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Dimension reduction

• Question:

How can we discover low dimensional structure in 
high dimensional data?

• Motivations:

Exploratory data analysis & visualization

Data reduction for faster algorithms

Robust statistical modeling

Learning new features
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Cool applications

• Embedding music similarity graph

Algorithm n Average % of CPU time
Random Songs Closer (sec)
than Sequential Songs

FSE 60 5.0% 52.8
LMDS 60 4.5% 52.7
LMDS 100 4.1% 87.4
LMDS 200 3.3% 175.0
LMDS 400 3.2% 355.1
Laplacian Eigenmaps N/A 13.0% 8003.4

Table 2: Speed and accuracy of music embedding for various algorithms.

All embeddings are 20-dimensional (d = 20). The CPU time was measured on a 2.4 GHz
Pentium 4. FSE uses a fixed rectangle size n = 3d, so has one entry in the table. For the
same n, FSE and LMDS are competitive. However, LMDS can trade off speed for accuracy
by increasing n.

A Laplacian Eigenmap applied to the entire sparse similarity matrix was much slower than
either of the RD MDS algorithms, and did not perform as well for this problem. A Gaussian
kernel with σ = 2 was used to convert distances to similarities for the Laplacian Eigenmap.
The slowness of the Laplacian eigenmap prevented extensive tuning of the parameters.
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Figure 2: LMDS Projection of the entire music dissimilarity graph into 2D. The coordinates
of 23 artists are shown.

Given that LMDS outperforms FSE for large n, this paper now presents qualitative results
from the LMDS n = 400 projection. First, the top two dimensions are plotted to form a
visualization of music space. This visualization is shown in Figure 4.2, which shows the

[Platt, 2004]
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Cool applications

• Gene mirrors Europe geography

[Novembre et al 2008]
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Cool applications

• Visualize how papers are clustered
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General framework

• Inputs

• Outputs

• Constraint

• Goals
What properties of x should we preserve in y?

{yi 2 RM , i = 1, 2, . . . , n}

M ⌧ D

{xi 2 RD, i = 1, 2, . . . , N}
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Many many algorithms

• Linear
PCA,  MDS, random projection, CCA

• Nonlinear
Neural networks, GTM

• Nonparametric
Kernelized version of all linear methods
Manifold learning
Gaussian Process
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Many many algorithms

• Linear
PCA,  MDS, random projection, CCA

• Nonlinear
Neural networks, GTM

• Nonparametric
Kernelized version of all linear methods
Manifold learning
Gaussian Process
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Outline of this lecture (Part 1)

• Central questions
Discover linear structures
Generalize to nonlinear structures

• Algorithms
Principal Component Analysis (PCA)
Metric Multidimensional Scaling (MDS)
Neural Network Autoencoders
Kernel PCA
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Outline of next lecture (Part 2)

• Central questions 
Discover nonlinear structures
Leverage tractable computation

• Algorithms
Isomap 
Locally linear embedding (LLE)
Maximum variance unfolding (MVU)
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Theme: linear vs nonlinear

Linear structure nonlinear structure

Which one is easier to identify?
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Discover linear structures

I.  Principal Component Analysis (PCA)
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Principal components analysis

Does the data mostly lie in a subspace? 
If so, what is its dimensionality?

D = 2
M = 1

D = 3
M = 2
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The framework of PCA

• Assumptions
Centered inputs

Linear projection into subspace

• Objective
maximize variances in y as much as possible

�

i

xi = 0

yi = U

T
xi

UTU = IU 2 RD⇥M and
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The 1st principal component (PC)

• Objective
maximize variance of points projected 
on the line

• Why maximize variance?
Zero variance 
      ⇒ not interesting data pattern

High variance
      ⇒ likely interesting data pattern 
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PCA:  solution for the first PC

• Variance

• Constrained optimization

• Closed-form solution
Largest eigenvector of the 
covariance matrix
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What about other components?

