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Dimension reduction

® Question:

How can we discover low dimensional structure in
high dimensional data?

® Motivations:
Exploratory data analysis & visualization
Data reduction for faster algorithms

Robust statistical modeling

Learning new features
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Cool applications

® Embedding music similarity graph
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Cool applications

® Gene mirrors Europe geography

[Novembre et al iOdé]
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Cool applications

® Visualize how papers are clustered

microsoft, users, vista

nasa, space, golf

rain;. storm, snow

pope, benedict, turkey

gaza, palestinian, israel

gemayel, lebanon, syrian

iraq, bush, iraqi

percent, million, compan

game, season, time

percent, people,

animals, wildlife, people

president, government, people
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General framework

® Inputs
{x; cRP i=1,2,...,N}

® QOutputs
{y; eRM i=1,2,...,n}

® Constraint
MKD

® Goals

What properties of x should we preserve in y?
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Many many algorithms

® Linear
PCA, MDS, random projection, CCA
® Nonlinear
Neural networks, GTM
® Nonparametric
Kernelized version of all linear methods
Manifold learning

Gaussian Process
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Many many algorithms

® Linear

random projection, CCA
® Nonlinear
Neural networks, GTM

® Nonparametric

Kernelized version of all linear methods
w earning

Gaussian Process
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Outline of this lecture (Part 1)

® Central questions
Discover linear structures

Generalize to nonlinear structures

® Algorithms
Principal Component Analysis (PCA)
Metric Multidimensional Scaling (MDS)
Neural Network Autoencoders
Kernel PCA

Tuesday, August 6, 13



Outline of next lecture (Part 2)

® Central questions
Discover nonlinear structures
Leverage tractable computation
® Algorithms
Isomap
Locally linear embedding (LLE)

Maximum variance unfolding (MVU)
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Theme: linear vs nonlinear

Linear structure nonlinear structure

Which one is easier to identify?

Tuesday, August 6, 13 10



Discover linear structures

I. Principal Component Analysis (PCA)
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Principal components analysis

Does the data mostly lie in a subspace?

If so, what is its dimensionality?
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The framework of PCA

® Assumptions

Centered inputs

Y xi=0
Linear projection i:1to subspace
y, =U Tz
UcRPM  and UtUu =1
® Objective

maximize variances in y as much as possible

Tuesday, August 6, 13
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The 1st principal component (PC)

® Objective

maximize variance of points projected
on the line

® Why maximize variance?

Zero variance

= not interesting data pattern

High variance .

= likely interesting data pattern
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PCA: solution for the first PC

i covariance matrix of the data
® Variance

2 T T T T T
E y; = E U] T;T; W = U { E T;T; }u1 =u; Cru,

® Constrained optimization

Z2

max urlr C,u;

such that uiu; =1

® Closed-form solution

Largest eigenvector of the
covariance matrix
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What about other components?

® Variance of projections on the k-th PC

el
3

E yz—ukCuk !
i

® Constrained optimization >/<

max uk C WL

such that wjur =1 and ugukr =0

® Closed-form solution

The k-th largest eigenvector of the
covariance matrix
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Recipe

® Centralize inputs
zi -z — =Y g
1 (5 JP\I i (5
® Compute covariance matrix
1

® Decompose spectrally
Crur = A\pug

® Select top M pairs to form projection

(ud,/\d) U:(ul U2 e o o uM)
A1 2 A2 2 2 Apm
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® Original data

3

A\ = 3.4-10°
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Examples of running PCA
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® Principal components

Ay = 2.8 10°

they look like blurred original images

A3 =24-10°

Ay = 1.6-10°

Used to centralize inputs
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Choose the dimensionality

common choice is 95% or 90%
M oA

bar-plot of eigenvalues
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Interpreting PCA

® Principal components

Basis of a subspace that maximally preserve
variance in data

® Eigenvalues
Variances of linearly projected inputs on the basis
® Estimated dimensionality

Number of significant eigenvalues, whose sum
explain the total variance in data above a
threshold.
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Another example

Eigenfaces (principal
components) from
7562 face images

Top left image’s low-
dimensional
representation is thus I5
numbers, each a
projection of that image
onto an eigenface
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Meaning of low-dimensional representation?

® An alternative objective
Linear projection (as before)
Yi = Uz,
Reconstruct the original input
) =Uy, =UU" z;

Minimize reconstruction error

min Y |l@; — ;|3
()
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Equivalent to maximizing variance

® Maximize variance

max E UTa:ia:iUT
(

® Minimize reconstruction error
min Z lz; — |5
7

® Yield the same solution

U is the top eigenvectors of the covariance matrix
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Interpreting PCA (again)

® Principal components

Basis of a linear subspace that is closest to data
points

® Low-dimensional representation

Coordinates (ie, combination coefficients of the
basis) of the closet data point in that subspace

There are other interpretations!
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Linear method is not enough!

