathrm{d} \omega_{i, j}(\tau)}{\mathrm{d} \tau} & =-\frac{\partial E}{\partial \omega_{i, j}} \\
& =\mathbb{L}_{*}\left(\omega_{i, j}\right)-\frac{1}{O(|\Omega|)} \sum_{(k, l) \in \Omega} \omega_{k, l}-\frac{1}{O(|\Omega|)} \omega_{i, j}+\bar{t}_{i, j}
\end{aligned}
$$

$$
\left(\triangle-\frac{1}{O(|\Omega|)}\right) \omega(x, y)=\frac{1}{O(|\Omega|)} t(x, y)
$$

$$
\left(\triangle-\frac{1}{O(|\Omega|)}\right) \omega(x, y)-\iint \omega(\alpha, \beta) \mathrm{d} \alpha \mathrm{~d} \beta=-\frac{1}{O(|\Omega|)} t(x, y)
$$

