Tutorial on Optimal Mass Transprot for Computer Vision

David Gu State University of New York at Stony Brook

Graduate Summer School: Computer Vision, IPAM, UCLA July 31, 2013

Joint work with Shing-Tung Yau, Feng Luo and Jian Sun

Optimal Mass Transportation Problem

Earth movement cost.

Motivation

• Tannenbaum: Medical image registration

Motivation: Surface registration

(a) Armadillo #1

(c) APP map #1

(e) Conformal map #1

(b) Armadillo #2

(d) APP map #2

(f) Conformal map #2

Optimal Mass Transportation Problem

Find a best scheme of transporting one mass distribution (f, U) to another one (g, V) such that the total cost is minimized,

U, V: two bounded domains in \mathbb{R}^n

$$\begin{array}{rcl}
0 &\leq & f \in L^1(U) \\
0 &\leq & g \in L^1(V) \\
& \int_U f = \int_V g.
\end{array}$$

Optimal Mass Transportation Problem

For a transport scheme s (a mapping from U to V)

$$s: x \in U \rightarrow y = s(x) \in V$$

The *total cost* is

$$\mathscr{C}(s) = \int_U f(x) c(x, s(x)) dx$$

where c(x, y) is the cost function.

Cost Functions

The cost of moving a unit mass from point *x* to point *y*.

Monge(1781):
$$c(x, y) = |x - y|$$
.

This is the natural cost function. Other cost functions include

$$\begin{array}{rcl} c(x,y) &=& |x-y|^p, p \neq 0\\ c(x,y) &=& -\log |x-y|\\ c(x,y) &=& \sqrt{\varepsilon + |x-y|^2}, \varepsilon > 0 \end{array}$$

Any function can be cost function. It can be negative.

Optimal Mass Transportation Problem

Problem

Is there an optima mapping $T: U \rightarrow V$ such that the total cost \mathscr{C} is minimized,

$$\mathscr{C}(T) = \inf\{\mathscr{C}(s) : s \in \mathscr{S}\}$$

where \mathscr{S} is the set of all measure preserving mappings, namely $s: U \rightarrow V$ satisfies

$$\int_{s^{-1}(E)} f(x) dx = \int_E g(y) dy, \forall \text{ Borel set } E \subset V$$

Applications

- Economy: producer-consumer problem, gas station with capacity constraint,
- Probability: Wasserstein distance
- Image processing: image registration
- Digital geometry processing: surface registration

Duality and potential functions

A breakthrough in the study of optimal transportation is the introduction of the duality.

Kantorovich introduced the dual functional

$$I(\varphi, \psi) = \int_{U} \varphi(x) f(x) + \int_{V} \psi(y) g(y), (\varphi, \psi) \in K$$
$$K = \{(\varphi, \psi) : \varphi(x) + \psi(y) \le c(x, y)\}$$

• Duality:

$$\inf\{\mathscr{C}(s):s\in\mathscr{S}\}=\sup\{I(\varphi,\psi):(\varphi,\psi)\in K\}.$$

Santorovich won Nobel Prize for this work.

Duality and potential functions

The dual functional *I* is linear, the set of *K* is convex.
 ∃ a maximizer (*u*, *v*):

$$I(u,v) = \sup\{I(\varphi,\psi) : (\varphi,\psi) \in K\}$$

The maximizer is unique in the sense

$$I(u+a,v-a)=I(u,v)$$

for any constant a.

• The maximizer (u, v) is called potential functions.