Apply PCA

Tuesday, August 6, 13
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We need nonlinear mapping!

nonlinear projection

>
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Discover nonlinear structures

1. Neural networks autoencoders

Tuesday, August 6, 13
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Autoencoder

® Neural network

Implement nonlinear @ @ © @ O)

functions for both g

projection and

reconstruction (‘ O ‘)

Reconstruct inputs at f

output (‘ @ @ © ‘)
® Minimize reconstruction  reduce to PCA if f

error and are linear

min Z i — f(mZ))”2
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Contrast PCA to N.N. Autoencoders

e PCA

Identify linear structures only

Easy to solve, no local optima, no tuning
parameters

® Neural network

Identify nonlinear structures

Iterative procedure, local optima, need to tune
many parameters (network size, learning rate)
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Linear vs nonlinear

DONOOTNSEWUN -0

Can we do better?
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Discover linear structures

3. Metric Multidimensional Scaling (MDS)
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Alternative criteria

® Preserve pairwise distances?

7
le: — ;513 = lly; — y;ll3

IinN

projection
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Preserve all pairwise distances

® Minimize distortion on distances

| 2
min E |z — ;]2 — |ly; — yj”2]
O]

® Resort to a more tractable formulation

Preserve pairwise inner products (of centered

inputs) - .
min Z [a’z Lj—Y; ?!j]
ij
Intuition

T
7

|x; — €B]Hg =@ x; + :B]TZBJ' — Qw;-razj
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MDS: match Gram matrix

® Gram matrix

Matrix composed of pairwise inner products

G = [Gyy] = [zTz;) € RNV

® Optimal embedding

min ) [Gi; — y; y;)’
ij

No constraints on y!
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Solution to MDS

® Decompose Gram matrix spectrally

Compute top M eigenvalues and eigenvectors

Gv = )\ {(va, \a)} 3L,

Note eigenvector is N-dimensional

® Embed by using eigenvectors as coordinates
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Especially useful if only know distances

We convert distance matrix

D = [D?, Dj; = |l — ]|
to Gram matrix
1

with centering matrix

1
H=1I,— -11"
n
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PCA vs MDS

® Data matrix

X =

ERNXD

® PCA decompose covariance matrix

C,=X'X e RP*XP

® MDS decompose Gram matrix

G=XX"'ecRVXN

Tuesday, August 6, 13
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Are they really that different?

® Same set of eigenvalues

1 1 1
—XTXu=\ul—~ {XXTNXTu — N/\NXu

N

PCA MDS

® Similar low dimensional representation
® Different computational cost

PCA scales quadratically in D

MDS scales quadratically in N
Big win for MDS when D is much greater than N !
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PCA vs MDS

e PCA
Linear method, parametric
+ Fast, easy to compute

- Does not unfold nonlinear structures

® MDS
Dual to PCA
+ Can be faster

+ Need only distances or inner products

Tuesday, August 6, 13
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Discover nonlinear structures

4. kernel PCA

Tuesday, August 6, 13
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Central challenge

Linear method
is not good enough

SRR after nonlinear
% e T 0% e mapping , linear
¢ oe uEm" method works!
T \. o-: ¢
“' 0 o h
Lo
—— S %
e
' e
How to identify this mappin 3 . f‘
y iz mapeing:. § S
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Kernel method

® Kernel functions
Avoid explicitly finding a nonlinear mapping

z = ¢(x)

Define implicitly through a kernel function
T
K(zi, x;) = ¢p(x;) P(x;)
® Common kernels
Gaussian kernel  K(z;,z;) = exp {—|z; — z;|3/0°}

Polynomial kernel K(z;,z;) = (1+x; - z;)°
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Kernel PCA

® Main idea
Map data to kernel feature space; then run MDS
® Recipe
Choose a kernel function
Compute kernel matrix K = [K(x;,x;)]
Centralize kernel matrix K + HKH
Decompose spectrally K = Z A\ivavy
d

Project )
y x Kv
(there are some scaling constants)
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Does it work?

® Demo

Tuesday, August 6, 13
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Next lecture

How to discover nonlinear structures?

Going from linear to nonlinear is not that difficult!
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Outline of previous lecture (Part 1)

® Central questions
Discover linear structures

Generalize to nonlinear structures

® Algorithms
Principal Component Analysis (PCA)
Metric Multidimensional Scaling (MDS)
Neural Network Autoencoders
Kernel PCA
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Outline of this lecture (Part 2)

® Central questions

Discover nonlinear structures

® Algorithms
Isomap
Locally linear embedding (LLE)

Maximum variance unfolding (MVU)
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What does it take to discover nonlinear structures?

—

Being myopic!

