Dimension Reduction

Prof. Fei Sha

Dept. of Computer Science U. of Southern California

IPAM Summer School on Computer Vision Aug. 6 2013

Dimension reduction

• Question:

How can we discover low dimensional structure in high dimensional data?

• Motivations:

Exploratory data analysis & visualization

Data reduction for faster algorithms

Robust statistical modeling

Learning new features

Cool applications

• Embedding music similarity graph

Cool applications

Gene mirrors Europe geography

Tuesday, August 6, 13

Cool applications

Visualize how papers are clustered

General framework

$\{\boldsymbol{x}_i \in \mathbb{R}^D, i = 1, 2, \dots, N\}$

• Outputs $\{oldsymbol{y}_i \in \mathbb{R}^M, i=1,2,\ldots,n\}$

Constraint

Inputs

$$M \ll D$$

Goals

What properties of x should we preserve in y?

Many many algorithms

Linear

PCA, MDS, random projection, CCA

Nonlinear

Neural networks, GTM

• Nonparametric

Kernelized version of all linear methods Manifold learning Gaussian Process

Many many algorithms

Outline of this lecture (Part 1)

Central questions

Discover linear structures

Generalize to nonlinear structures

Algorithms

Principal Component Analysis (PCA)

Metric Multidimensional Scaling (MDS)

Neural Network Autoencoders

Kernel PCA

Outline of next lecture (Part 2)

Central questions

Discover nonlinear structures

Leverage tractable computation

Algorithms

Isomap

Locally linear embedding (LLE)

Maximum variance unfolding (MVU)

Theme: linear vs nonlinear

Which one is easier to identify?

Discover linear structures

I. Principal Component Analysis (PCA)

Principal components analysis

Does the data mostly lie in a subspace? If so, what is its dimensionality?

The framework of PCA

• Assumptions **Centered** inputs $\sum_i x_i = \mathbf{0}$ Linear projection into subspace $oldsymbol{y}_i = oldsymbol{U}^{\mathrm{T}} oldsymbol{x}_i \ oldsymbol{U} \in \mathbb{R}^{D imes M}$

and $U^{\mathrm{T}}U = I$

Objective

maximize variances in y as much as possible

The 1st principal component (PC)

Objective

maximize variance of points projected on the line

• Why maximize variance?

Zero variance

 \Rightarrow not interesting data pattern

High variance

⇒ likely interesting data pattern

PCA: solution for the first PC

covariance matrix of the data Variance $\sum_{i} y_{i}^{2} = \sum_{i} \boldsymbol{u}_{1}^{\mathrm{T}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{u}_{1} = \boldsymbol{u}_{1}^{\mathrm{T}} \left\{ \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}} \right\} \boldsymbol{u}_{1} = \boldsymbol{u}_{1}^{\mathrm{T}} \boldsymbol{C}_{x} \boldsymbol{u}_{1}$ Constrained optimization $\max \quad \boldsymbol{u}_1^{\mathrm{T}} \boldsymbol{C}_x \boldsymbol{u}_1$ such that $\boldsymbol{u}_1^{\mathrm{T}} \boldsymbol{u}_1 = 1$ Closed-form solution x_1 Largest eigenvector of the

covariance matrix

• Variance of projections on the *k*-th PC

$$\sum_i y_i^2 = oldsymbol{u}_k^{\mathrm{T}} oldsymbol{C}_x oldsymbol{u}_k$$

Constrained optimization

$$\begin{array}{ccc} \max & \boldsymbol{u}_k^{\mathrm{T}} \boldsymbol{C}_x \boldsymbol{u}_k \\ \text{such that} & \boldsymbol{u}_k^{\mathrm{T}} \boldsymbol{u}_k = 1 \quad \text{and} \quad \boldsymbol{u}_k^{\mathrm{T}} \boldsymbol{u}_{k'} = 0 \end{array}$$

