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Which problems we will be looking at?

3D Layout estimation

3D object detection
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A little bit about structure prediction
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Recipe for Success using Structure Prediction

What are my random variables?

How are they related? i.e., graph
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How do I encode my prior knowledge about the problem?

E (y1, · · · , yn, x) =
∑
r∈R

wT
r φr (yr , x)

Advise: Forget about probabilities in your potentials, the partition function
will take care of that!

p(y|x) =
1

Z
exp(−E (y, x))

How can I do inference? Why is this complicated?

min
y1,··· ,yn

E (y1, · · · , yn)

If you know how to do inference you will know how to do learning! Where
does the complication come from?
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Why Would I Use Structure Prediction?

Why to worry about math if I can hack up something quickly? → there is
still room for hackers!

It allows you to abstract and encode models to solve your problems

Captures well the combinatorial structure of some problems

Easy to reason jointly about multiple problems

Why do I care about holistic (i.e., joint) models?

Well understood inference algorithms, some of them exact!

Good learning algorithms exist as well
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What’s not so good?

Use as a keyword, approaches that don’t think about how the problem is
represented, how the energy looks like, etc.

Particularly overloaded terms, e.g., high-order potentials

Problems with continuous variables: we need better algorithms!

Do I need to understand inference? Yes, yes and yes! I don’t think this is a
negative point though

Is a log-linear model expressive enough?

Where does the structure come from?

Can I learn everything from unlabeled data? How deep are you?
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First task: 3D indoor scene understanding
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3D layout for Indoors

Task: Estimate the 3D layout from a single image

What’s the metric? how do I know if I did well?

How would you parameterize this problem? (i.e., what are your random
variables?)

What prior knowledge would you like to encode?
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3D layout for Indoors

Isn’t this a segmentation task where each pixel can be labeled as a wall?

What are the φr (yr , x)?
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Geometric Features as Unaries

Orientation maps [Leet el al 09], geometric context [Hoiem et al. 05]

original image orientation map geometric context

How do I construct my unaries φi (x, yi )?

What are my pairwise potentials φij (x, yi , yj )?

What’s the problem with smoothness potentials?

Are we missing something? What extra knowledge do we have?
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Manhattan World for Segmentation

Labels are not appearing at random in the image

We can encode that the world is Manhattan by expressing ordering
constraints

What would that be?

What’s the order of the potentials?

Can we do inference easily?

Which algorithm will you use? would it take a long time? would it be
optimal?
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Encoding Manhattan World Structure

Let’s assume that I can compute vanishing points

How should I express the problem? how many degrees of freedom do I have?

What have I lost with respect to before?

What have I won?
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Energy of the problem

Let’s define the energy. Which potentials will you use?

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x)

We will like to maximize the yellow pixels in the left wall, green in the
frontal wall, etc

We will also like to minimize the other colors in those walls, e.g., all but
yellow in left wall
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More on energy

original image orientation map geometric context

How do I express this in my potentials?

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x)

How many yi ’s do I need to define them?

Do I need other potentials?

Why did I need more potentials than just geometric features before?
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Inference

It’s inference easy in this model? Why?

What can we do?

Multi-label problem, message passing seems the best option

Problem: High order potentials → very very slow !

Let’s think about it for a second, maybe we can do something

Remember we want to compute sum of features in faces, and search over all
possible faces

Let’s first take a detour
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Integral Images

We are interested in computing the sum of some features inside a rectangle,
and we want to vary the rectangle

How can we do this efficiently?

Compute the sum area table, also called integral image

s(i , j) =
i∑

k=0

j∑
l=0

f (k, l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

Then compute the sum on the rectangle by accessing 4 numbers

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Can we do something similar in our case?
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This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

Then compute the sum on the rectangle by accessing 4 numbers

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Can we do something similar in our case?
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Generalization to 3D

Faces are generalizations of rectangles

We need to extend the concept of integral images to 3D

This is called integral geometry [Schwing et al. 12a]

How does this work?

