Structure Prediction for 3D Scene Understanding

Raquel Urtasun
TTI Chicago
August 2, 2013

Which problems we will be looking at?

- 3D Layout estimation
- 3D object detection

A little bit about structure prediction

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{\top} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{T} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z} \exp (-E(\mathbf{y}, \mathbf{x}))
$$

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{\top} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z} \exp (-E(\mathbf{y}, \mathbf{x}))
$$

- How can I do inference? Why is this complicated?

$$
\min _{y_{1}, \cdots, y_{n}} E\left(y_{1}, \cdots, y_{n}\right)
$$

Recipe for Success using Structure Prediction

- What are my random variables?
- How are they related? i.e., graph
- How do I encode my prior knowledge about the problem?

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{T} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- Advise: Forget about probabilities in your potentials, the partition function will take care of that!

$$
p(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z} \exp (-E(\mathbf{y}, \mathbf{x}))
$$

- How can I do inference? Why is this complicated?

$$
\min _{y_{1}, \cdots, y_{n}} E\left(y_{1}, \cdots, y_{n}\right)
$$

- If you know how to do inference you will know how to do learning! Where does the complication come from?

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!
- Good learning algorithms exist as well

Why Would I Use Structure Prediction?

- Why to worry about math if I can hack up something quickly? \rightarrow there is still room for hackers!
- It allows you to abstract and encode models to solve your problems
- Captures well the combinatorial structure of some problems
- Easy to reason jointly about multiple problems
- Why do I care about holistic (i.e., joint) models?
- Well understood inference algorithms, some of them exact!
- Good learning algorithms exist as well

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?
- Can I learn everything from unlabeled data? How deep are you?

What's not so good?

- Use as a keyword, approaches that don't think about how the problem is represented, how the energy looks like, etc.
- Particularly overloaded terms, e.g., high-order potentials
- Problems with continuous variables: we need better algorithms!
- Do I need to understand inference? Yes, yes and yes! I don't think this is a negative point though
- Is a log-linear model expressive enough?
- Where does the structure come from?
- Can I learn everything from unlabeled data? How deep are you?

First task: 3D indoor scene understanding

3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)

3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)
- What prior knowledge would you like to encode?

3D layout for Indoors

Task: Estimate the 3D layout from a single image

- What's the metric? how do I know if I did well?
- How would you parameterize this problem? (i.e., what are your random variables?)
- What prior knowledge would you like to encode?

3D layout for Indoors

- Isn't this a segmentation task where each pixel can be labeled as a wall?

3D layout for Indoors

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$
y_{i} \in\{1, \cdots, 5\}
$$

the label the super pixel is associated with

3D layout for Indoors

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$
y_{i} \in\{1, \cdots, 5\}
$$

the label the super pixel is associated with

- Define the energy as

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{T} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- What are the $\phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)$?

3D layout for Indoors

- Isn't this a segmentation task where each pixel can be labeled as a wall?
- Let's start with the most simple parameterization: split the image into super pixels, and for each define

$$
y_{i} \in\{1, \cdots, 5\}
$$

the label the super pixel is associated with

- Define the energy as

$$
E\left(y_{1}, \cdots, y_{n}, \mathbf{x}\right)=\sum_{r \in \mathcal{R}} \mathbf{w}_{r}^{\top} \phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

- What are the $\phi_{r}\left(\mathbf{y}_{r}, \mathbf{x}\right)$?

Geometric Features as Unaries

- Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_{i}\left(\mathbf{x}, y_{i}\right)$?

- What are my pairwise potentials $\phi_{i j}\left(\mathrm{x}, y_{i}, y_{j}\right)$?

Geometric Features as Unaries

- Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_{i}\left(\mathbf{x}, y_{i}\right)$?

- What are my pairwise potentials $\phi_{i j}\left(\mathbf{x}, y_{i}, y_{j}\right)$?
- What's the problem with smoothness potentials?

Geometric Features as Unaries

- Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_{i}\left(\mathbf{x}, y_{i}\right)$?

