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Variations due to lighting (and pose) 



Relief 

Dumitru Verdianu 
Flying Pregnant Woman 



Edges 



Edges on smooth surfaces 



Bump or dip? 



What sticks out? 



Light field 

• Rays travel from sources to objects 

• There they are either absorbed or reflected 

• Energy of light decreases with distance and 
number of bounces 

• Camera is designed to capture the set of rays 
that travel through the focal center 

• We will assume the camera response is linear 



Specular reflectance (mirror) 

• When a surface is smooth light reflects in the 
opposite direction of the surface normal 

 



Specular reflectance 

• When a surface is slightly rough the reflected 
light will fall off around the specular direction 



Diffuse reflectance 

• When the surface is very rough light may be 
reflected equally in all directions 

 



Diffuse reflectance 

• When the surface is very rough light may be 
reflected equally in all directions 

 



BRDF 

• Bidirectional Reflectance Distribution Function 

 
𝑓(𝜃𝑖𝑛, ∅𝑖𝑛; 𝜃𝑜𝑢𝑡, ∅𝑜𝑢𝑡) 

 

• Specifies for a unit of incoming 
light in a direction (𝜃𝑖𝑛, ∅𝑖𝑛)  
how much light will be reflected 
in a direction (𝜃𝑜𝑢𝑡, ∅𝑜𝑢𝑡) 

𝑛  



BRDF 

Light from front    Light from back 



Lambertian reflectance 



Lambertian reflectance 



Lambert’s law 

𝑛  𝑙  

𝐼 = 𝐸𝜌 cos 𝜃 𝜃 ≤ 900  

𝐼 =  𝑙𝑇𝑛  (𝑙 = 𝐸𝑙 , 𝑛 = 𝜌𝑛 ) 

𝜃 



Preliminaries 

• A surface is denoted 𝑧 𝑥, 𝑦  

• A point on 𝑧 is (𝑥, 𝑦, 𝑧 𝑥, 𝑦 ) 

• The tangent plane is spanned by 
1,0, 𝑧𝑥            (0,1, 𝑧𝑦) 

• The surface normal is given by 

𝑛 =
1

𝑧𝑥
2 + 𝑧𝑦

2 + 1

−𝑧𝑥, −𝑧𝑦 , 1  



Photometric stereo 

• Given several images of the a lambertian 
object under varying lighting 

• Assuming single directional source 

𝑀 = 𝐿𝑆 



Photometric stereo 

𝑀 = 𝐿𝑆 
 
𝐼11 ⋯ 𝐼1𝑝

⋮ ⋮
⋮ ⋮

𝐼𝑓1 … 𝐼𝑓𝑝 𝑓×𝑝

=

𝑙1𝑥 𝑙1𝑦 𝑙1𝑧

⋮
⋮

𝑙𝑓𝑥 𝑙𝑓𝑦 𝑙𝑓𝑧 𝑓×3

𝑛𝑥1

𝑛𝑦1 ⋯

𝑛𝑧1

𝑛𝑥𝑝

⋯ 𝑛𝑥𝑝

𝑛𝑥𝑝 3×𝑝

 

 

• We can solve for S if L is known (Woodham) 
• This algorithm can be extended to more complex 

reflection models (if known) through the use of a 
lookup table 



Factorization 

• Use SVD to find a rank 3 approximation 

𝑀 = 𝑈Σ𝑉𝑇 

• Define Σ3 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, 𝜎3), where 𝜎1, 𝜎2, 𝜎3 are the largest 

singular values of 𝑀 

𝐿 = 𝑈 Σ3,    𝑆 = Σ3𝑉𝑇  and  𝑀 ≈ 𝐿 𝑆  

• Factorization is not unique, since 

𝑀 = 𝐿 𝐴−1 𝐴𝑆 , 𝐴 is 3 × 3 invertible 

• We can reduce ambiguity by imposing integrability 

(Hayakawa) 



Generlized bas-relief ambiguity 

• Linearly related surfaces: given a surface 𝑧(𝑥, 𝑦) 
the surfaces related linearly to 𝑧 are: 

 
𝑧 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧(𝑥, 𝑦) 

 

