Tutorial on Optimal Mass Transport for Computer Vision

David Gu
State University of New York at Stony Brook

Graduate Summer School: Computer Vision, IPAM, UCLA July 31, 2013
Joint work with Shing-Tung Yau, Feng Luo and Jian Sun
Optimal Mass Transportation Problem

Earth movement cost.
Motivation

• Tannenbaum: Medical image registration
Motivation: Surface registration
Optimal Mass Transportation Problem

Find a best scheme of transporting one mass distribution \((f, U)\) to another one \((g, V)\) such that the total cost is minimized,

\[U, V : \text{two bounded domains in } \mathbb{R}^n \]

\[0 \leq f \in L^1(U) \]
\[0 \leq g \in L^1(V) \]

\[\int_U f = \int_V g. \]
Optimal Mass Transportation Problem

For a transport scheme \(s \) (a mapping from \(U \) to \(V \))

\[
s : x \in U \rightarrow y = s(x) \in V
\]

The total cost is

\[
\mathcal{C}(s) = \int_{U} f(x)c(x, s(x))\,dx
\]

where \(c(x, y) \) is the cost function.
The cost of moving a unit mass from point x to point y.

Monge (1781): $c(x, y) = |x - y|$.

This is the natural cost function. Other cost functions include

- $c(x, y) = |x - y|^p, p \neq 0$
- $c(x, y) = -\log|x - y|$
- $c(x, y) = \sqrt{\varepsilon + |x - y|^2}, \varepsilon > 0$

Any function can be cost function. It can be negative.
Is there an optima mapping $T : U \rightarrow V$ such that the total cost \mathcal{C} is minimized,

$$\mathcal{C}(T) = \inf \{ \mathcal{C}(s) : s \in \mathcal{S} \}$$

where \mathcal{S} is the set of all measure preserving mappings, namely $s : U \rightarrow V$ satisfies

$$\int_{s^{-1}(E)} f(x) dx = \int_{E} g(y) dy, \forall \text{ Borel set } E \subset V$$
Applications

- Economy: producer-consumer problem, gas station with capacity constraint,
- Probability: Wasserstein distance
- Image processing: image registration
- Digital geometry processing: surface registration
Duality and potential functions

A breakthrough in the study of optimal transportation is the introduction of the duality.

- Kantorovich introduced the **dual functional**

\[
I(\phi, \psi) = \int_U \phi(x)f(x) + \int_V \psi(y)g(y), (\phi, \psi) \in K
\]

\[
K = \{ (\phi, \psi) : \phi(x) + \psi(y) \leq c(x, y) \}
\]

- **Duality:**

\[
\inf \{ \mathcal{C}(s) : s \in \mathcal{S} \} = \sup \{ I(\phi, \psi) : (\phi, \psi) \in K \}.
\]

- Kantorovich won Nobel Prize for this work.
Duality and potential functions

- The dual functional I is linear, the set of K is convex.
- \exists a maximizer (u, v):

$$I(u, v) = \sup\{I(\phi, \psi) : (\phi, \psi) \in K\}$$

- The maximizer is unique in the sense

$$I(u + a, v - a) = I(u, v)$$

for any constant a.
- The maximizer (u, v) is called potential functions.
Theorem (Brenier)

If $f, g > 0$ and U is convex, and the cost function is quadratic distance,

$$c(x, y) = |x - y|^2$$

then there exists a convex function $u : U \to \mathbb{R}$ unique upto a constant, such that the unique optimal transportation map is given by the gradient map

$$T : x \to \nabla u(x).$$
Brenier’s Approach

In smooth case, the Brenier potential $u : \Omega \to \mathbb{R}$ satisfies the Monge-Ampere equation

$$
\det \left(\frac{\partial^2 u}{\partial x_i \partial x_j} \right) = \frac{g(\nabla u(x))}{f(x)},
$$

and $\nabla u : \Omega \to D$ minimizes the quadratic cost

$$
\min_u \int_{\Omega} |x - \nabla u(x)|^2 dx.
$$
Brenier’s Approach

Discretize the target D to $P = \{(p_1, w_1), (p_2, w_2), \ldots, (p_n, w_n)\}$, Decompose Ω to cells $\{C_1, C_2, \ldots, C_n\}$, such that $T(C_k) = p_k$, $\text{vol}(C_k) = w_k$, and the mapping minimizes the quadratic cost

$$\sum_{k} \int_{C_k} |p - p_k|^2 dx.$$
Minkowski problem and several related problems