Brenier's Approach

Theorem (Brenier)

If f, g > 0 and U is convex, and the cost function is quadratic distance,

$$c(x,y) = |x-y|^2$$

then there exists a convex function $u : U \to \mathbb{R}$ unique upto a constant, such that the unique optimal transportation map is given by the gradient map

$$T: x \to \nabla u(x).$$

Brenier's Approach

In smooth case, the Brenier potential $u : \Omega \to \mathbb{R}$ statisfies the Monge-Ampere equation

det
$$\left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right) = \frac{g(\nabla u(x))}{f(x)},$$

and $\nabla u : \Omega \rightarrow D$ minimizes the quadratic cost

$$\min_{u}\int_{\Omega}|x-\nabla u(x)|^2dx.$$

Brenier's Approach

Discretize the target *D* to $P = \{(p_1, w_1), (p_2, w_2), \dots, (p_n, w_n)\}$, Decompose Ω to cells $\{C_1, C_2, \dots, C_n\}$, such that $T(C_k) = p_k$, $vol(C_k) = w_k$, and the mapping minimizes the quadratic cost

$$\sum_{k}\int_{C_{k}}|p-p_{k}|^{2}dx.$$

Minkowski problem and several related problems

Eg. A convex polygon P in R² is determined by its edge lengths A_i and unit normal vectors n_i.

Take any
$$\mathbf{u} \in \mathbb{R}^2$$
 and project P to \mathbf{u} ,
 $\sum A_i n_i \cdot \mathbf{u} = 0$,
 $\sum A_i n_i = 0$.

Minkowski Problem. Given k unit vectors n_1 , ... n_k not contained in a half-space in \mathbb{R}^N and A_1 , ..., $A_k > 0$ s.t.,

 $\sum_{i} A_{i}n_{i}=0$,

find a cpt convex polytope P with exactly k codim-1 faces $F_1, ..., F_k$ s.t., (a) area $(F_i) = A_i$ and (b) $n_i \perp F_i$.

THM (Minkoswki) P exists and is unique up to translations.

Minkowski's proof is variational and constructs P.

Figure 1: Minkowski problem

Q1. What is Minkowski problem for non-compact polyhedra?

P.S. Alexandrov:

Polyhedron P

Discrete optimal transport

Their results: MP solvable for bound faces with unbounded faces fixed.

Discrete Monge-Ampere equation

PL-convex function and its induced convex subdivision.

PL convex function

 $f(x) = \max\{x \cdot p_i + h_i \mid i = 1, ..., k\}$ produces a convex cell decomposition W_i of R^N: $W_i = \{x \mid x \cdot p_i + h_i \ge x \cdot p_j + h_j, \text{ all } j\}$ $= \{x \mid \nabla f(x) = p_i\}$

Alexandrov (1950): Given X cpt convex domain in \mathbb{R}^N , p_1 , ..., p_k distinct in \mathbb{R}^N , $A_1,...,A_k>0$, s.t. $\sum A_i = \operatorname{vol}(X)$, \exists PL convex function $f(x) = \max_i \{ x \cdot p_i + h_i \}$,

unique up to translation s.t.,

 $Vol(\{x \in X \mid \nabla f(x) = p_i\}) = A_i.$

We call ∇f the Alexandrov map.

Alexandrov's proof is not variational and is topological. On page 321 of his book "Convex polyhedra", he asked if there exists a variational proof of his thm. He said such a proof "is of prime importance by itself".

Pogorelov theorem

Suppose v_1 , ..., v_m in \mathbb{R}^N , s.t. v_i not in con $\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_m\}$, and g_1 , ..., g_m in \mathbb{R} . $\forall \{p_1, ..., p_k\} \subset int(conv\{v_1, ..., v_m\})$ and $A_1, ..., A_K > 0$, $\exists ! h_1, ..., h_k$, s.t. the PL convex function $f(x)=max\{max\{x \cdot p_i + h_i\}, max\{x \cdot v_j + g_j\}\}$ satisfies, $vol\{x | \nabla f = p_i\} = A_i$.

max{x·v_j+g_j} unbounded faces

 $max{x \cdot p_i + h_i}$, bounded faces

Our main result: there exist variational proofs of Alexandrov's and Pogorelov's theorems.

Basically the same as Minkowski's original proof.

Thus, there exists an algorithm to compute the Alexandrov map ∇f .