𝐺 =
1 0 0
0 1 0
𝑎 𝑏 𝑐

        𝐺−1 =
1

𝑐

𝑐 0 0
0 𝑐 0

−𝑎 −𝑏 1
 

 

• Forms a sub-group of GL(3) 

(Belhumeur, Kriegman and Yuille) 



Bas-relief 



Integrability 

• Objective: given a normal field 𝑛(𝑥, 𝑦) ∈ 𝑆2 recover 
depth 𝑧(𝑥, 𝑦) ∈ ℝ 

 

• Recall that 

𝑛 = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) =
𝜌

𝑧𝑥
2 + 𝑧𝑦

2 + 1

−𝑧𝑥 , −𝑧𝑦 , 1  

 

• Given 𝑛, we set 

𝜌 = 𝑛  ;  𝑝 = −
𝑛𝑥

𝑛𝑧
, 𝑞 = −

𝑛𝑦

𝑛𝑧
 



Integrability 

• Solve 

 
min
𝑧(𝑥,𝑦)

(𝑧 𝑥 + 1, 𝑦 − 𝑧 𝑥, 𝑦 − 𝑝)2+(𝑧 𝑥, 𝑦 + 1 − 𝑧(𝑥, 𝑦)−q)2 

 

    where 

𝑝 = −
𝑛𝑥

𝑛𝑧
, 𝑞 = −

𝑛𝑦

𝑛𝑧
 



Photometric stereo with matrix completion 
(Wu et al.) 



Shape from shading (SFS) 

• What if we only have one image? 

• Assuming that lighting is known 
and albedo is uniform 

         𝐼 =  𝑙𝑇𝑛 ∝ cos 𝜃 

• Every intensity determines 
a circle of possible normals 

• There is only one unknown (𝑧) 
for each pixel 
(since uniform albedo is assumed) 



Shape from shading 

• Denote 𝑛 = −𝑧𝑥 , −𝑧𝑦 , 1  

• Then 

𝐸 =
𝑙𝑇𝑛

𝑛
 

• Therefore 
𝐸2𝑛𝑇𝑛 = 𝑛𝑇𝑙𝑙𝑇𝑛 

• We obtain 
𝑛𝑇 𝑙𝑙𝑇 − 𝐸2𝐼 𝑛 = 0 

• This is a first order, non-linear PDE (Horn) 

 



Shape from shading 

• Suppose 𝑙 = (0,0,1), then 

𝑧𝑥
2 + 𝑧𝑦

2 =
1

𝐸2
− 1 

• This is called an Eikonal equation 



Distance transform 

• The distance of each point to the boundary 



Shortest path 



Distance transform 

• Posed as an Eikonal equation 
𝛻𝑧 2 = 𝑧𝑥

2 + 𝑧𝑦
2 = 1 

 



Update for shortest path 

𝑇1 

𝑇2 

𝑤1 

𝑤2 

𝑇 = min 𝑇1 + 𝑤1, 𝑇2 + 𝑤2  

𝑇 =? 



Update for fast marching 

𝑇1 

𝑇2 

𝑓 

𝑇 =  
𝑇1 + 𝑇2 + 2𝑓2 − (𝑇1 − 𝑇2)2 if real

𝑓 + min 𝑇1, 𝑇2 otherwise
 

(Tsitsiklis, Sethian) 



SFS Solution 

• Lambertian SFS produces an eikonal equation 

𝛻𝑧 2 = 𝑧𝑥
2 + 𝑧𝑦

2 =
1

𝐸2
− 1 

• Right hand side determines “speed” 

• Boundary conditions are required: depth values at local 

maxima of intensity and possibly in shape boundaries 

• The case 𝑙 ≠ 0,0,1  is handled by change of variables 

(Kimmel & Sethian) 



Example 



Summary 

• Understanding the effect of lighting on images 
is challenging, but can lead to better 
interpretation of images 

• We considered Lambertian objects illuminated 
by single sources 

• We surveyed two problems: 

– Photometric stereo 

– Shape from shading 



Challenges 

• General reflectance properties 
– Lambertian 
– specular 
– general BRDFs 

• Generic lighting 
– multiple light sources (“attached shadows”) 
– near light 

• Cast shadows 
• Inter-reflections 
• Dynamic scenes 
• Local approaches (eg. direction of gradients) 

Can we hope to model this complexity? 
 


