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Roadmap 

 Distance transforms 

 Calculus of variations 

 Lagrangians and Hamiltonians 

  Nonlinear Hamilton-Jacobi equation 

 Linear Schrödinger wave equation 

 Approximating the eikonal via linear solvers 

 The method of stationary phase 

 Distance transform gradient density 



Distance transforms 

 Distance transforms: Ubiquitous shape representation 

 Level sets, fast marching methods etc. standard tropes 

 Relationship to classical physics (Hamilton-Jacobi 

theory) well established 



Euclidean distance functions 

 Given a point-set               and grid points X, the 

Euclidean distance function is 
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Tearing it apart 



Calculus of Variations 

 Consider the following variational problem 

 

 

 

 The Lagrangian  L is defined as 
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Straight line 



Lagrangians and Hamilton-Jacobi 

 What is the difference between 

 

 

 Former can be evaluated for any curve, latter only 

for optimal curve. 

 Former has fixed endpoints, latter has variable 

endpoints. 

 Latter leads to Hamilton-Jacobi equation. 
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The Hamilton-Jacobi equation 

 Two variable endpoint problems: 

 

 

 

 Both curves q(t) and q(t+Dt) optimal 

 Rate of change of optimal value: 

 

 

  For Euclidean distance function problem 
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Nonlinear Hamilton-Jacobi (HJ)  

 Euclidean distance function formulated as HJ equation 

 

 

   

 Fast marching and fast sweeping - efficient solutions 

 Zero level set is original shape 

 Signed and unsigned distance functions 

 Analytical solution unavailable 
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From Calculus of Variations to Hamilton-Jacobi 



Visualizing the Distance Transform S 



Parallel nature of Hamilton – Jacobi 

solution 

initial curve C = ∂Ω 

X 

q 
shortest path to reach X from q with cost  f(Y) 

at a point Y in the path. 

),(min)(* qXdistXS Cq

Computed “simultaneously” for all points X inside the 

given domain Ω. 



From Hamilton-Jacobi to Schrödinger 

The Schrödinger Distance Transform 



Schrödinger wave equation 

 Famous wave equation for particles 

 

 

 Static Schrödinger equation for free particle 

 

 

 Solve Schrödinger via Fast Fourier Transform (FFT) 

 Quantization: Relationship between nonlinear 
Hamilton-Jacobi and linear Schrödinger. 

 

 



Schrödinger and Hamilton-Jacobi 

 Nonlinear Hamilton-Jacobi equation: Classical 

 

 

 Linear Schrödinger equation: Quantum 

 

 

 Relationship:  
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Exact as ħ tends to zero 



Schrödinger Distance Transform 

 Forced version of Schrödinger equation 

      

      is peaked on shape, close to zero elsewhere 

 Analytical solution in 2D 

 

 

 Schrödinger Distance Transform (SDT) 

 

 

 

 Fast convolution solution via FFT 
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Comparison and Computation 

Hamilton-Jacobi Schrödinger 

Non-linear Linear 

S(X)=0 on source ψ(X)≈1 on source 

Fast marching and  

Fast sweeping 

Fast convolution via 

Fast Fourier Transform (FFT) 

No smoothness control Control over smoothness using ħ 

ÑS =1 - 2Ñ2y +y =y0



Linear approximation to the eikonal 

 Approx. the eikonal similar to distance transforms. 

 

 

 Linear Schrodinger (inhomog. screened Poisson). 

 

 

 Use relation:  

 

 Discretize and solve sparse linear system. 
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Parallel nature of Hamilton – Jacobi 

solution 

initial curve C = ∂Ω 

X 

q 
shortest path to reach X from q with cost  f(Y) 

at a point Y in the path. 

),(min)(* qXdistXS Cq

Computed “simultaneously” for all points X inside the 

given domain Ω. 

Solve linear Schrödinger instead of nonlinear Hamilton-Jacobi 



Showcase 



The linear differential eq. ecosystem 

 Crane et al. (Geodesic Heat  ‘12) 

 Dimitrov and Zucker (linear diff. eq. ‘05) 

 Gilboa, Sochen, Zeevi (complex diff. eq. ‘04) 

 Ronen Basri and collaborators (Poisson ‘05) 

 Rangarajan, Gurumoorthy, Peter et al. (Schrödinger 
‘10) 

 Sibel Tari and collaborators (screened Poisson ‘97!) 