We are motivated by computational problems from computer graphics, discrete optimal transportation and discrete Monge-Ampere equation. Voronoi decomposition and power diagrams

Given $p_1, ..., p_k$ in \mathbb{R}^N , the Voronoi cell V_i at p_i is:

 $V_i = \{x \mid |x-p_i|^2 \le |x-p_i|^2, all j\}$

A generalization: power diagram, given $p_1, ..., p_k$ in \mathbb{R}^N and weights $a_1, ..., a_k$ in \mathbb{R} , the power diagram at p_i is

 $W_i = \{x \mid |x-p_i|^2 + a_i \le |x-p_j|^2 + a_j, all j\}$

PL convex function $f(x) = \max\{x \cdot p_i + h_i\}$ and power diagram

Lemma 1. If $f(x) = max\{x \cdot p_i + h_i\}$, then $W_i = \{x \mid \nabla f = p_i\}$ is a power diagram.

Proof. By definition $\{x \mid \nabla f = p_i\} = \{x \mid x \cdot p_i + h_i \ge x \cdot p_i + h_i, all j\}$

 $x \cdot p_i + h_i \ge x \cdot p_i + h_i$ is the same as

$$x \cdot x - 2x \cdot p_i + p_i \cdot p_i - 2h_i - p_i \cdot p_i \le x \cdot x - 2x \cdot p_j + p_j \cdot p_j - 2h_j - p_j \cdot p_j,$$

i.e.,
$$|x_i - p_i|^2 - 2h_i - p_i p_i \le |x - p_j|^2 - 2h_j - p_j p_j$$
 for all j

Lemma 2. If $b_1, ..., b_k : X \rightarrow [0, \infty)$, let $W_i = \{x \mid b_i(x) \ge b_j(x)$, all $j\}$, Then for any partition $\{X_1, ..., X_k\}$ of X,

$\sum_i b_i(x) \chi_{\chi_i}(x) \leq \sum_i b_i(x) \chi_{W_i}(x)$

Proof. Take x in X, say x in X_j and also in W_i . Then

LHS= $b_j(x)$

 $RHS \ge b_i(x) \ge b_j(x) = LHS.$

Discrete optimal transport problem (Monge)

Given a compact convex domain X In R^N and $p_1, ..., p_k$ in R^N and $A_1, ..., A_k > 0$, find a transport map T: X $\rightarrow \{p_1, ..., p_k\}$ with vol(T⁻¹(p_i))=A_i so that T minimizes the cost $\int_{Y} |x - T(x)|^2 dx$. (Y. Brenier)

Recall

Alexandrov thm: Given X cpt convex domain in \mathbb{R}^N , p_1 , ..., p_k distinct in \mathbb{R}^N , $A_1,...,A_k>0$ s.t. $\sum A_i = \operatorname{vol}(X)$.

Then 3 PL convex function $f(x) = \max_i \{ x \cdot p_i + h_i \},$ unique up to translation s.t.,

$$Vol(\{x \in X \mid \nabla f(x) = p_i\}) = A_i.$$

Theorem (Aurenhammer- Hoffmann- Aronov, (1998))

Alexandrov map ∇f is the optimal transport map.

Proof . Let $W_i = \{x \mid x \cdot p_i + h_i \ge x \cdot p_j + h_j, all j\}$ Suppose $X_1, ..., X_n$ is a partition of X s.t., $vol(X_i) = A_i$ and $T(X_i) = p_i$. Then

$$cost(T) = \int_{X} |x - T(x)|^{2} dx$$

$$= \sum \int_{X_{i}} |x - p_{i}|^{2} dx$$

$$= \sum \int_{X_{i}} (|x - p_{i}|^{2} + w_{i}) dx - \sum w_{i}A_{i} \qquad (vol(X_{i}) = A_{i})$$

$$\geq \sum \int_{W_{i}} (|x - p_{i}|^{2} + w_{i}) dx - \sum w_{i}A_{i} \qquad (lemma2, vol(W_{i}) = vol(X_{i}) = A_{i})$$

$$= \sum \int_{W_{i}} |x - p_{i}|^{2} dx$$

$$= \int_{X} |x - \nabla f(x)|^{2} dx$$

$$= cost(\nabla f).$$

Recall

Minkowski thm. Given k unit vectors $n_1, ..., n_k$ not contained in a half-space in R^N and $A_1, ..., A_k > 0$ s.t.,