φ{left w}(yi , yj , yk , x) = H1(yi , yj , x)− H2(yj , yk , x)

H1(yi , yj , x)

H2(yj , yk , x)

yi

yj

yk
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What are the implications?

We can now write the problem in terms of potentials of order at most 2

E (y1, · · · , y4) =
∑

r

wT
r (yr , x)

and r only contains sets of 2 random variables

Life is a bit more complicated than what I showed you as I was varying the
parameterization to make you understand easily

Good news is that it still depends on pairwise potentials (which are
accumulators) but there is quite a few more

Some of this r share the same weights, as they come from the integral
geometry.

If they are not shared then they do not represent the same problem

This speed ups the message passing inference by a few orders of magnitude
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Exact Inference?

Can we compute the optimal solution?

The graph of the previous problem has a single loop

Message passing will not give the optimal

What other algorithms do you know that give the optimal solution?

Let’s look at branch and bound
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Branch and Bound

We have to define:

1 A parameterization that defines sets of hypothesis.

2 A scoring function f

3 Tight bounds on the scoring function that can be computed very efficiently
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Parameterization of the Problem

Layout with 4 variables yi ∈ Y, i ∈ {1, ..., 4} [Lee et al. 09]

How do we define Y?

Is this problem continuous or discrete?

We parameterize the sets by intervals of minimum and maximum angles

{[y min
1 , y max

1 ], · · · , [y min
4 , y max

4 ]}

Why intervals?

We have defined already the scoring function. What about the bounds?
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Properties of the Bounds

Derive bounds f̄ for the original scoring function wTφ(y, x) that satisfy:

1 The bound of the interval Ŷ has to upper-bound the true cost of each
hypothesis y ∈ Ŷ,

∀y ∈ Ŷ, f̄ (Ŷ) ≥ wTφ(y, x).

2 The bound has to be exact for every single hypothesis,

∀y ∈ Y, f̄ (y) = wTφ(y, x).

Can we define this for our problem?
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Intuitions from 2D

Let’s look at the 2D case again

We want to compute the bounding box that maximizes a scoring function

Let’s try to do this with branch and bound

We define an interval as the max and min of the x and y axis of the rectangle

The scoring function sums features in the rectangle defined by the BBox

E (y1, · · · , y4) =
∑

i∈BBox(y)

fi (x)
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Branch and Bound for BBox prediction

The scoring function sums features in the rectangle defined by the BBox

E (y1, · · · , y4) =
∑

i∈BBox(y)

fi (x)

Some features are positive and some are negative

Trick: Divide the space into negative and positive features

E (y1, · · · , y4) =
∑

i∈BBox(y)

f +
i (x)

︸ ︷︷ ︸
f +(y,x)

+
∑

i∈BBox(y)

f −i (x)

︸ ︷︷ ︸
f −(y,x)

⇒ show an illustration

Bound the positive and negative independently

bound(E (Ȳ)) = f̄ +(Ȳ, x) + f̄ −(Ȳ, x)
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Bounding the functions

Energy was defined as

E (y1, · · · , y4) =
∑

i∈BBox(y)

f +
i (x)

︸ ︷︷ ︸
f +(y,x)

+
∑

i∈BBox(y)

f −i (x)

︸ ︷︷ ︸
f −(y,x)

Bound the positive and negative independently

bound(E (Ȳ)) = f̄ +(Ȳ, x) + f̄ −(Ȳ, x)

These bounds are very simple? What are they?

How can we compute them very fast?

What’s the complexity of computing them?

How many integral images do we need?
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Algorithm for 2D BBox [Lampert et al. 06]

How do we split?