 Luminita Vese and collaborators (nonlocal 
Ambrosio-Tortorelli etc.) 

 

 

 

 



Moving from space to frequency 

Gradient Density Estimation 



Distance transform gradient density 

 Distance transform gradients are unit vectors since 

 

 Gradient density – related to HOG – is one 

dimensional and defined on orientations 

 Detail wave function approach to gradient density 

computation 

 Gradient density related to Fourier transform of 

normalized wave function 

ÑS =1



HOGging the Distance Transform 

y(X) = exp i
S(X)ì
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 Complex Wave Rep. (CWR) of Distance Transform 

 

 

 Fourier Transform (FT) of CWR 

 

 

 Normalized power spectrum = HOG 

 

 

 Spatial frequencies  are gradient histogram bins 

P(u) = F(u)F(u )

ÑS = hu

F(u) = Fourier Transform y(X){ }



1D Derivative Density Example 

 Let X be a uniformly distributed random variable on  

    Ω = [a,b]. 

 Define a random variable Y = S‘(X). S’ behaves like the 

transformation function. 

 The probability density of Y corresponds to the derivative 

density function of S’. 

S’ X Y=S’(X) 



Derivative density 

 The probability density function for the derivative (Y) 

is given by 

 

 

 

 Summation is over the set of locations xk ϵ Ω 

    where S’(xk) = u0. 
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Stationary phase approximation 
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Gaussian integral 

Rigorously shown by F.W.J. Olver, Asymptotics and special functions, 1D 

 

R. Wong, Asymptotic Approximations of Integrals, 2D and higher 

Integral peaked at S’(x0)=u 
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Power spectrum of exp(iS/ħ) 

  Power spectrum P(u0 ) = F(u0 )F(u0 )

2
,
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,0),(  lk xx

As ħ0 using stationary 

phase,  
Required density term 

Cross terms (CT) killed by integration 



Interval measures match 

 So, 
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Gradient density 
Limit and integration order cannot be 

swapped 



Distance transform gradient density  

 Distribution function: 

 

 Density function:  
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Density=sum of 

squares of 

length 



From CWR to HOG 

S(X) and ÑS Zoomed portion CWR: y(X) = exp i
S(X)ì
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FFT of y(X) : Y(u,v)

HOG 

c Y(u,v)
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From Schrödinger distance transforms to square-

root densities 

Atlas computation 



Atlas Construction 



Shape Complex Atlas 

Neuroanatomical structures 

Smoother atlas with increasing ħ  



Summary 

 From calculus of variations to Hamilton-Jacobi. 

 From Hamilton-Jacobi to Schrödinger. 

 Schrödinger Distance Transform (SDT) by solving 

linear differential equation instead of nonlinear 

Hamilton-Jacobi. 

 Linear solver ecosystem for the eikonal. 

 Normalized power spectrum of exp(iS/ħ) converges 

to distance transform gradient density as ħ tends to 

zero. (Interval measures match.) 
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Legendre transformation to obtain the 

Hamiltonian 

 By applying Legendre transformation to the Lagrangian i.e.  

defining 

   

 

 

 and writing                          we get the Hamiltonian to be 
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Canonical transformation to obtain the 

Hamilton-Jacobi equation 

 The Hamilton-Jacobi equation is obtained via a canonical 

transformation of the Hamiltonian. 

 In classical mechanics, a canonical transformation is defined as 

a change of variables which leaves the form of the Hamilton 

equations unchanged. 
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Type 2 Canonical transformation 

 For a type 2 canonical transformation, we have 
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Hamilton-Jacobi formulation contd. 

 Equating and canceling out terms, we get 
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Hamilton-Jacobi equation 

 When we pick a particular type 2 canonical 

transformation where in K=0, we get 

 

 

 

 Substituting                 in,  
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Hamilton-Jacobi formulation contd. 

 Since the Hamiltonian H is independent of time, by separation 
of variables 

                        S(X,t)=S*(X)-Et,  

    S* satisfies the relation 

 

 

 

 

 Setting E to be ½ ,we get 
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Modeling Fluctuating DF (1) 
connection to Ambrosio-Tortorelli phase field  