$\sum_{i} A_{i}n_{i}=0$,

∃, unique up to translation, cpt convex polytope P with exactly k codim-1 faces $F_1, ..., F_k$ s.t., (a) area (F_i) = A_i and (b) $n_i \perp F_i$.

Mikowski's proof of his thm

Given $h=(h_1, ..., h_k)$, $h_i>0$, define cpt convex polytope $P(h)=\{x \mid x \cdot n_i \le h_i, all i\}$.

Let Vol: $R_{+}^{k} \rightarrow R$ be vol(h)=vol(P(h)).

Then,
$$\frac{\partial Vol(h)}{\partial h_i} = \operatorname{area}(F_i)$$

The solution h (up to scaling) to MP is the critical point of Vol on $\{ h \mid h_i \ge 0, \sum h_i A_i = 1 \}$, using Lagrangian multiplier.

Uniqueness part is proved using Brunn-Minkowski inequality which implies $(Vol(h))^{1/N}$ is concave in h. So far, this is the ONLY proof of uniqueness. Alexandrov thm: Given X cpt convex domain in \mathbb{R}^N , p_1 , ..., p_k distinct in \mathbb{R}^N , A_1 ,..., A_k >0 s.t., $\sum A_i = vol(X)$, \exists a PL convex function $f(x) = max_i\{x \cdot p_i + h_i\},\$

unique up to translation s.t.,

 $Vol(\{x \in X \mid \nabla f(x) = p_i\}) = A_i.$

Our Proof. For $h = (h_1, ..., h_k)$ in R^k , define f as above and let $W_i(h) = \{x \mid x \cdot p_i + h_i \ge x \cdot p_i + h_i, all j\}$ and $w_i(h) = vol(W_i(h))$.

Step 1. $H=\{h \in R^k | w_i(h)>0, all i\}$ is non-empty open convex set in R^k .

Step 2. (Key step) $\frac{\partial w_i(h)}{\partial h_j} = \frac{\partial w_j(h)}{\partial h_i} \le 0, \text{ for } i \ne j.$ Thus the differential 1-form $\sum_i w_i(h) \, dh_i$ is closed in H. Therefore, \exists a smooth F: H \rightarrow R so that $\frac{\partial F}{\partial h_i} = w_i(h)$

Step 3.
$$\sum_{i} \frac{\partial w_i(h)}{\partial h_j} = 0$$
, due to $\sum_{i} w_i(h) = vol(X)$.

This shows F(h) is convex in H (since the Hessian of F is diagonally dominated)

Step 4. F is strictly convex in $H_0 = \{h \in H \mid \sum h_i = 0\}$ so that $\nabla F = (w_1, \dots, w_k)$.

Lemma 3. If F strictly convex on an open convex set Ω in \mathbb{R}^m then $\nabla F: \Omega \to \mathbb{R}^m$ is 1 - 1.

This shows the uniqueness part of Alexandrov's thm.

We show that the concave function

$$G(h) = F(h) - \sum h_i A_i$$

has a minimum point in H_0 . The min point h is the solution to Alexandrov's them.

Exactly the same proof works for Pogorelov's thm.

Thm(Gu-L-Sun-Yau). X cpt convex domain in \mathbb{R}^N , p_1 , ..., p_k distinct in \mathbb{R}^N , s: X \rightarrow R positive continuous.