- What are my pairwise potentials $\phi_{i j}\left(\mathbf{x}, y_{i}, y_{j}\right)$?
- What's the problem with smoothness potentials?
- Are we missing something? What extra knowledge do we have?

Geometric Features as Unaries

- Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image

orientation map

geometric context

How do I construct my unaries $\phi_{i}\left(\mathbf{x}, y_{i}\right)$?

- What are my pairwise potentials $\phi_{i j}\left(\mathbf{x}, y_{i}, y_{j}\right)$?
- What's the problem with smoothness potentials?
- Are we missing something? What extra knowledge do we have?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?
- What's the order of the potentials?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?
- Which algorithm will you use? would it take a long time? would it be optimal?

Manhattan World for Segmentation

- Labels are not appearing at random in the image

- We can encode that the world is Manhattan by expressing ordering constraints
- What would that be?
- What's the order of the potentials?
- Can we do inference easily?
- Which algorithm will you use? would it take a long time? would it be optimal?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ [Lee et al. 09]

- What have I lost with respect to before?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ [Lee et al. 09]

- What have I lost with respect to before?
- What have I won?

Encoding Manhattan World Structure

- Let's assume that I can compute vanishing points
- How should I express the problem? how many degrees of freedom do I have?
- We parameterize a layout with 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ [Lee et al. 09]

- What have I lost with respect to before?
- What have I won?

Energy of the problem

- Let's define the energy. Which potentials will you use?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

Energy of the problem

- Let's define the energy. Which potentials will you use?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- Let's start with the geometric features

original image

orientation map

geometric context
- We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc

Energy of the problem

- Let's define the energy. Which potentials will you use?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- Let's start with the geometric features

original image

orientation map

geometric context
- We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc
- We will also like to minimize the other colors in those walls, e.g., all but yellow in left wall

Energy of the problem

- Let's define the energy. Which potentials will you use?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- Let's start with the geometric features

original image

orientation map

geometric context
- We will like to maximize the yellow pixels in the left wall, green in the frontal wall, etc
- We will also like to minimize the other colors in those walls, e.g., all but yellow in left wall

More on energy

original image

orientation map

geometric context

- How do I express this in my potentials?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- How many y_{i}^{\prime} 's do I need to define them?

More on energy

original image

orientation map

geometric context

- How do I express this in my potentials?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- How many y_{i} 's do I need to define them?
- Do I need other potentials?

More on energy

original image

orientation map

geometric context

- How do I express this in my potentials?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- How many y_{i} 's do I need to define them?
- Do I need other potentials?
- Why did I need more potentials than just geometric features before?

More on energy

original image

orientation map

geometric context

- How do I express this in my potentials?

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, x\right)
$$

- How many y_{i} 's do I need to define them?
- Do I need other potentials?
- Why did I need more potentials than just geometric features before?

Inference

- It's inference easy in this model? Why?
- What can we do?

Inference

- It's inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option

Inference

- It's inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow!

Inference

- It's inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something

Inference

- It's inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces

Inference

- It's inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow !
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces
- Let's first take a detour

Inference

- It's inference easy in this model? Why?
- What can we do?
- Multi-label problem, message passing seems the best option
- Problem: High order potentials \rightarrow very very slow!
- Let's think about it for a second, maybe we can do something
- Remember we want to compute sum of features in faces, and search over all possible faces
- Let's first take a detour

Integral Images

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

$$
s(i, j)=\sum_{k=0}^{i} \sum_{l=0}^{j} f(k, l)
$$

- This can be efficiently computed using a recursive (raster-scan) algorithm

$$
s(i, j)=s(i-1, j)+s(i, j-1)-s(i-1, j-1)+f(i, j)
$$

Integral Images

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

3	5	12	14	17
4	11	19	24	31
9	$\mathbf{1 7}$	28	38	46
13	24	37	48	62
15	30	44	59	81

$$
s(i, j)=\sum_{k=0}^{i} \sum_{l=0}^{j} f(k, l)
$$

- This can be efficiently computed using a recursive (raster-scan) algorithm

$$
s(i, j)=s(i-1, j)+s(i, j-1)-s(i-1, j-1)+f(i, j)
$$

- Then compute the sum on the rectangle by accessing 4 numbers

$$
S\left(\left[i_{0}, i_{1}\right] \times\left[j_{0}, j_{1}\right]\right)=s\left(i_{1}, j_{1}\right)-s\left(i_{1}, j_{0}-1\right)-s\left(i_{0}-1, j_{1}\right)+s\left(i_{0}-1, j_{0}-1\right)
$$