When do we terminate?
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3D layout estimation

Let’s go back to our problem

We parameterize the sets by intervals of minimum and maximum angles

{[y min
1 , y max

1 ], · · · , [y min
4 , y max

4 ]}

The scoring function sums features over the faces

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x) =

∑
α

fα(y, x)

with α = {floor , left w , right w , ceiling , front w}
What about the bounds?
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Bounds for 3D layout

The scoring function sums features over the faces

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x) =

∑
α

fα(y, x)

with α = {floor , left w , right w , ceiling , front w}
Let’s bound each ”face” α separately

Recall where the features come from

original image orientation map geometric context

Some features are positive, some are negative. Why? How do I know which
ones are positive/negative?
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Deriving bounds

Inference can be then done by

E (y1, · · · , y4) =
∑
α

f +
α (x , y) + f −α (x , y),

We can bound each of this terms separately

bound(E (Ŷ, x)) =
∑
α∈F

f̄ +
α (Ŷ, x) + f̄ −α (Ŷ, x)

We construct bounds by computing the max positive and min negative
contribution of the score within the set Ŷ for each face α ∈ F .

f̄front-wall(Ŷ) = f +
front-wall(x , yup) + f −front-wall(x , ylow ),

(Front Wall) (Minimal left wall) (Maximal left wall)
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Efficient bounds

How can we compute the bounds efficiently?

What’s the complexity?

How many evaluations?
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Results

[A. Schwing and R. Urtasun, ECCV12]

Table: Pixel classification error in the layout dataset of [Hedau et al. 09].

OM GC OM + GC Other Time

[Hoiem07] - 28.9 - - -
[Hedau09] (a) - 26.5 - - -
[Hedau09] (b) - 21.2 - - 10-30 min
[Wang10] 22.2 - - -
[Lee10] 24.7 22.7 18.6 - -

[delPero11] - - - 16.3 12 min
Ours 18.6 15.4 13.6 - 0.007s

Table: Pixel classification error in the bedroom data set [Hedau et al. 10].

[delPero11] [Hoiem07] [Hedau09](a) Ours
w/o box 29.59 23.04 22.94 16.46

Takes on average 0.007s for exact solution over 504 possibilities !

It’s 6 orders of magnitude faster than the state-of-the-art!
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Qualitative Results

R. Urtasun (TTIC) 3D Structure Prediction August 2, 2013 32 / 41



Let’s try to detect objects in 3D
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3D Object Detection

Task: Given an image (e.g., rgb, rgbd, video), detect the 3D objects present
in the scene

Figure: Image from [Jia et al. 13]
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Contextual Models for 3D Object Detection

Simple approach: Imagine you were able ”somehow” to get candidate 3D
bounding boxes

Task: identify the object labels labels (e.g., bed, table) as well as which
ones are outliers

Objects are not independent!

This is however the assumption of most object detectors (both 2D and 3D)

Can we create a model which reasons about multiple objects?

Objects are not placed at random in 3D!
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Contextual Models for 3D Object Detection

What would be the random variables?

For each bounding box, yi ∈ {0, 1} saying whether it is correct or not, or
yi ∈ {0, 1, · · · ,C}

When to use which parameterization?

We can then write the energy

E (y1, · · · , yn) =
∑

r

wTφr (y, x)

What would you encode in the potentials?

What’s the underlying graph?
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Our prior knowledge about the problem

If we have 3D blocks, then physics can be used to constrained object location,
orientation, size, etc

Stability: blocks are put such that they don’t fell [Gupta et al. 10, Jia et al.
13]

Support: a cup is on the table, but a table is not on a cup [Silberman et al.
12, Jia et al. 13]

Semantic coherence: co-occurance of objects [Jia et al. 13, Lin et al. 13]
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Our prior knowledge about the problem

If we have 3D blocks, then physics can be used to constrained object location,
orientation, size, etc

Location: where objects appear with respect to the room [Hedau?] and
each other [Lin et al. 13]
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Our prior knowledge about the problem

If we have 3D blocks, then physics can be used to constrained object location,
orientation, size, etc

Size coherence: Relative scale of objects [Lin et al. 13]

High level context: type of scene, e.g., a cow can’t be in a living room [Lin
et al. 13]

Layout: objects do not penetrate the room layout [Lee10, Hedau 10,
Schwing12a, delPero12]

more?
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Inference

All these things mentioned are pairwise potentials (i.e., relations between
two objects)

If those are sub modular, use graph cuts!

If not message passing

In any case, you can do inference in ms [Lin et al. 13]

Use standard methods for learning, e.g., CRF log loss or structured SVMs
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Results
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