• Variance of projections on the k-th PC

• Constrained optimization

• Closed-form solution
The k-th largest eigenvector of the 
covariance matrix
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Recipe

• Centralize inputs

• Compute covariance matrix 

• Decompose spectrally    

• Select top M pairs to form projection

U = (u1 u2 · · · uM )
�1 ⇥ �2 ⇥ · · · ⇥ �M

(ud, �d)

xi  xi �
1

N

X

i

xi

C

x

=
1

N

X

i

x

i

x

T
i

C
x

u
k

= �
k

u
k
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Examples of running PCA

• Original data

• Principal components 
they look like blurred original images

Mean λ1 = 3.4 · 105 λ2 = 2.8 · 105 λ3 = 2.4 · 105 λ4 = 1.6 · 105

Used to centralize inputs
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Choose the dimensionality

�M
d=1 �d�D
d=1 �d

� Threshold

common choice is 95% or 90%
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Interpreting PCA

• Principal components
Basis of a subspace that maximally preserve 
variance in data

• Eigenvalues
Variances of linearly projected inputs on the basis

• Estimated dimensionality
Number of significant eigenvalues, whose sum 
explain the total variance in data above a 
threshold.
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Another example

Eigenfaces (principal 
components) from 
7562 face images

Top left image’s low-
dimensional 

representation is thus 15 
numbers, each a 

projection of that image 
onto an eigenface
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Meaning of low-dimensional representation?

• An alternative objective
Linear projection (as before)

Reconstruct the original input

Minimize reconstruction error

yi = U

T
xi

x

0
i = Uyi = UU

T
xi

min
X

i

kxi � x

0
ik22
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Equivalent to maximizing variance

• Maximize variance 

• Minimize reconstruction error

• Yield the same solution
U is the top eigenvectors of the covariance matrix

min
X

i

kxi � x

0
ik22

max

X

i

U

T
xixiU

T
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Interpreting PCA (again)

• Principal components
Basis of a linear subspace that is closest to data 
points

• Low-dimensional representation
Coordinates (ie, combination coefficients of the 
basis) of the closet data point in that subspace

There are other interpretations!
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Linear method is not enough!
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We need nonlinear mapping!

nonlinear projection

nonlinear reconstruction
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Discover nonlinear structures

1. Neural networks autoencoders
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Autoencoder

• Neural network
Implement nonlinear 
functions for both 
projection and 
reconstruction
Reconstruct inputs at 
output

• Minimize reconstruction 
error

g

f

min
X

i

kxi � g(f(xi))k22

reduce to PCA if f 
and are linear
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Example: embedding images of digits

PCA

(Deep) neural 
networks

[Hinton & 
Salakhutdinov, 2006]
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Contrast PCA to N.N. Autoencoders

• PCA
Identify linear structures only
Easy to solve, no local optima, no tuning 
parameters

• Neural network
Identify nonlinear structures
Iterative procedure, local optima, need to tune 
many parameters (network size, learning rate)
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Linear     vs     nonlinear

Can we do better?
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Discover linear structures

3. Metric Multidimensional Scaling (MDS)
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Alternative  criteria

• Preserve pairwise distances?

xi

xj

yj

yilinear
projection

kxi � xjk22 = kyi � yjk22
⁇
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Preserve all pairwise distances

• Minimize distortion on distances

• Resort to a more tractable formulation
Preserve pairwise inner products (of centered 
inputs)

Intuition

min
X

ij

⇥
kxi � xjk2 � kyi � yjk2

⇤2

min
X

ij

⇥
x

T
i xj � y

T
i yj

⇤2

kxi � xjk22 = x

T
i xi + x

T
j xj � 2xT

i xj
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MDS:  match Gram matrix

• Gram matrix
Matrix composed of  pairwise inner products

• Optimal embedding

min
X

ij

[Gij � yT
i yj ]

2

No constraints on y!