Integral Images

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

$\mathbf{3}$	5	12	14	17
4	11	19	24	31
9	17	28	38	46
13	24	37	48	62
15	30	44	59	81

$$
s(i, j)=\sum_{k=0}^{i} \sum_{l=0}^{j} f(k, l)
$$

- This can be efficiently computed using a recursive (raster-scan) algorithm

$$
s(i, j)=s(i-1, j)+s(i, j-1)-s(i-1, j-1)+f(i, j)
$$

- Then compute the sum on the rectangle by accessing 4 numbers

$$
S\left(\left[i_{0}, i_{1}\right] \times\left[j_{0}, j_{1}\right]\right)=s\left(i_{1}, j_{1}\right)-s\left(i_{1}, j_{0}-1\right)-s\left(i_{0}-1, j_{1}\right)+s\left(i_{0}-1, j_{0}-1\right)
$$

- Can we do something similar in our case?

Integral Images

- We are interested in computing the sum of some features inside a rectangle, and we want to vary the rectangle
- How can we do this efficiently?
- Compute the sum area table, also called integral image

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

$\mathbf{3}$	5	12	14	17
4	11	19	24	31
9	17	28	38	46
13	24	37	48	62
15	30	44	59	81

$$
s(i, j)=\sum_{k=0}^{i} \sum_{l=0}^{j} f(k, l)
$$

- This can be efficiently computed using a recursive (raster-scan) algorithm

$$
s(i, j)=s(i-1, j)+s(i, j-1)-s(i-1, j-1)+f(i, j)
$$

- Then compute the sum on the rectangle by accessing 4 numbers

$$
S\left(\left[i_{0}, i_{1}\right] \times\left[j_{0}, j_{1}\right]\right)=s\left(i_{1}, j_{1}\right)-s\left(i_{1}, j_{0}-1\right)-s\left(i_{0}-1, j_{1}\right)+s\left(i_{0}-1, j_{0}-1\right)
$$

- Can we do something similar in our case?

Generalization to 3D

- Faces are generalizations of rectangles
- We need to extend the concept of integral images to 3D
- This is called integral geometry [Schwing et al. 12a]
- How does this work?

$$
\phi_{\{\text {left_w }\}}\left(y_{i}, y_{j}, y_{k}, \mathbf{x}\right)=H_{1}\left(y_{i}, y_{j}, \mathbf{x}\right)-H_{2}\left(y_{j}, y_{k}, \mathbf{x}\right)
$$

Generalization to 3D

- Faces are generalizations of rectangles
- We need to extend the concept of integral images to 3D
- This is called integral geometry [Schwing et al. 12a]
- How does this work?

$$
\phi_{\{f l o o r\}}\left(y_{i}, y_{j}, y_{k}, \mathbf{x}\right)=H_{1}\left(y_{i}, y_{j}, \mathbf{x}\right)-H_{2}\left(y_{j}, y_{k}, \mathbf{x}\right)
$$

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this r share the same weights, as they come from the integral geometry.

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this r share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this r share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem
- This speed ups the message passing inference by a few orders of magnitude

What are the implications?

- We can now write the problem in terms of potentials of order at most 2

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T}\left(\mathbf{y}_{r}, \mathbf{x}\right)
$$

and r only contains sets of 2 random variables

- Life is a bit more complicated than what I showed you as I was varying the parameterization to make you understand easily
- Good news is that it still depends on pairwise potentials (which are accumulators) but there is quite a few more
- Some of this r share the same weights, as they come from the integral geometry.
- If they are not shared then they do not represent the same problem
- This speed ups the message passing inference by a few orders of magnitude

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem has a single loop

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem has a single loop
- Message passing will not give the optimal

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem has a single loop
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem has a single loop
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?
- Let's look at branch and bound

Exact Inference?