Closed-form solution

The *k*-th largest eigenvector of the covariance matrix

Recipe

Compute covariance matrix

Centralize inputs

- **Decompose spectrally**
- Select top M pairs to form projection
 - $(oldsymbol{u}_d,\lambda_d)$ $\boldsymbol{U} = (\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \cdots \ \boldsymbol{u}_M)$ $\lambda_1 > \lambda_2 > \cdots > \lambda_M$

$$oldsymbol{x}_i \leftarrow oldsymbol{x}_i - rac{1}{N}\sum_i oldsymbol{x}_i$$

$$oldsymbol{C}_x = rac{1}{N}\sum_i oldsymbol{x}_i oldsymbol{x}_i^{\mathrm{T}}$$

$$oldsymbol{C}_xoldsymbol{u}_k=\lambda_koldsymbol{u}_k$$

Examples of running PCA

Original data

• Principal components

they look like blurred original images

 Mean
 $\lambda_1 = 3.4 \cdot 10^5$ $\lambda_2 = 2.8 \cdot 10^5$ $\lambda_3 = 2.4 \cdot 10^5$ $\lambda_4 = 1.6 \cdot 10^5$

 Image: Second symplet in the symplet in

Used to centralize inputs

Choose the dimensionality

common choice is 95% or 90%

bar-plot of eigenvalues

Interpreting PCA

Principal components

Basis of a subspace that maximally preserve variance in data

• Eigenvalues

Variances of linearly projected inputs on the basis

• Estimated dimensionality

Number of significant eigenvalues, whose sum explain the total variance in data above a threshold.

Another example

Eigenfaces (principal components) from 7562 face images

Top left image's lowdimensional representation is thus 15 numbers, each a projection of that image onto an eigenface

Meaning of low-dimensional representation?

• An alternative objective

Linear projection (as before)

$$\boldsymbol{y}_i = \boldsymbol{U}^{\mathrm{T}} \boldsymbol{x}_i$$

Reconstruct the original input

$$oldsymbol{x}_i' = oldsymbol{U}oldsymbol{y}_i = oldsymbol{U}oldsymbol{U}^{\mathrm{T}}oldsymbol{x}_i$$

Minimize reconstruction error

$$\min \quad \sum_i \|oldsymbol{x}_i - oldsymbol{x}_i'\|_2^2$$

Equivalent to maximizing variance

• Maximize variance

$$\max \quad \sum_i \boldsymbol{U}^{\mathrm{T}} \boldsymbol{x}_i \boldsymbol{x}_i \boldsymbol{U}^{\mathrm{T}}$$

Minimize reconstruction error

$$\min \quad \sum_i \|oldsymbol{x}_i - oldsymbol{x}_i'\|_2^2$$

• Yield the same solution U is the top eigenvectors of the covariance matrix

Interpreting PCA (again)

• Principal components

Basis of a linear subspace that is closest to data points

Low-dimensional representation

Coordinates (ie, combination coefficients of the basis) of the closet data point in that subspace

There are other interpretations!

Linear method is not enough!

We need nonlinear mapping!

Discover nonlinear structures

1. Neural networks autoencoders

Autoencoder

Neural network

Implement nonlinear functions for both projection and reconstruction

Reconstruct inputs at output

Minimize reconstruction
 error

m

and are linear

$$\lim_i \sum_i \|oldsymbol{x}_i - g(f(oldsymbol{x}_i))\|_2^2$$

Example: embedding images of digits

4

[Hinton & Salakhutdinov, 2006]

(Deep) neural networks

Contrast PCA to N.N. Autoencoders

• PCA

Identify linear structures only

Easy to solve, no local optima, no tuning parameters

Neural network

Identify nonlinear structures

Iterative procedure, local optima, need to tune many parameters (network size, learning rate)

Linear vs nonlinear

Can we do better?

Discover linear structures

3. Metric Multidimensional Scaling (MDS)

Alternative criteria

Minimize distortion on distances

$$\min \sum_{ij} \left[\| m{x}_i - m{x}_j \|_2 - \| m{y}_i - m{y}_j \|_2
ight]^2$$

Resort to a more tractable formulation

Preserve pairwise inner products (of centered inputs)

$$\min \sum_{ij} \left[\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j - \boldsymbol{y}_i^{\mathrm{T}} \boldsymbol{y}_j \right]^2$$

Intuition $\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2 = \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_i + \boldsymbol{x}_j^{\mathrm{T}} \boldsymbol{x}_j - 2 \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$