G = [Gij ] = [xT
i xj ] 2 RN⇥N
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Solution to MDS

• Decompose Gram matrix spectrally
Compute top M eigenvalues and eigenvectors

Note eigenvector is N-dimensional

• Embed by using eigenvectors as coordinates

Gv = �v

yid =
p

�d vdi d = 1, 2, . . . ,M

{(vd,�d)}Md=1
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Especially useful if only know distances 

We convert distance matrix

to Gram matrix

with centering matrix

G = �1
2
HDH

H = In �
1
n
11T

D = [D2
ij ] D2

ij = kxi � xjk2
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PCA vs MDS

• Data matrix

• PCA decompose covariance matrix

• MDS decompose Gram matrix

X =

2

664

x

T
1

x

T
2

· · ·
xN

3

775 2 RN⇥D

G = XXT 2 RN⇥N

C
x

= XTX 2 RD⇥D
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Are they really that different?

• Same set of eigenvalues

• Similar low dimensional representation

• Different computational cost
PCA scales quadratically in D
MDS scales quadratically in N

PCA MDS

Big win for MDS when D is much greater than N !

1

N
XTXu = �u ! XXT 1

N
XTu = N�

1

N
Xu
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PCA vs MDS

• PCA
Linear method, parametric
+ Fast, easy to compute
-  Does not unfold nonlinear structures

• MDS
Dual to PCA
+  Can be faster 
+  Need only distances or inner products
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Discover nonlinear structures

4. kernel PCA
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Central challenge

Linear method
is not good enough

after nonlinear 
mapping , linear 
method works!

How to identify this mapping?

42Tuesday, August 6, 13



Kernel method

• Kernel functions
Avoid explicitly finding a nonlinear mapping 

Define implicitly through a kernel function

• Common kernels
Gaussian kernel
Polynomial kernel

z = �(x)

K(xi,xj) = �(xi)
>
�(xj)

K(xi,xj) = exp

�
�kxi � xjk22/�2

 

K(xi,xj) = (1 + xi · xj)
d
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Kernel PCA

• Main idea
Map data to kernel feature space; then run MDS 

• Recipe
Choose a kernel function
Compute kernel matrix
Centralize kernel matrix 
Decompose spectrally 
Project 

K = [K(xi,xj)]

K̃  HKH

K̃ =
X

d

�dvdv
T
d

y / K̃v

(there are some scaling constants)
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Does it work? 

• Demo 
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Next lecture

How to discover nonlinear structures?

Going from linear to nonlinear is not that difficult!
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Outline of previous lecture (Part 1)

• Central questions
Discover linear structures
Generalize to nonlinear structures

• Algorithms
Principal Component Analysis (PCA)
Metric Multidimensional Scaling (MDS)
Neural Network Autoencoders
Kernel PCA
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Outline of this lecture (Part 2)

• Central questions 
Discover nonlinear structures

• Algorithms
Isomap 
Locally linear embedding (LLE)
Maximum variance unfolding (MVU)
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What does it take to discover nonlinear structures?

Being myopic!
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Nonlinear structures

• Manifolds such as

• can be approximately locally with linear 
structures. 
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Why good to be myopic?

Euclidean distance is not appropriate measure of 
proximity between points on nonlinear manifold.

A

B

C

ABC

A closer to C in 
Euclidean distance

A closer to B once 
unrolled
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Preserve	
  geometrical	
  proper0es	
  on	
  manifolds
Local	
  symmetry	
  and	
  proximity

Locally	
  linear	
  embedding	
  (Roweis	
  &	
  Saul	
  ‘	
  00)

Laplacian	
  eigenmap	
  (Belkin	
  &	
  Niyogi’	
  03)

Local	
  isometry	
  and	
  angle
Local	
  Tangent	
  Space	
  Alignment	
  (LTSA)	
  (Zhang	
  04)

hessian	
  LLE	
  (Donoho	
  &	
  Grime	
  ’03)	
  

Maximum	
  variance	
  unfolding	
  (MVU)	
  (Weinberger	
  &	
  Saul	
  04)

Conformal	
  component	
  analysis	
  (Sha	
  &	
  Saul	
  05)

(Es0mated)	
  geodesic	
  distances
IsoMap	
  (Tenenbaum	
  et	
  al	
  00)

Diffusion	
  distances
Diffusion	
  map	
  (Coifman	
  et	
  al	
  06)

Nonlinear	
  methods:	
  manifold	
  learning
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Manifold learning

1. Isomap
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IsoMap: Preserving geodesic distances

Geodesic distance is more appropriate measure of 
proximity between points on nonlinear manifold.

