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Collaborators

The work is collaborated with Shing-Tung Yau, Feng Luo,
Ronald Lok Ming Lui and many other mathematicians,
computer scientists and medical doctors.
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The theory, algorithms and sample code can be found in the
following books.

Computational Conformal Variational Principles for
Geometry Discrete Surfaces

You can find them in the book store.

"Ricci Flow for Shape Analysis and Surface Registration -
Theaories, Algorithms and Applications”, Springer, 2013.
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Lecture Notes

© Detailed lecture notes can be found at:
http://www.cs.sunysb.edu/"gu/lectures/index.html
@ Binary code and demos can be found at:
http://www.cs.sunysb.edu/ gu/software/index.html
© Source code and data sets:

http://www.cs.sunysb.edu/ gu/software/index.html
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Conformal Mapping

Definition (Conformal Mapping)

Suppose (S1,91) and (Sz,g2) are two surfaces with
Riemannian metrics. A conformal mapping ¢:S; — S, is a
diffeomorphism, such that

¢'g2=e*g;.
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Conformal Mapping

Properties

Conformal mappings preserve infinitesimal circles, and
preserve angles.
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Uniformization

Theorem (Poincar &€ Uniformization Theorem)

Let (X,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric § = e?*g conformal to g which has
constant Gauss curvature.
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Uniformization

Theorem (Poincar &€ Uniformization Theorem)

Let (X,g) be a compact 2-dimensional Riemannian manifold

with finite number of boundary components. Then there is a

metric § conformal to g which has constant Gauss curvature,
and constant geodesic curvature.
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Yamabe Problem )
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface M with a ]
Riemannian metric g, a

local coordinate system &‘E:l‘
(u,v) is an isothermal 3
coordinate system, if 88

g = e UV)(du? +dv?).
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Gaussian Curvature

Gaussian Curvature

Suppose § = e? g is a conformal metric on the surface, then
the Gaussian curvature on interior points are
K=-AgA = = AA
= —Agh = ——7 A,
where
0? 0?
~ 9 gv2
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Conformal Metric Deformation

Suppose M is a surface with a
Riemannian metric,

9= ( 011 Q12 >
021 022
Suppose A : ¥ —+Risa
function defined on the surface,
then e?! g is also a Riemannian

metric on X~ and called a

conformal metric. A is called
the conformal factor. Angles are invariant measured
by conformal metrics.

g —e?g

Conformal metric deformation.

David Gu Conformal Geometry




Curvature and Metric Relations

Yamabi Equation

Suppose § = e?' g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K =e 22 (—=AgA +K),

geodesic curvature on the boundary

Kg =€ *(—0nA +Kg).
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Surface Ricci Flow )
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Surface Ricci Flow

Key Idea
Because
K == —Ag)\,
Let 0
—— —_K
dt ’
then o
—— = AgK +2K?
dt ot
Nonlinear heat equation! When t — o, K () — constant.
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Surface Ricci Flow

Definition (Hamilton’s Normalized Surface Ricci Flow)

A closed surface S with a Riemannian metric g, the Ricci flow
on it is defined as

dgij . 47'[)((5) )
ot - AQ) 2K

where x(S) is the Euler characteristic number of the surface S,
A(0) is the total area at time 0. The total area of the surface is
preserved during the normalized Ricci flow flow. The Ricci flow
will converge to a metric such that the Gaussian curvature is
constant every where,
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Surface Ricci Flow

Furthermore, the normalized surface Ricci flow

dgy _ 4mx(S)
dt — A(0)

= 2Kgij.

is conformal,
g(t) =e2Mg(0),

where u(t) : S — R is a the conformal factor function, and the
normalized Surface Ricci flow can be written as

du(p,t) _ 2mx(S)
dt — A0

K(p,t),

for every pointp € S.
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Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K) every where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K) every where.
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Summary

Surface Ricci Flow

@ Conformal metric deformation

g —e?g
@ Curvature Change - heat diffusion

dK

= AgK +2K?2
dt gt +
@ Ricci flow

—K —K.

dt
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Discrete Surface Ricci Flow )
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular
meshes.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular
meshes.

@ Isometric gluing of triangles in E2.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular
meshes.

@ Isometric gluing of triangles in E2.
@ Isometric gluing of triangles in H?,S?.
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Discrete Generalization

© Discrete Riemannian Metric

@ Discrete Curvature
© Discrete Conformal Metric Deformation
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Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on
the vertices, | : E = {all edges} — R, satisfies triangular
inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} — R%.