MDS: match Gram matrix

• Gram matrix

Matrix composed of pairwise inner products

$$\boldsymbol{G} = [G_{ij}] = [\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j] \in \mathbb{R}^{N \times N}$$

Optimal embedding

$$\min \sum_{ij} [G_{ij} - \boldsymbol{y}_i^{\mathrm{T}} \boldsymbol{y}_j]^2$$

No constraints on y!
• Decompose Gram matrix spectrally

Compute top M eigenvalues and eigenvectors

$$oldsymbol{Gv} = \lambda oldsymbol{v} \longrightarrow \{(oldsymbol{v}_d, \lambda_d)\}_{d=1}^M$$

Note eigenvector is N-dimensional

Embed by using eigenvectors as coordinates

$$y_{id} = \sqrt{\lambda_d} v_{di}$$
 $d = 1, 2, \dots, M$

Especially useful if only know distances

We convert distance matrix

$$m{D} = [D_{ij}^2]$$
 $D_{ij}^2 = \|m{x}_i - m{x}_j\|^2$

to Gram matrix

$$G = -\frac{1}{2}HDH$$

with centering matrix

$$oldsymbol{H} = oldsymbol{I}_n - rac{1}{n} oldsymbol{1} oldsymbol{1}^{\mathrm{T}}$$

PCA vs MDS

• Data matrix

$$oldsymbol{X} = \left[egin{array}{c} oldsymbol{x}_1^{\mathrm{T}} \ oldsymbol{x}_2^{\mathrm{T}} \ \dots \ oldsymbol{x}_N \end{array}
ight] \in \mathbb{R}^{N imes D}$$

PCA decompose covariance matrix

$$\boldsymbol{C}_x = \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \in \mathbb{R}^{D \times D}$$

MDS decompose Gram matrix

$$\boldsymbol{G} = \boldsymbol{X} \boldsymbol{X}^{\mathrm{T}} \in \mathbb{R}^{N imes N}$$

Same set of eigenvalues

$$\frac{1}{N} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{u} = \lambda \boldsymbol{u} \rightarrow \boldsymbol{X} \boldsymbol{X}^{\mathrm{T}} \frac{1}{N} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{u} = N \lambda \frac{1}{N} \boldsymbol{X} \boldsymbol{u}$$

PCA

MDS

- Similar low dimensional representation
- Different computational cost

PCA scales quadratically in D

MDS scales quadratically in N

Big win for MDS when D is much greater than N !

PCA vs MDS

• PCA

Linear method, parametric

- + Fast, easy to compute
- Does not unfold nonlinear structures

• MDS

Dual to PCA

- + Can be faster
- + Need only distances or inner products

Discover nonlinear structures

4. kernel PCA

Central challenge

Linear method is not good enough

Kernel method

• Kernel functions

Avoid explicitly finding a nonlinear mapping

$$oldsymbol{z} = oldsymbol{\phi}(oldsymbol{x})$$

Define implicitly through a kernel function

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{\phi}(\boldsymbol{x}_i)^\top \boldsymbol{\phi}(\boldsymbol{x}_j)$$

Common kernels

Gaussian kernel $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp \left\{-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2 / \sigma^2\right\}$ Polynomial kernel $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = (1 + \boldsymbol{x}_i \cdot \boldsymbol{x}_j)^d$

Kernel PCA

Main idea

Map data to kernel feature space; then run MDS

Recipe

Choose a kernel function

Compute kernel matrix

Centralize kernel matrix

Decompose spectrally

 $oldsymbol{y} \propto oldsymbol{K}oldsymbol{v}$

Project

$$egin{aligned} m{K} &= [K(m{x}_i, m{x}_j)] \ m{ ilde{K}} &\leftarrow m{H}m{K}m{H} \ m{ ilde{K}} &= \sum_d \lambda_d m{v}_d m{v}_d^{\mathrm{T}} \end{aligned}$$

(there are some scaling constants)

Next lecture

How to discover nonlinear structures?

Going from linear to nonlinear is not that difficult!

