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Optimal Mass Transportation Problem

Earth movement cost.



Motivation

 Tannenbaum: Medical image registration
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Optimal Mass Transportation Problem

Find a best scheme of transporting one mass distribution (, U)
to another one (g, V) such that the total cost is minimized,

U.V : two bounded domains in R"




Optimal Mass Transportation Problem

For a transport scheme b (a mapping from U to V)
s:xeU—y=s(x)eV
The fotal cost is

“(s) = fu F(x)c(x, s(x))dx

where c¢(x,y) is the cost function.




Cost Functions

The cost of moving a unit mass from point x to point y.
Monge(1781):c(x,y) = |x—y|.
This Is the natural cost function. Other cost functions include

c(x.y) = [x—ylP.p#0
c(x,y) = —log|x —y|
c(x.y) = Ve+|x—y2e>0

Any function can be cost function. It can be negative.



Optimal Mass Transportation Problem

Is there an optima mapping T : U — V such that the total cost
% 1s minimized,

¢(T) =inf{€(s):s €.}

where . is the set of all measure preserving mappings,
namely s : U — V satisfies

/ f(x)dx = / g(y)dy.V Borel set E C V
s—1(E) E




Applications

@ Economy: producer-consumer problem, gas station with
capacity constraint,

@ Probability: Wasserstein distance
@ Image processing: image registration

@ Digital geometry processing: surface registration



Duality and potential functions

A breakthrough in the study of optimal transportation is the
Introduction of the duality.

@ Kantorovich introduced the dual functional

l(qo-,w):fuqo(X)f(X)+fvw(y)g(y)=(qo-,w)GK

K={(¢.¥):o(x)+ w(y) <c(x.y)}
@ Duality:

INnf{€(s) :se .} =sup{l(p,v): (p,y) e K}.

@ Kantorovich won Nobel Prize for this work.



Duality and potential functions

@ The dual functional / 1s linear, the set of K is convex.
@ J a maximizer (u,Vv):

I(u,v) =sup{l(¢.y):(¢,y) €K}
@ The maximizer is unigue in the sense
l(u+a,v—a)=I(u,v)

for any constant a.
@ The maximizer (u,v) is called potential functions.



Brenier’s Approach

Theorem (Brenier)

Iff.g >0 and U is convex, and the cost function is quadratic
distance,

c(x.y) =X —yP?

then there exists a convex function u : U — R unique upto a
constant, such that the unique optimal transportation map is
given by the gradient map

T :x — Vu(x).




Brenier’s Approach

In smooth case, the Brenier potential v : {2 — R statisfies the
Monge-Ampere equation

d%u g(Vu(x))
det(axfaxj)_ fx)

and Vu : Q2 — D minimizes the quadratic cost

min/ x — Vu(x)[?dx.
uJa



Brenier’s Approach

Discretize the target D to P = {(p1.w1). (p2.W2). -~ . (Pn. Wn)},
Decompose 2 to cells {C4.C,.---.Cp}, such that T (Cyx) = py,
vol(Cy) = wy, and the mapping minimizes the quadratic cost

Z/ P — px|*dx.
k * Ck



Minkowski problem and several related problems

Eg. A convex polygon Pin

R? is determined by its edge R f
lengths A and unit normal -
vectors n.. /Q\

Take any u € R? and project P to u,
> A n;-u=0,
> Ain, =0.



Minkowski Problem. Given k unit
vectors n,, ...n, not contained in a
half-space in RNand A, ...,A>0
s.t,,

2iAin.=0,
find a cpt convex polytope P with
exactly k codim-1 faces F,,...,F, s.t.,
(a) area (F,)= A and
(b) n. L F.

THM (Minkoswki) P exists and is unique up to translations.

Minkowski’s proof is variational and constructs P.



Figure 1: Minkowski problem



Q1. What is Minkowski problem for non-compact polyhedra?
f A

f

P.S. Alexandrov:

Discrete optimal transport

Their results: MP solvable
for bound faces with
unbounded faces fixed.

Discrete Monge-Ampere equation



PI.-convex function and its induced convex subdivision.



PL convex function

f(x) =max{ x-p.+h. |i=1,...,k}

produces a convex cell
decomposition W, of RN:

W={x| x-p;+h; = x-p;+h;, all j}
={x | Vi(x)=p;} X — = e

o
(Vf(X),-l)




Alexandrov (1950): Given X cpt convex
domain in RN, p,, ..., p, distinct in RV,
A,...,A>0, s.t. 3 A =vol(X),
3 PL convex function
f(x) = max{x-p; +h},
unique up to translation s.t.,

Vollbe X1 Vf()=pl =AY

We call Vf the Alexandrov map.