Eg. A convex polygon P in \mathbb{R}^2 is determined by its edge lengths A_i and unit normal vectors n_i.

Take any $u \in \mathbb{R}^2$ and project P to u,

$$\sum A_i \cdot n_i \cdot u = 0,$$
$$\sum A_i n_i = 0.$$
Minkowski Problem. Given k unit vectors n_1, \ldots, n_k not contained in a half-space in \mathbb{R}^N and $A_1, \ldots, A_k > 0$ s.t.,

$$\sum_i A_i n_i = 0,$$

find a c.p.t convex polytope P with exactly k codim-1 faces F_1, \ldots, F_k s.t.,

(a) area $(F_i) = A_i$ and
(b) $n_i \perp F_i$.

THM (Minkowski) P exists and is unique up to translations.

Minkowski’s proof is variational and constructs P.
Figure 1: Minkowski problem
Q1. What is Minkowski problem for non-compact polyhedra?

P.S. Alexandrov:

Discrete optimal transport

Pogorelov:

Discrete Monge-Ampere equation

Their results: MP solvable for bound faces with unbounded faces fixed.
PL-convex function and its induced convex subdivision.
PL convex function

\[f(x) = \max\{ x \cdot p_i + h_i \mid i=1,\ldots,k \} \]
produces a convex cell decomposition \(W_i \) of \(\mathbb{R}^N \):

\[W_i = \{ x \mid x \cdot p_i + h_i \geq x \cdot p_j + h_j, \text{ all } j \} \]

\[= \{ x \mid \nabla f(x) = p_i \} \]
Alexandrov (1950): Given X cpt convex domain in \mathbb{R}^N, p_1, \ldots, p_k distinct in \mathbb{R}^N, $A_1, \ldots, A_k > 0$, s.t. $\sum A_i = \text{vol}(X)$, there exists a PL convex function $f(x) = \max_i \{ x \cdot p_i + h_i \}$, unique up to translation s.t.,

$$\text{Vol} \{ x \in X \mid \nabla f(x) = p_i \} = A_i.$$

We call ∇f the Alexandrov map.

Alexandrov’s proof is not variational and is topological. On page 321 of his book “Convex polyhedra”, he asked if there exists a variational proof of his thm. He said such a proof “is of prime importance by itself”.

Pogorelov theorem

Suppose v_1, \ldots, v_m in \mathbb{R}^N, s.t.
v_i not in $\text{con}\{v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_m\}$, and g_1, \ldots, g_m in \mathbb{R}.
$\forall \{p_1, \ldots, p_k\} \subseteq \text{int}(\text{conv}\{v_1, \ldots, v_m\})$ and $A_1, \ldots, A_k > 0$,
$\exists ! h_1, \ldots, h_k$, s.t. the PL convex function

$$f(x) = \max\{\max\{x \cdot p_i + h_i\}, \max\{x \cdot v_j + g_j\}\}$$

satisfies, $\text{vol}\{x | \nabla f = p_i\} = A_i$.

max$\{x \cdot v_j + g_j\}$ unbounded faces
max$\{x \cdot p_i + h_i\}$, bounded faces
Our main result: there exist variational proofs of Alexandrov’s and Pogorelov’s theorems.

Basically the same as Minkowski’s original proof.

Thus, there exists an algorithm to compute the Alexandrov map ∇f.

