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Roadmap

Distance transforms

Calculus of variations

Lagrangians and Hamiltonians

Nonlinear Hamilton-Jacobi equation

Linear Schrédinger wave equation
Approximating the eikonal via linear solvers
The method of stationary phase

Distance transform gradient density
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Tearing it apart

Euclidean distance functions

]
0 Given a point-set {Y,}*. and grid points X, the
Euclidean distance function is

S(X) — mink ” X _Yk ”



Calculus of Variations

Consider the following variational problem

Ilq)= E)L<q, Ly |

The Lagrangian L is defined as
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Lagrangians and Hamilton-Jacobi

What is the difference between

1lq]= 6L(q, L)t and S(g(0)= 0L<q,d— 1)de?

Ly
Former can be evaluated for any curve, latter only
for optimal curve.

Former has fixed endpoints, latter has variable
endpoints.

Latter leads to Hamilton-Jacobi equation.



The Hamilton-Jacobi equation

Two variable endpoint problems:

S(q(2)) = OL(q,—f)df S(é](t+Df))—rL(6], t)a’t

Both curves q(t) and q(t+At) Ophm(c]z’l

Rate of change of optimal value: —

= =10 ) )
dt Tt Vg dt |

For Euclidean distance func’rlon problem
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Nonlinear Hamilton-Jacobi (HJ)

Euclidean distance function formulated as HJ equation

o1 @ @
vs Pauns

Fast marching and fast sweeping - efficient solutions
Lero level set is original shape
Signed and unsigned distance functions

Analytical solution unavailable

From Calculus of Variations to Hamilton-Jacobi



Visualizing the Distance Transform S
N

0000500 055050500, 05
S R
s,

95%0.%;

%

& & ’@’
2%, X0y Wts117;
% OARLIALT T A

o
trrrr A

Ay
e




Parallel nature of Hamilton — Jacobi
solution

---> initial curve C = 0Q)

9 s shortest path to reach X from g with cost f(Y)

at a point Y in the path.

S™(X) =min, dist(X,q)

Computed “simultaneously” for all points X inside the
given domain Q).



- The Schrodinger Distance Transform

From Hamilton-Jacobi to Schrodinger



Schrodinger wave equation

Famous wave equation for particles

Static Schrodinger equation for free particle
W’V +y9 =0

Solve Schrodinger via Fast Fourier Transform (FFT)

Quantization: Relationship between nonlinear
Hamilton-Jacobi and linear Schrodinger.
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Schrodinger and Hamilton-Jacobi

On Hamilton-Jacobi Theory as a Classical Root of Quantum
Theory

J. Butterfield!

All Souls College
Oxford OX1 4AL

27 February 2003

Abstract

This paper gives a technically elementary treatment of some aspects of Hamilton-
Jacobi theory, especially in relation to the calculus of variations. The second half
of the paper describes the application to geometric optics, the optico-mechanical
analogy and the transition to quantum mechanics. Finally, I report recent work
of Holland providing a Hamiltonian formulation of the pilot-wave theory.



Schrodinger Distance Transform

Forced version of Schrodinger equation
2v2 _
-V Yty =Y,
YV, is peaked on shape, close to zero elsewhere

Analytical solution in 2D

h

& :
Schrodi Iu ! )
chrodinger \MSM%ré?ﬁescPBessel function second kind

X - Y ||C
S(X)=-nlogy (X)=- hloga a% . "HQ

Fast convolution solution via FFT



Comparison and Computation

Non-linear

[VS] =1
S(X)=0 on source

Fast marching and
Fast sweeping

No smoothness control

Linear

-V +y =y,

W(X)=1 on source

Fast convolution via
Fast Fourier Transform (FFT)

Control over smoothness using N



Linear approximation to the eikonal

Approx. the eikonal similar to distance transforms.

VSO = /0, X € W

Linear Schrodinger (inhomog. screened Poisson).
WYY+ [ =1,

Use relation:
f(X)= expae S(X)Z

Discretize and solve sparse linear system.



Parallel nature of Hamilton — Jacobi
solution

---> initial curve C = 0Q)

9 s shortest path to reach X from g with cost f(Y)

at a point Y in the path.

S™(X) =min, dist(X,q)

Computed “simultaneously” for all points X inside the
given domain Q).

Solve linear Schrodinger instead of nonlinear Hamilton-Jacobi



Showcase




The linear differential eq. ecosystem

Crane et al. (Geodesic Heat ‘12)

Dimitrov and Zucker (linear diff. eq. ‘05)
Gilboa, Sochen, Zeevi (complex diff. eq. ‘04)
Ronen Basri and collaborators (Poisson ‘05)

Rangarajan, Gurumoorthy, Peter et al. (Schrédinger

‘10)
Sibel Tari and collaborators (screened Poisson ‘971)

Luminita Vese and collaborators (nonlocal
Ambrosio-Tortorelli etc.)



- Gradient Density Estimation

Moving from space to frequency



Distance transform gradient density

Distance transform gradients are unit vectors since

|V =1
Gradient density — related to HOG — is one
dimensional and defined on orientations

Detail wave function approach to gradient density
computation

Gradient density related to Fourier transform of
normalized wave function



HOG the Distance Transform

Complex Wave Rep. (CWR) of Distance Transform

y(X):exp{liS(;)g

Fourier Transform (FT) of CWR
F(u) = Fourier Transform{ y (X)}

Normalized power spectrum = HOG

P(u)=Fu)F(u)

Spatial frequencies are gradient histogram bins

VS = hu



1D Derivative Density Example

Let X be a uniformly distributed random variable on
Q = [a,b].