- Can we compute the optimal solution?
- The graph of the previous problem has a single loop
- Message passing will not give the optimal
- What other algorithms do you know that give the optimal solution?
- Let's look at branch and bound

Branch and Bound

```
Algorithm 1 branch and bound (BB) inference
    put pair \((\bar{f}(\mathcal{Y}), \mathcal{Y})\) into queue and set \(\hat{\mathcal{Y}}=\mathcal{Y}\)
    repeat
        split \(\hat{\mathcal{Y}}=\hat{\mathcal{Y}}_{1} \times \hat{\mathcal{Y}}_{2}\) with \(\hat{\mathcal{Y}}_{1} \cap \hat{\mathcal{Y}}_{2}=\emptyset\)
        put pair \(\left(\bar{f}\left(\hat{\mathcal{Y}}_{1}\right), \hat{\mathcal{Y}}_{1}\right)\) into queue
        put pair \(\left(\bar{f}\left(\hat{\mathcal{Y}}_{2}\right), \hat{\mathcal{Y}}_{2}\right)\) into queue
        retrieve \(\hat{\mathcal{Y}}\) having highest score
    until \(|\hat{\mathcal{Y}}|=1\)
```

We have to define:
(1) A parameterization that defines sets of hypothesis.
(2) A scoring function f
(3) Tight bounds on the scoring function that can be computed very efficiently

Parameterization of the Problem

- Layout with 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ [Lee et al. 09]
- How do we define \mathcal{Y} ?
- Is this problem continuous or discrete?

- We parameterize the sets by intervals of minimum and maximum angles

$$
\left\{\left[y_{1}^{\min }, y_{1}^{\max }\right], \cdots,\left[y_{4}^{\min }, y_{4}^{\max }\right]\right\}
$$

- Why intervals?
- We have defined already the scoring function. What about the bounds?

Properties of the Bounds

Derive bounds \bar{f} for the original scoring function $\mathbf{w}^{\top} \phi(\mathbf{y}, \mathbf{x})$ that satisfy:
(1) The bound of the interval $\hat{\mathcal{Y}}$ has to upper-bound the true cost of each hypothesis $y \in \hat{\mathcal{Y}}$,

$$
\forall y \in \hat{\mathcal{Y}}, \quad \bar{f}(\hat{\mathcal{Y}}) \geq \mathbf{w}^{\top} \phi(\mathbf{y}, \mathbf{x})
$$

(2) The bound has to be exact for every single hypothesis,

$$
\forall y \in \mathcal{Y}, \quad \bar{f}(y)=\mathbf{w}^{\top} \phi(\mathbf{y}, \mathbf{x}) .
$$

Can we define this for our problem?

Intuitions from 2D

Let's look at the 2D case again

- We want to compute the bounding box that maximizes a scoring function
- Let's try to do this with branch and bound
- We define an interval as the max and min of the x and y axis of the rectangle

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in B B o x(\mathbf{y})} f_{i}(\mathbf{x})
$$

Intuitions from 2D

Let's look at the 2D case again

- We want to compute the bounding box that maximizes a scoring function
- Let's try to do this with branch and bound
- We define an interval as the max and min of the x and y axis of the rectangle

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in \operatorname{BBox}(\mathbf{y})} f_{i}(\mathbf{x})
$$

Branch and Bound for BBox prediction

- The scoring function sums features in the rectangle defined by the BBox

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{i \in B B o x(\mathbf{y})} f_{i}(\mathbf{x})
$$

- Some features are positive and some are negative
- Trick: Divide the space into negative and positive features

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

\Rightarrow show an illustration

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(y)} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?
- How can we compute them very fast?

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in \operatorname{BBox}(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in \operatorname{BBox}(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?
- How many integral images do we need?