We are motivated by computational problems from computer graphics, discrete optimal transportation and discrete Monge-Ampere equation.
Voronoi decomposition and power diagrams

Given \(p_1, \ldots, p_k \) in \(\mathbb{R}^N \), the Voronoi cell \(V_i \) at \(p_i \) is:

\[
V_i = \{ x \mid |x-p_i|^2 \leq |x-p_j|^2, \text{ all } j \}
\]

A generalization: power diagram, given \(p_1, \ldots, p_k \) in \(\mathbb{R}^N \) and weights \(a_1, \ldots, a_k \) in \(\mathbb{R} \), the power diagram at \(p_i \) is

\[
W_i = \{ x \mid |x-p_i|^2 + a_i \leq |x-p_j|^2 + a_j, \text{ all } j \}
\]
PL convex function \(f(x) = \max\{x \cdot p_i + h_i\} \) and power diagram

Lemma 1. If \(f(x) = \max\{x \cdot p_i + h_i\} \), then \(W_i = \{x \mid \nabla f = p_i\} \) is a power diagram.

Proof. By definition \(\{x \mid \nabla f = p_i\} = \{x \mid x \cdot p_i + h_i \geq x \cdot p_j + h_j, \text{ all } j\} \)

\[x \cdot p_i + h_i \geq x \cdot p_j + h_j \text{ is the same as } \]

\[x \cdot x - 2x \cdot p_i + p_i \cdot p_i - 2h_i - p_i \cdot p_i \leq x \cdot x - 2x \cdot p_j + p_j \cdot p_j - 2h_j - p_j \cdot p_j , \]

i.e.,

\[|x_i - p_i|^2 - 2h_i - p_i \cdot p_i \leq |x - p_j|^2 - 2h_j - p_j \cdot p_j \text{ for all } j \]
Lemma 2. If \(b_1, ..., b_k : X \to [0, \infty) \), let \(W_i = \{ x \mid b_i(x) \geq b_j(x), \text{ all } j \} \), then for any partition \(\{ X_1, ..., X_k \} \) of \(X \),

\[
\sum_i b_i(x) \chi_{X_i}(x) \leq \sum_i b_i(x) \chi_{W_i}(x)
\]

Proof. Take \(x \) in \(X \), say \(x \) in \(X_j \) and also in \(W_i \). Then

\[
\text{LHS} = b_j(x)
\]

\[
\text{RHS} \geq b_i(x) \geq b_j(x) = \text{LHS}.
\]
Discrete optimal transport problem (Monge)

Given a compact convex domain X in \mathbb{R}^N and $p_1, ..., p_k$ in \mathbb{R}^N and $A_1, ..., A_k > 0$, find a transport map $T: X \rightarrow \{p_1, ..., p_k\}$ with $\text{vol}(T^{-1}(p_i)) = A_i$ so that T minimizes the cost $\int_X |x - T(x)|^2 \, dx$. (Y. Brenier)
Recall

Alexandrov thm: Given X cpt convex domain in \mathbb{R}^N, p_1, \ldots, p_k distinct in \mathbb{R}^N, $A_1, \ldots, A_k > 0$ s.t. $\sum A_i = \text{vol}(X)$.

Then \exists PL convex function

$$f(x) = \max_i \{x \cdot p_i + h_i\},$$

unique up to translation s.t.,

$$\text{Vol}\{x \in X \mid \nabla f(x) = p_i\} = A_i.$$
Theorem (Aurenhammer- Hoffmann- Aronov, (1998))

Alexandrov map ∇f is the optimal transport map.

Proof. Let $W_i=\{x| x\cdot p_i + h_i \geq x\cdot p_j + h_j, \text{ all } j\}$

Suppose X_1, \ldots, X_n is a partition of X s.t., $\text{vol}(X_i)=A_i$ and $T(X_i)=p_i$. Then

$$\text{cost}(T) = \int_X |x - T(x)|^2 \, dx$$

$$= \sum \int_{X_i} |x - p_i|^2 \, dx$$

$$= \sum \int_{X_i} (|x - p_i|^2 + w_i) \, dx - \sum w_i A_i$$

$$\geq \sum \int_{W_i} (|x - p_i|^2 + w_i) \, dx - \sum w_i A_i \quad \text{(lemma 2, vol}(W_i)=\text{vol}(X_i)=A_i)$$