Define a random variable Y = S (X). S~ behaves like the

transformation function.

The probability density of Y corresponds to the derivative
density function of S .

X > S’ > Y=S§ ’(X)




Derivative density

The probability density function for the derivative (Y)
is given by

1 1
Q) =T 2 157y

Summation is over the set of locations x, € (

where S "(x,) = Uo.



Stationary phase approximation

Gaussian integral

OEng—;El )gexpae mxo

7} h ﬂ
&5 (x,) 0 £luxoo‘
ex +eX S —d
e S S z 82h(x %) (o)l
N exp@S(xo) - ux, O ae po

h 2| S "(xo pgi as h—0

Integral peaked at S’(x,)=u

Rigorously shown by FW.J. Olver, Asymptotics and special functions, 1D

R. Wong, Asymptotic Approximations of Integrals, 2D and higher



Power spectrum of exp(iS/h)

Power spectrum  P(u,) = F(u,)F(u,)

As h—0 using stationary
phase

1 N (up) 1

Required density term

-

u

(1
N(g) N(wg) | 3 [S(6) =S (x) ~uy (%, _XI)]+9(Xk’XI)j

o1 10Tk NERCOINERS
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Interval measures match

So,
Ug+ox N (uy) Yo+
lim jP(u)du _ L _f . :
7i—0 o L k=1 Ug |S (Xk (U))
Hence,
Ug+x N (up)
I|m—I|m IP(U)dU _ 2 =
a—0 ¢y h—0 L k=1 |S”(Xk)|

) |

Limit and integration order cannot be

swapped Gradient density



Distance transform gradient density
=

-1 Distribution function: W(O<wo<O+A0)= n Z I R (w)dw

k=1 ¢

1 K
-1 Density function: Q(w) = E Z sz ()
k=1

Length=R, (w)

* P
J/\ ° N Density=sum of
/

squares of

' / . p length




From CWR to HOG

CWR:. y(X)= exp{li

True density function
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- Atlas computation

From Schrédinger distance transforms to square-
root densities



Atlas Construction
—

A Slice from the 3D MRI of One Subject

Distance Transform Square Root Density
:iﬂ', I"*_. .

Wil !'L;

Eqn.{1)

—Six}

Eqn.(1): ¢{x) = a exp{ - )]

Ean.(2): S(x) = hlog(a) — hlog(g(x))

Zero Level Set of Distance Transform Distance Transform of Mean Square Root Density of Mean

S(x)=0

=

Eqn.(2})

Note: The color for different label is only for visualization purpose.



Shape Complex Atlas

Neuroanatomical structures

Smoother atlas with increasing h



Summary

From calculus of variations to Hamilton-Jacobi.
From Hamilton-Jacobi to Schrodinger.

Schrédinger Distance Transform (SDT) by solving
inear differential equation instead of nonlinear
Hamilton-Jacobi.

Linear solver ecosystem for the eikonal.

Normalized power spectrum of exp(iS/h) converges
to distance transform gradient density as h tends to
zero. (Interval measures match.)
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Legendre transformation to obtain the
Hamiltonian

By applying Legendre transformation to the Lagrangian i.e.

defining
_ 0L _ .o ag;
b= g = T (O %) 7,
dt
dg, _ dg

and writing (q, p,t) we get the Hamiltonian to be

dt  dt

H (q, p)zz P; %_L: 12 ((p1)2 +(p2)2)
dt 2 f



Canonical transformation to obtain the
Hamilton-Jacobi equation

The Hamilton-Jacobi equation is obtained via a canonical
transformation of the Hamiltonian.

In classical mechanics, a canonical transformation is defined as
a change of variables which leaves the form of the Hamilton
equations unchanged.

p/\/—‘\ > Pr\f

) OH .
S . oK
i _T’ Qi = —,
P; OP
© oH :
_ 5 oK



Type 2 Canonical transformation

For a type 2 canonical transformation, we have

>p ShoH =3RS K QuQu PP+

where

F=-> QPR +S(q,P,t)

dF d oS oS dg oS dP
— Z( Q . Q ) Z ql n [
dt dt ot “|oq dt  oP dt




Hamilton-Jacobi formulation contd.

1 Equating and canceling out terms, we get

o — OS
- oq,

OS
Qi_a—Pi
K=H+§

ot



Hamilton-Jacobi equation

When we pick a particular type 2 canonical
transformation where in K=0, we get

OS oS OS
—+H(q1,q2, , ij
ot 0q, 0q,

oS 1
Substituting P; = a—q;m, H= 2f2 ((pl) (pz)z)

V|’

=0
at 2f*




Hamilton-Jacobi formulation contd.

Since the Hamiltonian H is independent of time, by separation
of variables

S(X,1)=S*(X)-Et,

S* satisfies the relation
* \ 2 * \ 2
1 OS OS
> + = E.
21 Kaqu (%J }

Setting E to be V2 ,we get

s = 12



E(w) =

+A ) Epp(o)) jhe
S (i,j)€d N

With/o/(x) =0 for x = (x,y) € 91?2
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