Tuesday,

August 6, 13
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Nonlinear structures

® Manifolds such as

® can be approximately locally with linear
structures.
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Why good to be myopic?

Euclidean distance is not appropriate measure of
proximity between points on nonlinear manifold.

A closer to C in A closer to B once
Euclidean distance unrolled
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Nonlinear methods: manifold learning

Preserve geometrical properties on manifolds

Local symmetry and proximity
Locally linear embedding (Roweis & Saul ‘ 00)
Laplacian eigenmap (Belkin & Niyogi’ 03)

Local isometry and angle
Local Tangent Space Alignment (LTSA) (Zhang 04)
hessian LLE (Donoho & Grime ’'03)
Maximum variance unfolding (MVU) (Weinberger & Saul 04)
Conformal component analysis (Sha & Saul 05)

(Estimated) geodesic distances
IsoMap (Tenenbaum et al 00)

Diffusion distances

Diffusion map (Coifman et al 06)

Tuesday, August 6, 13
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Manifold learning

1. Isomap

Tuesday, August 6, 13
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IsoMap: Preserving geodesic distances

Geodesic distance is more appropriate measure of
proximity between points on nonlinear manifold.

A closer to C in A closer to B in
Euclidean distance geodesic distance
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Caveat

Without knowing the shape of the manifold, how
to estimate the geodesic distance?

The tricks will unfold next....

Tuesday, August 6, 13
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Step 1. Build adjacency graph

® Graph from nearest neighbor

Vertices represent inputs

Edges connect nearest neighbors

® How to choose nearest neighbor

k-nearest neighbors

Epsilon-radius ball

® Assumptions
Graph is connected

No “shortcuts” that connect wrongfully

Tuesday, August 6, 13
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From local distance to geodesic

4‘&53'

® Approximation Eﬁ%

Distances on manifold | ?
are modeled as shortest B 5

paths on the graph

all pairwise shortest A
paths can be computed
efficiently
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From local distance to geodesic

¥

Ry

Do ® 'q
-}.‘ .. }*:;.'\
- . e
e Approximation E?‘k‘?

Distances on manifold | 7
are modeled as shortest B 2

paths on the graph

all pairwise shortest A

paths can be computed E
efficiently

D \OEI

e A —
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Step 2. Construct geodesic distance matrix

® Geodesic distances
Weight edges by local Euclidean distance
Approximate geodesic by shortest paths
® Computational cost

Require all pair shortest paths (Djikstra’s
algorithm: O(N?log N + NZ2k))

Require dense sampling to approximate well

(very intensive for large graph)
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Step 3. Apply MDS

® Convert geodesic matrix to Gram matrix

Pretend the geodesic matrix is from Euclidean
distance matrix

® Diagonalize the Gram matrix
Gram matrix is a dense matrix, ie, no sparsity
Can be intensive if the graph is big.

® Embedding

Number of significant eigenvalues yield estimate
of dimensionality

Top eigenvectors yield embedding.
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Examples

® Swiss roll

1024, k=12

61
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® Wrist images

62

Wrisl rofafion

i}

ucpuexe jefuy

N=200
k=6
D = 4096
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® Face images

muﬁ W_

Left—right pose

[FTTT  Lighting direction

=it

asod umop—dn
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Overcome computational bottleneck

® Embed music
similarity graph N= 267,000

Landmark MDS E = 3,200,000

avoid computing
geodesic distances B e e
between all pairs A -

Jimi Hondrix

1.5+ Pleetwood Mac Talkking Heads

The Rolling Stones

Kate Bush Geresis
Sheryl Crow
ga

Suzanne Ve Alanis Morissette

The Pélice
Dire Straits Bryan Ferry

| Peter Gabriel

Sarah McLachlan

| A A A TorlAmes .
05 0 05 1 15 4

[Platt, 2004]
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Summary of Isomap

® Recurring theme
Construct (sparse) graph from kNN
Discretize manifold with graphs

Formulate matrix-based optimization from graph
weights

Preserve properties derived from those weights

Derive embedding from decomposing the matrix

Reduce dimensionlity with MDS
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Manifold learning

2. Locally linear embedding (LLE)

Tuesday, August 6, 13

66



Locally linear embedding (LLE)

® [ntuition

Better off being myopic and trusting only local
information

® Steps
Define locality by nearest neighbors
Encode local information Least square fit locally

Minimize global objective to preserve local
information Think globally
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Step 1. Build adjacency graph

® Graph from nearest neighbor

Vertices represent inputs

Edges connect nearest neighbors

® How to choose nearest neighbor

k-nearest neighbors

Epsilon-radius ball

® Assumptions

Connected graph Large k would

No short-circuit  cause this problem
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Step 2. Least square fits

® Characterize local geometry of each
neighborhood by a set of weights

® Compute weights by reconstructing each
input linearly from its neighbors

(W) =) |lzi—> Wi
) k

subject to Y Wi =1
k
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Weighted adjacency graph

W =

=

weights fo/

ith vertex

Vertex

Vertex

0.00

0.00

0.00

0.00
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What are these weights for?