$$= \sum \int_{W_i} |x - p_i|^2 \, dx$$

$$= \int_X |x - \nabla f(x)|^2 \, dx$$

$$= \text{cost}(\nabla f).$$
Recall

Minkowski thm. Given k unit vectors n_1, \ldots, n_k not contained in a half-space in \mathbb{R}^N and $A_1, \ldots, A_k > 0$ s.t.,

$$\sum_i A_i n_i = 0,$$

\exists, unique up to translation, cpt convex polytope P with exactly k codim-1 faces F_1, \ldots, F_k s.t.,

(a) area $(F_i) = A_i$ and

(b) $n_i \perp F_i$.
Mikowski’s proof of his thm

Given $h=(h_1, ..., h_k)$, $h_i > 0$, define convex polytope

$$P(h) = \{ x \mid x \cdot n_i \leq h_i, \text{ all } i \}.$$

Let $\text{Vol}: \mathbb{R}^+_k \rightarrow \mathbb{R}$ be $\text{vol}(h) = \text{vol}(P(h))$.

Then,

$$\frac{\partial \text{Vol}(h)}{\partial h_i} = \text{area}(F_i)$$

The solution h (up to scaling) to MP is the critical point of Vol on

$$\{ h \mid h_i \geq 0, \sum h_i A_i =1 \},$$

using Lagrangian multiplier.

Uniqueness part is proved using Brunn-Minkowski inequality which implies $(\text{Vol}(h))^{1/N}$ is concave in h.

So far, this is the ONLY proof of uniqueness.
Our Proof. For \(h = (h_1, ..., h_k) \) in \(\mathbb{R}^k \), define \(f \) as above and let
\[
W_i(h) = \{ x \mid x \cdot p_i + h_i \geq x \cdot p_j + h_j, \text{ all } j \}
\]
and \(w_i(h) = \text{vol}(W_i(h)) \).

Step 1. \(H = \{ h \in \mathbb{R}^k \mid w_i(h) > 0, \text{ all } i \} \) is non-empty open convex set in \(\mathbb{R}^k \).

Step 2. (Key step) \[
\frac{\partial w_i(h)}{\partial h_j} = \frac{\partial w_j(h)}{\partial h_i} \leq 0, \text{ for } i \neq j.
\]
Thus the differential 1-form \(\sum_i w_i(h) \, dh_i \) is closed in \(H \).

Therefore, \(\exists \) a smooth \(F: H \rightarrow \mathbb{R} \) so that \[
\frac{\partial F}{\partial h_i} = w_i(h)
\]
Step 3. $\sum_i \frac{\partial w_i(h)}{\partial n_j} = 0$, due to $\sum_i w_i(h) = \text{vol}(X)$.

This shows $F(h)$ is convex in H (since the Hessian of F is diagonally dominated).

Step 4. F is strictly convex in $H_0 = \{h \in H \mid \sum h_i = 0\}$ so that $\nabla F = (w_1, \ldots, w_k)$.

Lemma 3. If F strictly convex on an open convex set Ω in \mathbb{R}^m then $\nabla F : \Omega \to \mathbb{R}^m$ is 1-1.

This shows the uniqueness part of Alexandrov’s thm.
We show that the concave function
\[G(h) = F(h) - \sum h_i A_i \]
has a minimum point in \(H_0 \). The min point \(h \) is the solution to Alexandrov’s theorem.

Exactly the same proof works for Pogorelov’s theorem.