Bounding the functions

- Energy was defined as

$$
E\left(y_{1}, \cdots, y_{4}\right)=\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{+}(\mathbf{x})}_{f^{+}(\mathbf{y}, \mathbf{x})}+\underbrace{\sum_{i \in B B o x(\mathbf{y})} f_{i}^{-}(\mathbf{x})}_{f^{-}(\mathbf{y}, \mathbf{x})}
$$

- Bound the positive and negative independently

$$
\operatorname{bound}(E(\overline{\mathcal{Y}}))=\bar{f}^{+}(\overline{\mathcal{Y}}, \mathbf{x})+\bar{f}^{-}(\overline{\mathcal{Y}}, \mathbf{x})
$$

- These bounds are very simple? What are they?
- How can we compute them very fast?
- What's the complexity of computing them?
- How many integral images do we need?

Algorithm for 2D BBox [Lampert et al. 06]

```
Algorithm 1 Efficient Subwindow Search
Require: image \(x\)
Require: quality bounding function \(\hat{f}\) (see Sect.III)
Ensure: \(\left(t_{\text {opt }}, b_{\text {opt }}, l_{\text {opt }}, r_{\text {opt }}\right)=\operatorname{argmax}_{y \in \mathcal{Y}} f(y)\)
    initialize \(P\) as empty priority queue
    set \([T, B, L, R]=[1, n] \times[1, n] \times[1, m] \times[1, m]\)
    repeat
        split \([T, B, L, R] \rightarrow\left[T_{1}, B_{1}, L_{1}, R_{1}\right] \dot{\cup}\left[T_{2}, B_{2}, L_{2}, R_{2}\right]\)
        push \(\left(\left[T_{1}, B_{1}, L_{1}, R_{1}\right] ; \hat{f}\left(\left[T_{1}, B_{1}, L_{1}, R_{1}\right]\right)\right.\) onto \(P\)
        push ( \(\left[T_{2}, B_{2}, L_{2}, R_{2}\right] ; \hat{f}\left(\left[T_{2}, B_{2}, L_{2}, R_{2}\right]\right)\) onto \(P\)
        retrieve top state \([T, B, L, R]\) from \(P\)
    until \([T, B, L, R]\) consists of only one rectangle
    set \(\left(t_{\mathrm{opt}}, b_{\mathrm{opt}}, l_{\mathrm{opt}}, r_{\mathrm{opt}}\right)=[T, B, L, R]\)
```

- How do we split?

- When do we terminate?

3D layout estimation

- Let's go back to our problem

- We parameterize the sets by intervals of minimum and maximum angles

$$
\left\{\left[y_{1}^{\min }, y_{1}^{\max }\right], \cdots,\left[y_{4}^{\min }, y_{4}^{\max }\right]\right\}
$$

- The scoring function sums features over the faces

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, \mathbf{x}\right)=\sum_{\alpha} f_{\alpha}(\mathbf{y}, \mathbf{x})
$$

with $\alpha=\{$ floor, left_w, right_w, ceiling, front_w $\}$

- What about the bounds?

Bounds for 3D layout

- The scoring function sums features over the faces

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{r} \mathbf{w}_{r}^{T} \phi\left(\mathbf{y}_{r}, \mathbf{x}\right)=\sum_{\alpha} f_{\alpha}(\mathbf{y}, \mathbf{x})
$$

with $\alpha=\{$ floor, left_w, right_w, ceiling, front_w $\}$

- Let's bound each "face" α separately
- Recall where the features come from

original image

orientation map

geometric context
- Some features are positive, some are negative. Why? How do I know which ones are positive/negative?

Deriving bounds

- Inference can be then done by

$$
E\left(y_{1}, \cdots, y_{4}\right)=\sum_{\alpha} f_{\alpha}^{+}(x, y)+f_{\alpha}^{-}(x, y)
$$

- We can bound each of this terms separately

$$
\operatorname{bound}(E(\hat{\mathcal{Y}}, \mathbf{x}))=\sum_{\alpha \in \mathcal{F}} \bar{f}_{\alpha}^{+}(\hat{\mathcal{Y}}, \mathbf{x})+\bar{f}_{\alpha}^{-}(\hat{\mathcal{Y}}, \mathbf{x})
$$

- We construct bounds by computing the max positive and min negative contribution of the score within the set $\hat{\mathcal{Y}}$ for each face $\alpha \in \mathcal{F}$.

$$
\bar{f}_{\text {front-wall }}(\hat{\mathcal{Y}})=f_{\text {front-wall }}^{+}\left(x, y_{\text {up }}\right)+f_{\text {front-wall }}^{-}\left(x, y_{\text {low }}\right),
$$

Efficient bounds

- How can we compute the bounds efficiently?