K(v):ZH—Zai,v ZOM;K(v) = n—Zai,v € oM

Theorem (Discrete Gauss-Bonnet theorem)

z K(v)+ Z K(v)=2mx(M).

VoM veoM
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Discrete Metrics Determines the Curvatures

cosine laws
cos 6 + cos @ cos 6,
| = i
cosf sin 6 sin 6 @)
_ cosh 6 +cosh 6 cosh 6
coshly = sinh § sinh 6 @)
cos 6 + cos @ cos
1 = | Feos§cosb (3)
sin g sin 6
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Discrete Conformal Metric Deformation

Conformal maps Properties

@ transform infinitesimal circles to infinitesimal circles.
@ preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation
Replace infinitesimal circles by circles with finite radii.
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Circle Packing Metric

CP Metric

We associate each vertex v;
with a circle with radius y. On
edge e, the two circles
intersect at the angle of ®;.
The edge lengths are

Iij2 = V|2+VJZ+ZV|MCOS¢”

CP Metric (X,I,9),
triangulation,

M= {xlwi},® = {¢|ve;}

David Gu
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Discrete Conformal Factor

Defined on each vertex u : V — R,

logy, R?
ui=< logtanh¥  H?
logtan 4 S?
@ Symmetry
oKi _ 9K
5Uj B ou;

@ Discrete Laplace Equation

dK = Adu,

A is a discrete Lapalce-Beltrami operator.

- w
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Unified Framework of Discrete Curvature Flow

Analogy

@ Curvature flow

du -
5 =K-K,

@ Energy
E(U):/Z(Ki*Ki)duia

@ Hessian of E denoted as A,

dK = Adu.
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Criteria for Discretization

Key Points

@ Convexity of the energy E (u)

@ Convexity of the metric space (u-space)
@ Admissible curvature space (K-space)
@ Preserving or reflecting richer structures

@ Conformality
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Hyperbolic Yamabe Flow
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Convergence and Uniqueness of discrete Ricci flow ]
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Cosine law

Q
>
I L 2ljlxcosG = Ij2 +12 12
—2|'|k sin 9, % = _2|i
] dl:
[ i
v; vj d ei _ |_|
di A
A= Ij Iy sin 6,

David Gu Conformal Geometry



Cosine law

2llgcos = 1741217
2, = 2lxcos6 —

dé

2Ll sin 6 ——

Jksme,dlj

dé, lk cos 6 —|;

dlj A

l; cos 6
lj = l; cos 6 + I cos 6 - T A
dé

= =
= i cos 6
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Cosine law

= 1?4 1Z 4211 COS T
= 2rj+2r¢CoS Tj
2
2r" + 2rjr COS Ty
2Iirj
2. 24 o .
f + ¢ + 2rjrg CoS Ty
2Iirj

2 2 2
I <l = I
2Iirj

2 _ (24 2 T
I =17 +17+2cosTjrir
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Let u; = logr;, then

de, AR
d6; 00 I
0 1Z2+r2—r2  12+4r2-r2
2l 2lqr3
frirz o B
2lorq 2|2r3
124r2—r2 1241212 0
2|3|’1 2|3|’2

-1
cos 63
cos 6,

Cosine law

cosB; cosb6,

—1 cos6;
cosf;, -1
0 dUl
0 dU2
I3 dus
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Cosine law

2Ikd—rj = 21 + 2r; COS T
; di 2r? 4 2rirj cos
dr 2l
B Ig+r?—r?
2l

In triangle [vi,vj, w],

dl Ik rj COS ;
Bl pIdIBOeG) =r,cos @ = dj

7 =17 + 17+ 2cos Tyr du; 2
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Cosine law

g _ d§ _ he
de dUi Ik
a6 _ d& _h
dUk . de . ||
dé _ d& _ N
There is a unique circle du; dug

orthogonal to three circles
(vi,ri), the center is o, the
distance from o to edge [v;,V;]
is hk-
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Cosine law

_ 980, 060l
N d; an Ol 0Uj
L

B 0', (0Uj 0Uj COSGJ)

= Iﬂ‘(djk — dji COS 91)
dl;

lil sin g,

he sing,

l sin 6

hy

e
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Cosine law

6<Vj—Vi,Vj—Vi> 0VJ
22
912 v
—k 2(2 v — v
0Uj <0Uj Vi VI>
(4 (ﬁ Vi *Vi>
0Uj 0Uj’ Ik
O an Vj =V
4 an, Ik
Similarly
ov; Vi — Vi
d, = (—31 1 X
(9Vj Ik <0Uj ’ Ii >
== = Vj —0
an o,
SO 5_LIJ = Vj *0