Dimension Reduction

Prof. Fei Sha

Dept. of Computer Science U. of Southern California

IPAM Summer School on Computer Vision Aug. 6 2013

Tuesday, August 6, 13

Outline of previous lecture (Part 1)

Central questions

Discover linear structures

Generalize to nonlinear structures

Algorithms

Principal Component Analysis (PCA)

Metric Multidimensional Scaling (MDS)

Neural Network Autoencoders

Kernel PCA

Outline of this lecture (Part 2)

Central questions

Discover nonlinear structures

- Algorithms
 - Isomap
 - Locally linear embedding (LLE)
 - Maximum variance unfolding (MVU)

What does it take to discover nonlinear structures?

Nonlinear structures

• Manifolds such as

can be approximately locally with linear structures.

Why good to be myopic?

Euclidean distance is not appropriate measure of proximity between points on nonlinear manifold.

A closer to C in Euclidean distance

A closer to B once unrolled

Nonlinear methods: manifold learning

Preserve geometrical properties on manifolds

- Local symmetry and proximity
 - Locally linear embedding (Roweis & Saul '00)
 - Laplacian eigenmap (Belkin & Niyogi' 03)
- Local isometry and angle
 - Local Tangent Space Alignment (LTSA) (Zhang 04)
 - hessian LLE (Donoho & Grime '03)

- Maximum variance unfolding (MVU) (Weinberger & Saul 04)
- Conformal component analysis (Sha & Saul 05)
- (Estimated) geodesic distances
 - IsoMap (Tenenbaum et al 00)
- **Diffusion distances**
 - Diffusion map (Coifman et al 06)

Manifold learning

1. Isomap

IsoMap: Preserving geodesic distances

Geodesic distance is more appropriate measure of proximity between points on nonlinear manifold.

A closer to C in Euclidean distance

A closer to B in geodesic distance

Caveat

Without knowing the shape of the manifold, how to estimate the geodesic distance?

The tricks will unfold next....

Step 1. Build adjacency graph

Graph from nearest neighbor

Vertices represent inputs

Edges connect nearest neighbors

• How to choose nearest neighbor

k-nearest neighbors

Epsilon-radius ball

• Assumptions

Graph is connected

No "shortcuts" that connect wrongfully

From local distance to geodesic

Approximation

Distances on manifold are modeled as shortest paths on the graph

all pairwise shortest paths can be computed efficiently

From local distance to geodesic

Approximation

Distances on manifold are modeled as shortest paths on the graph

all pairwise shortest paths can be computed efficiently

Step 2. Construct geodesic distance matrix

Geodesic distances

Weight edges by local Euclidean distance Approximate geodesic by shortest paths

Computational cost

Require all pair shortest paths (Djikstra's algorithm: O(N² log N + N²k))

Require dense sampling to approximate well

(very intensive for large graph)

Convert geodesic matrix to Gram matrix

Pretend the geodesic matrix is from Euclidean distance matrix

• Diagonalize the Gram matrix

Gram matrix is a dense matrix, ie, no sparsity

Can be intensive if the graph is big.

Embedding

Number of significant eigenvalues yield estimate of dimensionality

Top eigenvectors yield embedding.

Swiss roll

N=1024, k=12

• Wrist images

N=200 k=6 D = 4096

Overcome computational bottleneck

 Embed music similarity graph
 Landmark MDS
 avoid computing geodesic distances between all pairs

N= 267,000 E = 3,200,000

[Platt, 2004]

Summary of Isomap

Recurring theme

Construct (sparse) graph from kNN

Discretize manifold with graphs

Formulate matrix-based optimization from graph weights

Preserve properties derived from those weights

Derive embedding from decomposing the matrix

Reduce dimensionlity with MDS

Manifold learning

2. Locally linear embedding (LLE)

Locally linear embedding (LLE)

Intuition

Better off being myopic and trusting only local information

• Steps

Define locality by nearest neighbors

Encode local information Least square fit locally

Minimize global objective to preserve local information Think globally

Step 1. Build adjacency graph

- Graph from nearest neighbor
 - **Vertices represent inputs**
 - **Edges connect nearest neighbors**
- How to choose nearest neighbor
 - k-nearest neighbors
 - **Epsilon-radius ball**
- Assumptions
 - **Connected graph**
 - No short-circuit

Large k would cause this problem

Step 2. Least square fits

 Characterize local geometry of each neighborhood by a set of weights

 Compute weights by reconstructing each input linearly from its neighbors

$$\Phi(oldsymbol{W}) = \sum_i \|oldsymbol{x}_i - \sum_k oldsymbol{W}_{ik} oldsymbol{x}_k\|^2$$

subject to $\sum_k W_{ik} = 1$

Weighted adjacency graph

What are these weights for?

of left and right finger tips.