Efficient bounds

- How can we compute the bounds efficiently?

- What's the complexity?

Efficient bounds

- How can we compute the bounds efficiently?

- What's the complexity?
- How many evaluations?

Efficient bounds

- How can we compute the bounds efficiently?

- What's the complexity?
- How many evaluations?

Results

> [A. Schwing and R. Urtasun, ECCV12]

Table: Pixel classification error in the layout dataset of [Hedau et al. 09].

	OM	GC	OM + GC	Other	Time
[Hoiem07]	-	28.9	-	-	-
Hedau09] (a)	-	26.5	-	-	-
[Hedau09] (b)	-	21.2	-	-	$10-30 \mathrm{~min}$
[Wang10]	22.2	-	-	-	
[Lee10]	24.7	22.7	18.6	-	-
[delPero11]	-	-	-	16.3	12 min
Ours	$\mathbf{1 8 . 6}$	$\mathbf{1 5 . 4}$	$\mathbf{1 3 . 6}$	-	0.007 s

Table: Pixel classification error in the bedroom data set [Hedau et al. 10].

	[delPero11]	[Hoiem07]	[Hedau09](a)	Ours
w/o box	29.59	23.04	22.94	$\mathbf{1 6 . 4 6}$

- Takes on average 0.007 s for exact solution over 50^{4} possibilities !
- It's 6 orders of magnitude faster than the state-of-the-art!

Qualitative Results

Let's try to detect objects in 3D

3D Object Detection

- Task: Given an image (e.g., rgb, rgbd, video), detect the 3D objects present in the scene

Figure: Image from [Jia et al. 13]

Contextual Models for 3D Object Detection

- Simple approach: Imagine you were able "somehow" to get candidate 3D bounding boxes
- Task: identify the object labels labels (e.g., bed, table) as well as which ones are outliers
- Objects are not independent!
- This is however the assumption of most object detectors (both 2D and 3D)
- Can we create a model which reasons about multiple objects?

Contextual Models for 3D Object Detection

- What would be the random variables?
- For each bounding box, $y_{i} \in\{0,1\}$ saying whether it is correct or not, or $y_{i} \in\{0,1, \cdots, C\}$
- When to use which parameterization?
- We can then write the energy

$$
E\left(y_{1}, \cdots, y_{n}\right)=\sum_{r} \mathbf{w}^{T} \phi_{r}(\mathbf{y}, \mathbf{x})
$$

- What would you encode in the potentials?
- What's the underlying graph?

Our prior knowledge about the problem

If we have 3D blocks, then physics can be used to constrained object location, orientation, size, etc

- Stability: blocks are put such that they don't fell [Gupta et al. 10, Jia et al. 13]

- Support: a cup is on the table, but a table is not on a cup [Silberman et al. 12, Jia et al. 13]
- Semantic coherence: co-occurance of objects [Jia et al. 13, Lin et al. 13]

Our prior knowledge about the problem

If we have 3D blocks, then physics can be used to constrained object location, orientation, size, etc

- Location: where objects appear with respect to the room [Hedau?] and each other [Lin et al. 13]

Our prior knowledge about the problem

If we have 3D blocks, then physics can be used to constrained object location, orientation, size, etc

- Size coherence: Relative scale of objects [Lin et al. 13]
- High level context: type of scene, e.g., a cow can't be in a living room [Lin et al. 13]
- Layout: objects do not penetrate the room layout [Lee10, Hedau 10, Schwing12a, delPero12]
- more?

Inference

- All these things mentioned are pairwise potentials (i.e., relations between two objects)
- If those are sub modular, use graph cuts!
- If not message passing
- In any case, you can do inference in ms [Lin et al. 13]
- Use standard methods for learning, e.g., CRF log loss or structured SVMs

Results