A

B

C

ABC

A closer to C in 
Euclidean distance

A closer to B in 
geodesic distance
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Caveat

Without knowing the shape of the manifold, how 
to estimate the geodesic distance?

A

B

C

The tricks will unfold next....
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Step 1. Build adjacency graph

• Graph from nearest neighbor
Vertices represent inputs
Edges connect nearest neighbors

• How to choose nearest neighbor
k-nearest neighbors
Epsilon-radius ball

• Assumptions
Graph is connected
No “shortcuts” that connect wrongfully 
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From local distance to geodesic

• Approximation
Distances on manifold 
are modeled as shortest 
paths on the graph

all pairwise shortest 
paths can be computed 
efficiently

A

B

C

D

A

D B

C

58Tuesday, August 6, 13



From local distance to geodesic

• Approximation
Distances on manifold 
are modeled as shortest 
paths on the graph

all pairwise shortest 
paths can be computed 
efficiently

A

B

C

D

A

D B

C
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Step 2. Construct geodesic distance matrix

• Geodesic distances
Weight edges by local Euclidean distance
Approximate geodesic by shortest paths

• Computational cost
Require all pair shortest paths (Djikstra’s 
algorithm: O(N2 log N + N2k))
Require dense sampling to approximate well
(very intensive for large graph)
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Step 3. Apply MDS

• Convert geodesic matrix to Gram matrix
Pretend the geodesic matrix is from Euclidean 
distance matrix

• Diagonalize the Gram matrix
Gram matrix is a dense matrix, ie, no sparsity
Can be intensive if the graph is big.

• Embedding
Number of significant eigenvalues yield estimate 
of dimensionality
Top eigenvectors yield embedding.
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Examples

• Swiss roll

N=1024, k=12

61Tuesday, August 6, 13



• Wrist images

N=200
k=6

D = 4096
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• Face images
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Overcome computational bottleneck

• Embed music 
similarity graph
Landmark MDS
avoid computing 
geodesic distances 
between all pairs

N= 267,000
E = 3,200,000

[Platt, 2004]
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Summary of Isomap

• Recurring theme
Construct (sparse) graph from kNN

Discretize manifold with graphs

Formulate matrix-based optimization from graph 
weights

Preserve properties derived from those weights

Derive embedding from decomposing the matrix
Reduce dimensionlity with MDS
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Manifold learning

2. Locally linear embedding (LLE)
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Locally linear embedding (LLE)

• Intuition
Better off being myopic and trusting only local 
information

• Steps
Define locality by nearest neighbors
Encode local information 
Minimize global objective to preserve local 
information

Least square fit locally

Think globally
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Step 1. Build adjacency graph

• Graph from nearest neighbor
Vertices represent inputs
Edges connect nearest neighbors

• How to choose nearest neighbor
k-nearest neighbors
Epsilon-radius ball

• Assumptions
Connected graph
No short-circuit

Large k would 
cause this problem
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Step 2. Least square fits

• Characterize local geometry of each 
neighborhood by  a set of weights

• Compute weights by reconstructing each 
input linearly from its neighbors

�(W ) =
�

i

⇥xi �
�

k

W ikxk⇥2

�

k

Wik = 1subject to 
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Weighted adjacency graph

0.00

0.00

0.2 0.00 0.00 0.9 -0.1

0.00

0.00

Vertex

Vertex

weights for 
ith vertex

W = 
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What are these weights for?

The head should sit in the middle 
of left and right finger tips.