David Gu
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Metric Space

For any three obtuse angles
Tij, Tik, Ti € [0,5) and any three positive
numbers rq,r, and rs, there is a
configuration of 3 circles in Euclidean
geometry, unique upto isometry, having
radii r; and meeting in angles Tj.

max {r?,r’} <r?+r?+2rrcos T < (r+1)]

max{r?,r7} <l <1+

SO
I gri+rj <|i+|j.
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Discrete Ricci Energy

w is closed 1-form in
Q = {(Ul,Uz,U3) € R3}

26 _ 96

Because o a—u'i, o)
06 06
dw = (6—uj_0—ui)duj/\du'+
06 06
w = 6du; +6du;+ 6dy; (%gi)dui/\duk
i k
= 0.
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Discrete Ricci Energy

The Ricci energy E (ug,up,uz) is well
defined.

Because Q = R3 is convex, closed 1-form
is exact, therefore E (uy,us,us) is well
defined.

(ug,uz,u3)

E(ul,Uz,U3)=/ w

(0,0,0)
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Discrete Ricci Energy

The Ricci energy E (uj,uz,us) is strictly
concave on the subspace
U; +Us+uz =0.

The gradient OE = (64, 6,, 83), the
Hessian matrix is

26, 06, 06
du; Jdup, Jdus
He | 22 96 28
du; Jdup, Jdus
063 965 06
du; Jdup, Jdus

(uz,uz,uz)

E(ul,uz,u3):/( | wbecause of 6, + 6, + 6; = T,
0,0,0
a6 96 d6 06 96

0—Ui B 0Uj Juy B au; ou;
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Ricci energy

hg | hy _hs _hy
' J; LN R
_ __n3 n3 1 _ M
H= P et A
B PO
I Iy I Iy

—H is diagonal dominant, it has null space (1,1,1), on the
subspace u; + Uy +ug = 0, it is strictly negative definite.
Therefore the discrete Ricci energy E (u1, Uz, us) is strictly
concave. O
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Discrete Ricci Energy

The Ricci energy E (u) is strictly convex
on the subspace y,, ¢y Ui = 0.

., The gradient OE = (K1,Kp,--- ,Kp). The
Ricci energy

E(w=2m) ui— >  Ejk(ui,uj,ux)
ViEM [Vi,vj,vk]eEM

where Ejj is the ricci energy defined on
the face [v;,v;j,vk]. The linear term won't
affect the convexity of the energy. The
null space of the Hessian is (1,1,---,1).
In the subspace y u; = 0, the energy is
strictly convex.
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Uniqueness

Suppose Q C R" is a convex domain, f : Q@ — R is a strictly
convex function, then the map

x — Of (x)

IS one-to-one.

Suppose X1 # X2, Of (x1) = Of (x2). Because Q is convex, the
line segment (1 —t)x; + X, is contained in . construct a
convex function g(t) =f((1—t)x; +txz), then g'(t) is
monotonous. But

9'(0) = (Of (x1), %2 —x1) = (Of (x2), %2 —x1) = 9'(1),

contradlctlon D
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Uniqueness

z — Vf(z) f(z)

Suppose Q C R" is a convex domain, f : Q@ — R is a strictly
convex function, then the map

x — Of (x)
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Uniqueness

Suppose M is a mesh, with circle packing metric, all edge
intersection angles are non-obtuse. Given the target curvature
(K1,Kz,--+,Kp), 3iKj = 2mx(M). If the solution

(ug,uz,---,un) € Q(M),¥;u; =0 exists, then it is unique.