For any A_1 , ..., $A_K > 0$ with $\sum A_i = \int_X s(x) dx$, \exists a vector $(h_1, ..., h_k)$ so that $f(x) = max\{x \cdot p_i + h_i\}$

satisfies $\int_{W_i \cap X} s(x) dx = A_i$ where $W_i = \{x \mid \nabla f = p_i\}$. Furthermore, h is the minimum point of the convex function

$$E(y) = \int_{a}^{y} \sum_{i} \int_{W_{i,0} \times} s(x) dx dy_{i} - \sum_{i} A_{i} y_{i}$$

Alexandrov thm corresponds to s(x)=1. Y. Brenier proved a more general form.

Discrete Monge-Ampere Eq (DMAE) Simplest version: X domain in \mathbb{R}^N , A: X $\rightarrow R_{>0}$ find f: X $\rightarrow R$, s.t.,

$$\begin{cases} \det(\operatorname{Hess}(f)) = A, \\ f|_{\partial X} = g \end{cases}$$

This is related to Monge's optimal transport problem:

Q2: Given A, g how to compute f? Q3. What is the discrete det(Hess(f))? Let X =conv{v₁, ..., v_k} a domain in R^N,

u : X \rightarrow **R** is PL convex function w.r.t a convex cell decomposition \mathscr{T} Then the discrete Hessian det of u sends v $\in \mathscr{T}^{(0)}$ to the volume of the convex hull of the gradients of u at top-dim cells adjacent to v.

Thm(Pogorelov). Suppose X=conv{ v_1 , ..., v_m } convex domain in \mathbb{R}^N , s.t. v_i not in con{ v_1 , ..., v_{i-1} , v_{i+1} , ..., v_m }, and g_1 , ..., g_m in **R**.

 $\forall p_1, ..., p_k$ in int(X) and $A_1, ..., A_k > 0$, then

 \exists ! PL convex function $w: X \rightarrow R$ having vertices exactly at p_i , s.t.

(a) the discrete Hessian det of w at p_i is A_i , (b) w(v_j)=g_j all j.

Indeed, $w(y)=\sup\{x\cdot y-f(x)|x\}$ is the Fenchel-Legendre dual of the solution to Pogorelov's thm:

```
f(x)=\max\{\max\{x \cdot p_i + h_i\}, \max\{x \cdot v_i + g_i\}\}.
```

Our result shows that w can be constructed by a finite dim variational principle since dual of PK convex function is computable using linear programming.

Algorithm

- Convex Hull
- Delaunay Triangulation
- Vornoi diagram
- Power Diagram upper envelope
- Optimal Transportation Map

The convex energy is

$$E(h_1,h_2,\cdots,h_k)=\sum_{i=1}^kA_ih_i-\int_0^h\sum_{j=1}^kW_jdh_j,$$

Geometrically, the energy is the volume beneath the parabola.

The gradient of the energy is the areas of the cells $\nabla E(h_1, h_2, \dots, h_k) = (A_1 - w_1, A_2 - w_2, \dots, A_k - w_k)$

The Hessian of the energy is the length ratios of edge and dual edges,

$$\frac{\partial w_i}{\partial h_j} = \frac{|\mathbf{e}_{ij}|}{|\bar{\mathbf{e}}_{ij}|}$$

- Initialize h = 0
- Compute the Power Voronoi diagram, and the dual Power Delaunay Triangulation
- **③** Compute the cell areas, which gives the gradient ∇E
- Compute the edge lengths and the dual edge lengths, which gives the Hessian matrix of *E*, *Hess*(*E*)
- Solve linear system

 $\nabla E = Hess(E)d\mathbf{h}$

Update the height vector

$$(h) \leftarrow \mathbf{h} - \lambda d\mathbf{h},$$

where λ is a constant to ensure that no cell disappears Repeat step 2 through 6, until $||d\mathbf{h}|| < \varepsilon$.

Examples

Examples

Examples

Thank you.