They are shift, rotation, scale invariant.
0

0

0.2 0 0 0.9 -0.1

0

0
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Step 3. Preserve local information

• The embedding should follow same local 
encoding

• Minimize a global reconstruction error

yi �
�

k

W ikyk

�(Y ) =
�

i

⇥yi �
�

k

W ikyk⇥2

�
yi = 0

1
N

Y Y T = I

subject to 

0.00

0.00

0.2 0.00 0.00 0.9 -0.1

0.00

0.00
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Sparse eigenvalue problem

• Minimize a global reconstruction error

• Solution
Bottom eigenvectors of
Relates to kernel PCA

�(Y ) =
�

i

⇥yi �
�

k

W ikyk⇥2

�
yi = 0

1
N

Y Y T = I

subject to 

0.00

0.00

0.2 0.00 0.00 0.9 -0.1

0.00

0.00

(I �W )T(I �W )
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Summary of LLE

• Build k-nearest neighbor graph

• Solve linear least square fit for each neighbor
Closed-form solution

• Solve a sparse eigenvalue problem

Every step is relatively trivial, 
however the combined effect is quite 

complicated.
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Examples

N = 1000
k = 8
D = 3
d = 2
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Examples of LLE

• Pose and expression

N = 1965
k = 12

D = 560
d  = 2
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LLE vs Isomap

• Similarity
Graph-based
Spectral decomposition of matrix

• Differences
Dense (Isomap) vs Sparse (LLE)
Top (Isomap) vs Bottom (LLE) eigenvectors
Preserve distances (Isomap) vs local geometry 
(LLE)
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Manifold learning

3. Maximum variance unfolding (MVU)
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• But, we will get MDS!
True, though

• what if we preserve local distances?
We trust local distances anyway.
In contrast to Isomap, we would not even be 
bothered by estimating global (geodesic 
distances)

What if we preserve distances explicitly?
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• Quadratic programming 

• Intuition
Nearby points are connected with rigid rods
Unfold inputs without breaking apart rods.

Preserve local distances

Rotation allowed

max
�

i

⇥yi⇥2

�

i

yi = 0

⇥yi � yj⇥2 = ⇥xi � xj⇥2

unfolding

only if i and j are 
nearest neighbor!

centering
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Maximum variance unfolding

• Change of variables

• Semidefinite programming (SDP) 

Gram matrix needs to be 
positive semidefinite

max
�

ii

Kii

�

ij

Kij = 0

Kii + Kjj � 2Kij = ⇤xi � xj⇤2

K ⇥ 0

See this trick 
before?

unfolding objective

Kij = yT
i yj

(Weinberger & Saul 2003, Weinberger, & Saul 2004)
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Example: images of rotating teapot

• Full rotation 

• Half rotation

N = 400
k = 4

D = 23028

Images are ordered by d=1 
embedding according to view 

angle
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Example: sensor localization

sensors distributed in US cities.
Infer coordinates from limited measurement of 

distances
(Weinberger, Sha & Saul, NIPS 2006)

�

⇧⇧⇤

0 d12 ? d14

d21 0 d23 ?
? d32 0 d34

d41 ? d43 0

⇥

⌃⌃⌅

cities

cities
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Where are the cities?

Discover US atlas almost perfectly!
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Summary

• 3 methods
IsoMap

Global geodesic 

LLE
Local symmetry and proximity

MVU
Local isometry

• Common properties
graph  methods, geometry, convex optimization
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Summary: graph based spectral methods

• Construct nearest neighbor graph
Vertices are data points
Edges indicate nearest neighbors

• Optimization
Spectral decomposition, or
Semidefinite programming 

• Derive embedding
Eigenvector as embedding
Estimate dimensionality
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Link to differential geometry

• Thru Laplace-Betrami operator
Graph as discretized (continuous) manifold 
Continuous operator -->  discrete Laplacian

• Spectral decomposition
Eigenvectors form functional basis.
Key difference: basis are data-dependent
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Basis for functions defined on graphs
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Conclude
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Bird’s eye view

2005
Conformal
component

analysis

(Sha &
Saul)

2004
Maximum
variance
unfolding

(Weinberger &
Saul)

2003
Hessian

LLE

(Donoho &
Grimes)

2002
Laplacian

eigenmaps

(Belkin &
Niyogi)

2000
Isomap

(Tenebaum
et al)

LLE
(Roweis &

Saul)

PCA
MDS

spectral methods
quadratic programming

convex 
optimization (SDP)
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Take-home messages

• Dimension reduction
Many ideas and techniques
Many applications (in vision, NLP, etc)
Computationally tractable methods are often 
surprisingly powerful

• Link to other areas
Learning sparse representation
Learning global representation
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