; They are shift, rotation, scale invariant.

0 LSS — e ————
B - R
et 7 P AL S P g { i vk B e ¥ & "
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-
TS

The head should sit in the middle
of left and right finger tips.
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Step 3. Preserve local information

® The embedding should follow same local
encoding

0.00

0.00

k

0.00

® Minimize a global reconstruction error
YY) =) llyi— ) Wiyl
i k

subject to 2 ¥i=0
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Sparse eigenvalue problem

® Minimize a global reconstruction error

V(Y) = lly;— > Wiryl® |l

subject to ) ¥i=0
%YYTzI
® Solution

Bottom eigenvectors of (I — W) (I — W)
Relates to kernel PCA
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Summary of LLE

® Build k-nearest neighbor graph

® Solve linear least square fit for each neighbor

Closed-form solution

® Solve a sparse eigenvalue problem

Every step is relatively trivial,
however the combined effect is quite
complicated.
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Examples

= N w B T
T | -
N woS
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Examples of LLE

® Pose and expression

N = 1965
k=12

D = 560
d =

Tuesday, August 6, 13
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LLE vs Isomap

® Similarity
Graph-based
Spectral decomposition of matrix
® Differences
Dense (Isomap) vs Sparse (LLE)
Top (Isomap) vs Bottom (LLE) eigenvectors

Preserve distances (Isomap) vs local geometry
(LLE)

Tuesday, August 6, 13
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Manifold learning

3. Maximum variance unfolding (MVU)
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What if we preserve distances explicitly?

® But, we will get MDS!
True, though

® what if we preserve local distances?
We trust local distances anyway.

In contrast to Isomap, we would not even be

bothered by estimating global (geodesic
distances)
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Preserve local distances

® Quadratic programming

max |yl unfolding
i centering
Zyi =0 only if i and j are

nearest neighbor!

ly; — y,l* = ||l — x;|°
® |ntuition

Nearby points are connected with rigid rods
Unfold inputs without breaking apart rods. O
O o Rotation allowed O

O O
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Maximum variance unfolding

(Weinberger & Saul 2003, Weinberger, & Saul 2004)
® Change of variables

T
Kij =Y; Y,
® Semidefinite programming (SDP)
max Z K e unfolding objective
Z Ki; =0 See this trick
©]

/ before?
Kii+ Kj; —2K;; = ||z; — "33'”2

K >0 S~ Gram matrix needs to be
positive semidefinite
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Example: images of rotating teapot

® Full rotation
N = 400
k=14
D=23028

® Half rotation

-
2 |
4

- — ~— - - 1
TR LF. o8 . ». P ” | Y wamy (|
BV el il ke N N

-—

Images are ordered by d=1I
embedding according to view
angle
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Example: sensor localization

cities 2 day 0 d;34

sensors distributed in US cities.
Infer coordinates from limited measurement of
distances

(Weinberger, Sha & Saul, NIPS 2006)
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Where are the cities?

Discover US atlas almost perfectly!
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Summary

® 3 methods

IsoMap
Global geodesic

LLE

Local symmetry and proximity

MVU

Local isometry

® Common properties

graph methods, geometry, convex optimization
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Summary: graph based spectral methods

® Construct nearest neighbor graph
Vertices are data points
Edges indicate nearest neighbors

® Optimization

Spectral decomposition, or

Semidefinite programming
® Derive embedding .

Eigenvector as embedding

Estimate dimensionality
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Link to differential geometry

® Thru Laplace-Betrami operator
Graph as discretized (continuous) manifold
Continuous operator --> discrete Laplacian
® Spectral decomposition
Eigenvectors form functional basis.

Key difference: basis are data-dependent

Tuesday, August 6, 13 87



Basis for functions defined on graphs




Conclude

Tuesday, August 6, 13
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Bird’s eye view

T e e

PCA
MDS

2000
Isomap

2002 2003
Laplacian Hessian

2004 2005
Maximum Conformal

(Tenebaum eijgenmaps LLE variance component
et al) unfolding  analysis
(Belkin & (Donoho &
LLE Niyogi) Grimes) (Weinberger & (Sha &
(Roweis & Saul) Saul)
Saul)
spectral methods convex

quadratic programming :optimization (SDP)
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Take-home messages

® Dimension reduction
Many ideas and techniques
Many applications (in vision, NLP, etc)

Computationally tractable methods are often
surprisingly powerful

® Link to other areas

Learning sparse representation

Learning global representation
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