The discrete Ricci energy E on QN {J;u; =0} is convex,

DE(ul7u27' o 7Un) - (K17K27” . Kn)

Use previous lemma. O

David Gu Conformal Geometry



Thurston’s Circle Packing Metric

CP Metric

We associate each vertex v;
with a circle with radius y. On
edge ej;, the two circles
intersect at the angle of ;.
The edge lengths are

If =V + 7 + 2y

CP Metric (X,I,n),
triangulation,

M= {y|wWi},n ={nj <1|ve;}
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Tangential Circle Packing Metric

Tangential CP Metric

I = + ¥ + 2y,
equivalently
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Inversive Distance Circle Packing Metric

Tangential CP Metric

17 =2+ ¥+ 2ny vy,
equivalently

nij > 1.
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Yamabe Flow

Yamabe Flow

ﬁzmmw

W
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Imaginary Radius Circle Packing Metric

Imaginary Radius Circle

Packing Metric
I¥ = =y — v+ 2Ny,
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Mixed Type

Mixed Circle Packing

IF = a0\ + aj i + 2Ny vy,

(ai,aj,ak) e (+1, —1,0)
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Geometric Interpretation - Discrete Entropy Energy
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Geometric Interpretation - Discrete Entropy Energy

David Gu Conformal Geometry



Geometric Interpretation - Discrete Entropy Energy




Geometric Interpretation - Discrete Entropy Energy




Geometric Interpretation - Discrete Entropy Energy
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Geometric Interpretation - Discrete Entropy Energy

David Gu Conformal Geometry



Geometric Interpretation - Discrete Entropy Energy
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Geometric Interpretation - Discrete Entropy Energy
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Geometric Interpretation - Discrete Entropy Energy
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Geometric Interpretation - Discrete Entropy Energy
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Ricci Flow Algorithm )

David Gu Conformal Geometry



Ricci Flow Algorithm

Use Newton’s method to minimize the discrete Ricci energy,
n _ u n
E(Ul,Uz,"',Un):ZKiUi*/ zKiduia
i=1 0 i=1
The gradient of the energy is
DE(u) =K —K(u),
The Hessian matrix is given by H = (h;),

—wi  [vi,vi]eM
hij =14 SkWik I=]

0 otherwise
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Ricci Flow Algorithm

© Compute initial circle packing metric, determine the circle
radii y for each vertex v; and intersection angles ¢; for
each edge [v;,v;].

@ Determine the target curvature Ki for each vertex,

© Compute the discrete metric (edge length)

© Compute the discrete curvature K;

@ Compute the power circle of each face, compute the
Hessian matrix H

© Solve linear system
K—K=Hdu

@ Update the vertex radii y+ = du;

© Repeat step 2 through 7, until the curvature is close
enough to the target curvature.
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Ricci Flow Algorithm

Topological Quadrilateral
—

Target curvatures at the corners: 7, and 0 everywhere else.
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Conformal Canonical Forms

Topological Quadrilateral

yz

2

P1
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Topological Annulus

Target curvature to be zeros everywhere, composed with e*
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Topological Disk

Punch a hole to an annulus
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Multiply Connected Domains

Zero interior curvature, constant boundary curvature
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Multiply Connected Domains

Total curvature for inner boundary is —2m
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Conformal Canonical F

Multiply Connected

David Gu
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Conformal Geometry
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perbolic Ricci flow
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High Genus Surface with holes

Zero interior curvature, constant boundary curvature
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Topological Pants

Genus 0 surface with 3 boundaries. The double covered
surface is of genus 2. The boundaries are mapped to
hyperbolic lines.
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Conformal Module
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Quasi-Conformal Maps )
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Quasi-Conformal Map

Most homeomorphisms are quasi-conformal, which maps
infinitesimal circles to ellipses.
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Beltrami-Equation

A1 |Ju]
arg(1)/2

Beltrami Coefficient

Let ¢:S; — S, be the map, z,w are isothermal coordinates of
S1, Sy, Beltrami equation is defined as ||u||o < 1

oy _

20
oz  H%3;

u( 37

David Gu Conformal Geometry



Solving Beltrami Equation

The problem of computing Quasi-conformal map is converted
to compute a conformal map.

Solveing Beltrami Equation

Given metric surfaces (S;1,91) and (Sz,9>), let z,w be
isothermal coordinates of S1,S,,w = ¢(2).

g1 = e®1dzdz (4)
g2 = e?2dwdw, (5)
Then
@ ¢:(S1,91) — (S2,092), quasi-conformal with Beltrami
coefficient L.

@ ¢:(S1,90'92) — (S2,92) is isometric
@ ¢*gr = e'2|dw|? = e¥2|dz + uddz|?.
@ ©:(Sy,|dz +udZ|?) — (Sz,92) is conformal.

-
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Quasi-Conformal Map Exampl
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@ Theory of discrete surface Ricci flow
@ Algorithm for discrete surface Ricci flow
@ Application for surface uniformization
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For more information, please email to gu@cs.sunysb.edu. ]

Thank you!
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