Step 3. Preserve local information

 The embedding should follow same local encoding

$$oldsymbol{y}_i pprox \sum_k oldsymbol{W}_{ik} oldsymbol{y}_k$$

Minimize a global reconstruction error

$$egin{aligned} \Psi(m{Y}) &= \sum_i \|m{y}_i - \sum_k m{W}_{ik} m{y}_k\|^2 \ && \sum_i y_i = 0 \ && rac{1}{N} m{Y} m{Y}^\mathrm{T} = m{I} \end{aligned}$$

• Minimize a global reconstruction error

$$\Psi(\boldsymbol{Y}) = \sum_{i} \|\boldsymbol{y}_{i} - \sum_{k} \boldsymbol{W}_{ik} \boldsymbol{y}_{k}\|^{2}$$

0.00				
	0.00			
0.2	0.00	0.00	0.9	-0.1
			0.00	
				0.00

subject to
$$\sum y_i = 0$$

 $\frac{1}{N}YY^T = I$

Bottom eigenvectors of $(I - W)^{\mathrm{T}}(I - W)$ Relates to kernel PCA

Summary of LLE

Build k-nearest neighbor graph

- Solve linear least square fit for each neighbor Closed-form solution
- Solve a sparse eigenvalue problem

Every step is relatively trivial, however the combined effect is quite complicated.

Examples

N = 1000 k = 8 D = 3 d = 2

Examples of LLE

Pose and expression

N = 1965 k = 12 D = 560 d = 2

Similarity

Graph-based

Spectral decomposition of matrix

Differences

Dense (Isomap) vs Sparse (LLE)

Top (Isomap) vs Bottom (LLE) eigenvectors

Preserve distances (Isomap) vs local geometry (LLE)

Manifold learning

3. Maximum variance unfolding (MVU)

What if we preserve distances explicitly?

But, we will get MDS!
True, though

• what if we preserve local distances?

We trust local distances anyway.

In contrast to Isomap, we would not even be bothered by estimating global (geodesic distances)

Quadratic programming

Intuition

Nearby points are connected with rigid rods Unfold inputs without breaking apart rods.

Rotation allowed

- (Weinberger & Saul 2003, Weinberger, & Saul 2004)
 - Change of variables

$$K_{ij} = \boldsymbol{y}_i^{\mathrm{T}} \boldsymbol{y}_j$$

• Semidefinite programming (SDP)

Example: images of rotating teapot

• Full rotation

N = 400 k = 4 D = 23028

• Half rotation

Images are ordered by d=I embedding according to view angle

Example: sensor localization

sensors distributed in US cities. Infer coordinates from limited measurement of distances (Weinberger, Sha & Saul, NIPS 2006)

Where are the cities?

Discover US atlas almost perfectly!

• 3 methods

IsoMap

Global geodesic

LLE

Local symmetry and proximity

MVU

Local isometry

Common properties

graph methods, geometry, convex optimization

Summary: graph based spectral methods

Construct nearest neighbor graph

Vertices are data points

Edges indicate nearest neighbors

Optimization

Spectral decomposition, or

Semidefinite programming

• Derive embedding

Eigenvector as embedding

Estimate dimensionality

• Thru Laplace-Betrami operator

Graph as discretized (continuous) manifold Continuous operator --> discrete Laplacian

• Spectral decomposition

Eigenvectors form functional basis.

Key difference: basis are data-dependent

Basis for functions defined on graphs

Conclude

Bird's eye view

Dimension reduction

Many ideas and techniques

Many applications (in vision, NLP, etc)

Computationally tractable methods are often surprisingly powerful

Link to other areas

Learning sparse representation

Learning global representation

Acknowledgements

Many material taken from Prof. Lawrence Saul's IPAM 2005 Tutorial on Spectral Methods for Dimension Reduction