Alexandrov’s proof is not variational and is topological.
On page 321 of his book “Convex polyhedra”, he asked if there exists a
variational proof of his thm. He said such a proof “is of prime importance by itself”.



Pogorelov theorem
Suppose vy, ..., V., in RY, s.t.
v, not in con{vy, ...V, {,Vi,1,---,Vn}, @and g, ..., g, in R.
V {p,, ..., P } € int(conv{v,,...,v_}) and A,,.., A >0,

3 I'hy,...,h s.t. the PL convex function
f(x)=max{max{x-p; +h;}, max{x-vi+g;}}
satisfies, vol{ x|Vf = p,;} = A..

R s, >
A

max{xv;+g;} unbounded faces max{x-p; +h.} , bounded faces




Our main result: there exist variational proofs of
Alexandrov’s and Pogorelov’s theorems.

Basically the same as Minkowski’s original proof.

Thus, there exists an algorithm to compute
the Alexandrov map V' f .

We are motivated by computational problems
from computer graphics, discrete optimal
transportation and discrete Monge-Ampere
equation.



Voronoi decomposition and power diagrams

Given py, ..., p, in RN, the Voronoi cell
V;at p; is:

Vi={x | [x-p;|* < |x-p;|* all j}

A generalization: power diagram, given py, ..., p, in RN
and weights a,,...,a, in R, the power diagram at p; is

Wi={x] [x-p;[*+a; < |x-p;|*+a;, all j}




PL convex function f(x)=max{x - p,+h;} and power diagram

Lemma 1. If f(x) = max{x-p; + h;},then W;={x | Vf = p;} is a power diagram.

Proof. By definition {x | Vf=p;}={x | xp+h, 2 xp;+h,, all j}

X -p;+h; 2 x-p;+h; is the same as
XX =2X-Pi+P;P-2h-pyp; < XX -2X-Pi+P;P; - 2hj_pj'pji

i.e., |- pi|? -2hi-p;p; < [x-p;|%- 2h-p;p; forall ]



Lemma 2. If b, ...,.b, : X [0, o), let W={x | b,(x) = bj(x), all j},
Then for any partition {X,, ..., X.} of X,

20;(x) Xxi(x) < 2 bi(x) Xwi(x)

Proof. Take x in X, say xin X;and also in W..
Then

LHS= b;(x)

RHS 2 b;(x) 2 b;(x) =LHS.



Discrete optimal transport problem (Monge)

Given a compact convex domain X In RN and
Py, - P inRNand A, ..., A >0,

find a transport map T: X > {p,, ..., p,} With
vol(T}(p:))=A so that T minimizes

the cost IX | X =T(x) |2 dX. (v.Brenier)

< e ‘




Recall

Alexandrov thm: Given X cpt convex
domain in RN, p,, ..., p, distinct in RV,
A,...,A>0 s.t. 3 A =vol(X).

Then 3 PL convex function
f(x) = max{ x-p, +hy},
unique up to translation s.t.,

Vol({x e X | Vf(x)=p}) =A.



Theorem(Aurenhammer- Hoffmann- Aronov, (1998))

Alexandrov map Vfis the optimal transport map.
Proof . Let W;={x| x-p;+h; > x-p;+h;, all j}
Suppose X,,...,X, is a partition of X s.t., vol(X,)=A.and T(X.)=p,. Then

cost(T)= [y | x =T(x)|? dx

=2 Ixi | X-p; | ?dx

=2 [x (xpi] 2 +wi)dx - ZwiA, (vol(x)=A)

> 5 ‘[Wi (|x-p; | 2+w;)dx - SW.A, (lemma2, vol(W,)=vol(X)=A,)
= ZIwi | x-p; | *dx

= [y |x = Vf(x)|? dx
=cost(Vf).






Recall

Minkowski thm. Given k unit
vectors n,, ...n, not contained in a
half-spacein RNand A, ...,A>0
S.t.,

2. An.=0,
1, unique up to translation, cpt
convex polytope P with exactly k
codim-1 faces F,...,F,s.t.,
(a) area (F,)= A and
(b) n, L F..




Mikowski’s proof of his thm

Given h=(h,, ..., h,), h.>0, define ~~ |
cpt convex polytope . :
P(h)={x| x-n; <h, alli}. Pehy ﬁ)é LS
Let Vol: R.¥ = R be vol(h)=vol(P(h)). \
F;
dVol(h) _
Then, on =area(F,)

The solution h (up to scaling) to MP is the critical point of Vol on
{h]h >0, >h A =1}, using Lagrangian multiplier.