Thm (Gu-L-Sun-Yau). \(X \) cpt convex domain in \(R^N \), \(p_1, ..., p_k \) distinct in \(R^N \), \(s: X \to R \) positive continuous.
For any \(A_1, ..., A_k > 0 \) with \(\sum A_i = \int_X s(x) \, dx \), \(\exists \) a vector \((h_1, ..., h_k) \) so that \(f(x) = \max \{ x \cdot p_i + h_i \} \)
satisfies \(\int_{W_i \cap X} s(x) \, dx = A_i \) where \(W_i = \{ x \mid \nabla f = p_i \} \). Furthermore, \(h \) is the minimum point of the convex function
\[E(y) = \int_X y \sum_i \int_{W_i \cap X} s(x) \, dx \, dy_i - \sum_i A_i y_i. \]

Alexandrov theorem corresponds to \(s(x) = 1 \). Y. Brenier proved a more general form.
Discrete Monge-Ampere Eq (DMAE)

Simplest version: X domain in \mathbb{R}^N, $A: X \rightarrow R_{>0}$ find $f: X \rightarrow R$, s.t.,

\[
\begin{aligned}
\det(\text{Hess}(f)) &= A, \\
f|_{\partial X} &= g
\end{aligned}
\]

This is related to Monge’s optimal transport problem:
Q2: Given A, g how to compute f?

Q3. What is the discrete $\det(\text{Hess}(f))$?

Let $X = \text{conv}\{v_1, \ldots, v_k\}$ a domain in \mathbb{R}^N, $u : X \to \mathbb{R}$ is PL convex function w.r.t a convex cell decomposition \mathcal{T}. Then the discrete Hessian \det of u sends $v \in \mathcal{T}^{(0)}$ to the volume of the convex hull of the gradients of u at top-dim cells adjacent to v.
Thm(Pogorelov). Suppose $X=\text{conv}\{v_1, ..., v_m\}$ convex domain in \mathbb{R}^N, s.t. v_i not in $\text{con}\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_m\}$, and $g_1, ..., g_m$ in \mathbb{R}.

$\forall p_1, ..., p_k$ in $\text{int}(X)$ and $A_1, ..., A_K > 0$, then

$\exists ! \text{ PL convex function } w: X \rightarrow \mathbb{R}$ having vertices exactly at p_i, s.t.

(a) the discrete Hessian det of w at p_i is A_i,

(b) $w(v_j) = g_j$ all j.

Indeed, $w(y) = \sup\{x \cdot y - f(x) | x\}$ is the Fenchel-Legendre dual of the solution to Pogorelov’s thm:

$$f(x) = \max\{\max\{x \cdot p_i + h_i\}, \max\{x \cdot v_j + g_j\}\}.$$

Our result shows that w can be constructed by a finite dim variational principle since dual of PK convex function is computable using linear programming.
Algorithm

- Convex Hull
- Delaunay Triangulation
- Vornoi diagram
- Power Diagram – upper envelope
- Optimal Transportation Map
The convex energy is

$$E(h_1, h_2, \ldots, h_k) = \sum_{i=1}^{k} A_i h_i - \int_{0}^{h} \sum_{j=1}^{k} W_j dh_j,$$

Geometrically, the energy is the volume beneath the parabola.
The gradient of the energy is the areas of the cells

$$\nabla E(h_1, h_2, \ldots, h_k) = (A_1 - w_1, A_2 - w_2, \ldots, A_k - w_k)$$
The Hessian of the energy is the length ratios of edge and dual edges,

\[\frac{\partial w_i}{\partial h_j} = \frac{|e_{ij}|}{|\bar{e}_{ij}|} \]
Computational Algorithm

1. Initialize $\mathbf{h} = 0$
2. Compute the Power Voronoi diagram, and the dual Power Delaunay Triangulation
3. Compute the cell areas, which gives the gradient ∇E
4. Compute the edge lengths and the dual edge lengths, which gives the Hessian matrix of E, $\text{Hess}(E)$
5. Solve linear system
 \[\nabla E = \text{Hess}(E) d\mathbf{h} \]
6. Update the height vector
 \[(h) \leftarrow \mathbf{h} - \lambda d\mathbf{h}, \]
 where λ is a constant to ensure that no cell disappears
7. Repeat step 2 through 6, until $\|d\mathbf{h}\| < \varepsilon$.
Thank you.