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Optimal Mass Transportation Problem 

                



Motivation 

• Tannenbaum: Medical image registration 

 

 



Motivation: Surface registration 
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Minkowski problem and several related problems 

Eg.  A convex polygon  P in 
R2 is determined by  its edge 
lengths Ai and unit normal 
vectors ni. 

                



 THM (Minkoswki)  P exists and is unique up to translations. 
                    Minkowski’s proof is variational and constructs P. 



 



P.S. Alexandrov: 

 Q1. What is Minkowski problem for non-compact polyhedra? 

Pogorelov: Their results: MP solvable 
for bound faces with 
unbounded faces fixed. 

Discrete optimal transport 

Discrete Monge-Ampere equation 

Polyhedron P 



 



PL convex function 

Wi 



Alexandrov’s proof is not variational and is topological. 
On page 321 of his book “Convex polyhedra”, he asked if there exists a 
variational proof of his thm. He said such a proof “is of prime importance by itself”. 



  Pogorelov theorem 

max{x.vj+gj} unbounded faces max{x.pi +hi} , bounded faces 



Our main result: there exist variational proofs of 
Alexandrov’s and Pogorelov’s theorems.  
  

We are motivated by computational problems 
from computer graphics, discrete optimal 
transportation and discrete Monge-Ampere 
equation. 

    

Basically the same as Minkowski’s original proof. 



Voronoi decomposition and power diagrams 

Given p1, …, pk in RN, the Voronoi cell      
Vi at pi is: 

        Vi={x | |x-pi|
2 ≤ |x-pj|

2, all j} 

A generalization: power diagram, given p1, …, pk in RN  
 and weights a1,…,ak in R, the power diagram at pi is 
 
 
 
   Wi={x||x-pi|

2+ai  ≤ |x-pj|
2+aj, all j} 



          PL convex function 𝑓(𝑥)=max{𝑥 . 𝑝𝑖+ℎ𝑖}  and power diagram 

                      x .pi+hi ≥  x.pj+hj  is the same as   
 
     x.x -2x.pi+pi

.pi-2hi-pi
.pi  ≤ x.x -2x.pj+pj

.pj - 2hj-pj
.pj, 

 
i.e.,       |xi- pi|

2  -2hi-pi
.pi   ≤ |x-pj|

2- 2hj-pj
.pj    for all j 



Proof.  Take x in X, say x in Xj and also in Wi. 
Then 
 
LHS= bj(x) 
 
RHS ≥ bi(x)  ≥ bj(x) =LHS. 



Discrete optimal transport problem  (Monge)  
 
Given  a compact convex  domain X In RN and  
p1, …, pk in RN and A1, …, Ak>0, 
 find a transport map T: X → {p1, …, pk} with   
vol(T-1(pi))=Ai so that T minimizes   
the cost  ∫

X 
|x –T(x)|2 dx.  (Y. Brenier) 





Theorem(Aurenhammer- Hoffmann- Aronov, (1998)) 



 



Recall  



Mikowski’s proof of his thm 

Given h=(h1, …, hk), hi>0, define   
cpt convex  polytope   

     P(h)={x| x . ni  ≤ hi, all i}. 

 

Uniqueness part is proved using Brunn-Minkowski inequality  
which implies  (Vol(h))1/N is concave in h.   
So far, this is the ONLY proof of uniqueness. 

Fi 

Let Vol: R+
k → R be vol(h)=vol(P(h)).   

The solution h (up to scaling) to MP is the critical point of Vol on   
  { h | hi ≥ 0,   ∑ hi Ai =1}, using Lagrangian multiplier. 



Our Proof.  For h =(h1, …, hk) in Rk, define  f as above and let 
  Wi(h)={ x | x.pi+hi ≥  x.pj + hj, all j}   and wi(h)=vol(Wi(h)). 



This shows the uniqueness part of Alexandrov’s thm. 



We show that the concave function  

                                        G(h) = F(h) -∑  hiAi 

 has a minimum point in H0.   The min point h is the solution to 
Alexandrov’s them. 

 
Exactly the same proof works for Pogorelov’s thm. 

Alexandrov thm corresponds to s(x)=1.   Y. Brenier proved a more general form. 



Discrete Monge-Ampere Eq (DMAE) 

This is related to Monge’s optimal transport problem: 



Q2:  Given A, g how to compute f? 



Indeed,  w(y)=sup{x.y-f(x)|x}  is the Fenchel-Legendre dual of the  
solution to Pogorelov’s thm: 
                            f(x)=max{max{x.pi +hi}, max{x.vj+gj}}. 
 
Our result shows that w can be constructed by a finite dim variational 
principle since dual of PK convex function is computable using linear programming. 



Algorithm 

• Convex Hull 

• Delaunay Triangulation 

• Vornoi diagram 

• Power Diagram – upper envelope 

• Optimal Transportation Map 

 



Computational Algorithm 
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                  Thank you. 