Unigueness part is proved using Brunn-Minkowski inequality
which implies (Vol(h))¥N is concave in h.
So far, this is the ONLY proof of uniqueness.



Alexandrov thm: Given X cpt convex domain in RV, p,, ..., p, distinct
inRN, A,,...,A >0 s.t., > A =vol(X), 3 a PL convex function
f(x) = max{x-p, +h},
unique up to translation s.t.,
Vol({x e X | Vf(x)=p;}) =A.

Our Proof. For h =(h, ..., h,) in Rk, define fas above and let
Wi(h)={x | xp;+h; 2 x.p; + h;, all j} and w;(h)=vol(W,(h)).

Step 1. H={h € R¥| w,(h)>0, all i} is non-empty open convex set in RX.

ow.(h) _ ow,(h) .
T <0, forizj.

Thus the differential 1-form 3 . w;(h) dh. is closed in H.
Therefore, 3 a smooth F: H = R so that aa_rf = w;(h)

Step 2. (Key step)



Step 3. Zia—vg'}f*i) = 0, due to > . w,(h)=vol(X).
J

This shows F(h) is convex in H (since the Hessian of Fis
diagonally dominated)

Step 4. F is strictly convex in Hy={h € H |3 h.=0} so that
VF = (Wq, ..., W},).

Lemma 3. If F strictly convex on an open convex set Q in R™
then VF:Q) - R™is1 —1.

This shows the uniqueness part of Alexandrov’s thm.



We show that the concave function

G(h) = F(h) -3 hA
has a minimum pointin Hy. The min point h is the solution to
Alexandrov’s them.

Exactly the same proof works for Pogorelov’s thm.

Thm(Gu-L-Sun-Yau). X cpt convex domain in RN, p,, ..., p, distinct in RV,

s: X— R positive continuous.

Forany A,, ..., Ac>0 with A, = [, s(x) dx, 3 avector (h,, ..., h,) so that
f(x) =max{ x-p;+h.}

satisfies [y, xs(x) dx=A; where W;={x |Vf = p,}. Furthermore, his

the minimum point of the convex function

E(y)=1,Y S i T, xS(x) dxdy, -3 jAy,

Alexandrov thm corresponds to s(x)=1. Y. Brenier proved a more general form.



Discrete Monge-Ampere Eq (DMAE)

Simplest version: X domainin RN, A: X - R, find
f:X—= R, s.t.,

& det(Hess(f)) =A,
flox =8

This is related to Monge’s optimal transport problem:

vf
s

travsprt P RY
areo. presovidY



Q2: Given A, g how to compute f?
Q3. What is the discrete det(Hess(f))?
Let X =conv{vy, ..., v} a domain in RV,

u: X — Ris PL convex function w.r.t a convex cell
decomposition < Then the discrete Hessian det

of usendsv € J* to the volume of the convex
hull of the gradients of u at top-dim cells
adjacent to v.




Thm(Pogorelov). Suppose X=convi{v,, ..., v..} convex
domain in RN, s.t. v, not in con{v,, ...,V. {,Vi,1,--,Virn},
and g,, ..., 8., in R.

VY py, - P inint(X) and A,,..., A >0, then

3 | PL convex function w: X — R having vertices
exactly at p,, s.t.

(a) the discrete Hessian det of w at p; is A,

Indeed, w(y)=sup{xy-f(x)|x} is the Fenchel-Legendre dual of the
solution to Pogorelov’s thm:
f(x)=max{max{x-p; +h;}, max{xv,+g}}.

Our result shows that w can be constructed by a finite dim variational

principle since dual of PK convex function is computable using linear programming.



Algorithm

Convex Hull

Delaunay Triangulation

Vornoi diagram

Power Diagram — upper envelope
Optimal Transportation Map



Computational Algorithm

up{x)

The convex energy is

E(r.ha,--- 1) = Y, A= [, Wil
=1 =1

Geometrically, the energy is the volume beneath the parabola.



Computational Algorithm

The gradient of the energy is the areas of the cells

VE(h1.ha,--- .hg) = (A1 — W1, A —Wa,--- A — W)



Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual
edges,

ow;  |ejl

dh; |€j




Computational Algorithm

Q Initialize h=0

Q Compute the Power Voronoi diagram, and the dual Power
Delaunay Triangulation

Q@ Compute the cell areas, which gives the gradient VE

@ Compute the edge lengths and the dual edge lengths,
which gives the Hessian matrix of E, Hess(E)

@ Solve linear system
VE = Hess(E)dh
@ Update the height vector
(h) < h—Adh.

where A Is a constant to ensure that no cell disappears
@ Repeat step 2 through 6, until ||dh|| < .
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Thank you.



