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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

@ 3648 Dimensions

e 64 rows by 57 columns
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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

@ 3648 Dimensions

e 64 rows by 5-7 columns %__,5_-_::}'-':!;{?:_'-:_,
e Space contains more , ﬁ.‘:__a;.%ﬂ.-
than just this digit. e S

o Even if we sample E".{T‘E_{.:;Iﬁ.-:?}-‘_';a;::l;
every nanosecond from ;-:-J'-C‘:?ﬁ;; R
now until the end of -'_.‘:{ij-"'.',,.'-'.' ity
AT L LER

the universe, you won't
see the original six!
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Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



Simple Model of Digit

Rotate a 'Prototype’

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 3 /59



MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’sixnine’)
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Low Dimensional Manifolds

Pure Rotation is too Simple
@ In practice the data may undergo several distortions.

e e.g. digits undergo ‘thinning’, translation and rotation.

@ For data with ‘structure’:

e we expect fewer distortions than dimensions;
o we therefore expect the data to live on a lower dimensional manifold.

@ Conclusion: deal with high dimensional data by looking for lower
dimensional non-linear embedding.
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Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.
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Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.
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Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are
much reduced.
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Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are
much reduced.
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Which Rotation?

@ We need the rotation that will minimise residual error.
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Which Rotation?

@ We need the rotation that will minimise residual error.
@ Retain features/directions with maximum variance.

@ Error is then given by the sum of residual variances.

2 P
E(X):; > o

k=g+1
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Which Rotation?

We need the rotation that will minimise residual error.

Retain features/directions with maximum variance.

Error is then given by the sum of residual variances.

2 P
E(X):; > o

k=g+1

Rotations of data matrix do not effect this analysis.

Rotate data so that largest variance directions are retained.
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Reminder: Principal Component Analysis

How do we find these directions?

Find directions in data with maximal variance.
o That's what PCA does!

PCA: rotate data to extract these directions.

@ PCA: work on the sample covariance matrix S = nlYTY.
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Principal Coordinates Analysis

@ The rotation which finds directions of maximum variance is the
eigenvectors of the covariance matrix.

@ The variance in each direction is given by the eigenvalues.

@ Problem: working directly with the sample covariance, S, may be
impossible.

o Why?
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Equivalent Eigenvalue Problems

e Principal Coordinate Analysis operates on YTY € RP*P.
o Can we compute YYT instead?

@ When p < n it is easier to solve for the rotation, Rq. But when p > n
we solve for the embedding (principal coordinate analysis).

@ Two eigenvalue problems are equivalent: One solves for the rotation,
the other solves for the location of the rotated points.

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 11 /59



Covariance Interpretation

e n1YTY is the data covariance.
@ YYT is a centred inner product matrix.
o Also has an interpretation as a covariance matrix (Gaussian processes).
o It expresses correlation and anti correlation between data points.
e Standard covariance expresses correlation and anti correlation between
data dimensions.
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Mapping of Points

@ Mapping points to higher dimensions is easy.

g%

S

Figure: Two dimensional Gaussian mapped to three dimensions.
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Linear Dimensionality Reduction

Linear Latent Variable Model
@ Represent data, Y, with a lower dimensional set of latent variables X.

@ Assume a linear relationship of the form
Yi. = Wxi,: + €,

where

€ NN(0,0'2|) .
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

p(Y|X7W) = ]___[N (Yi,:|WXi,:,U2|)

i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

o Standard Latent variable
approach:

n
o Define Gaussian prior p(YIX,W) =[N (yi,|Wx; ., 1)
over latent space, X. i=1

p(X) =[N (xi.10.1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Standard Latent variable

n
approach: p(YIX,W) =[N (vi:|Wxi,., o)
. . . I:l
e Define Gaussian prior
over latent space, X.
o Integrate out latent

variables.

p(X) = [N (xi./0.1)
i=1

p(YIW) = TTA (vi.0, WWT +o?1)
i=1
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Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p(YIW) = ﬁ/\/ (vi.10,WW T + 1)

i=1
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Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

n
p(YIW) =[N (y:.10.C), C=ww' +52
=1

1
log p (Y|W) = —g log |C| — Etr (C’lYTY> + const.

If Ug are first g principal eigenvectors of n~1YTY and the corresponding
eigenvalues are A,

1
W =UGR", L= (N,—0%)>
where R is an arbitrary rotation matrix.
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Linear Latent Variable Model |

Dual Probabilistic PCA

@ Define linear-Gaussian

relationship between
latent variables and data.

n
p(YIX,W) = [V (yi,.|Wxi,., 0?1)
i=1
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Linear Latent Variable Model |

Dual Probabilistic PCA
@ Define linear-Gaussian /@I>

relationship between

latent variables and data. 0
@ Novel Latent variable
approach:
o Define Gaussian prior p(YIX,W) =[N (yi,.|Wx; ., 01)
over parameters, W. i=1

p
p(W) = HN (Wi,:|07 I)

i=1
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Linear Latent Variable Model IlI
Dual Probabilistic PCA /@I)

@ Define linear-Gaussian 0
relationship between
latent variables and data.

@ Novel Latent variable

approach: p(YIX, W) = [TV (yi.IWx;,., o°1)
. . . i=1
e Define Gaussian prior
over parameters, W. p
o Integrate out p(W) = HIN (wi:[0,1)
parameters. .

P
p(YX) = [TA (3410, XXT +o21)
Jj=1
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

/@
O
p(Y|X) = f[/\f (y:,j\o,xxT + 02|)

=1
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

p(Y|X) = H/\/ yj10,K), K=XXT +2
Jj=1

1
log p (Y|X) = —g log K| — Etr <K’1YYT) + const.

If U; are first g principal eigenvectors of p~1YY T and the corresponding eigenvalues are Ag,

[N

X=UJLR", L= (A;—0?)

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p(YW) =[N (vi:0,C), C=WWT +%
i=1

1
log p(Y|W) = —g log |C| — Etr (C_IYTY) + const.

If Ug are first g principal eigenvectors of n~1YTY and the corresponding eigenvalues are g,

Nl

W =UlR", L= (A;—d?)

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
@ Solution for Probabilistic PCA (solves for the mapping)

Y YU, =U/A, W=U,R"

@ Solution for Dual Probabilistic PCA (solves for the latent positions)

T T
YYTU,=U,A, X=U,LR

@ Equivalence is from
1
U, =Y U,A, >
@ You have probably used this trick to compute PCA efficiently when
number of dimensions is much higher than number of points.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA
@ Define linear-Gaussian

relationship between 0
latent variables and data.
@ Novel Latent variable p (Y%, W) = [N (v Wx;., o21)
approach: i1
o Define Gaussian prior p
over parameteters, W. p(W) =[N (wi.l0,1)
o Integrate out =1
parameters.

P
p(YX) = [TA (3410, XXT +o21)
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

»

P
p(YX) = [TA (3410, XXT +o21)
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal

likelihood shows ...
e The covariance matrix
is a covariance 0
function.

p(YIX) =[]V (v.510.K)

j=1

K =XXT + o2l
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

o The covariance matrix °
is a covariance
function. p

o We recognise it as the p(YIX) =N (v.410,K)
‘linear kernel'. =

K=XXT + 52

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix 0
is a covariance
function. p
o We recognise it as the p(YIX)=TIN (v.j10,K)
‘linear kernel'. J=t
o We call this the
Gaussian Process

Latent Variable model Replace linear kernel with non-linear
(GP-LVM).

K =7

kernel for non-linear model.
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Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

@ The EQ covariance has the form k; j = k (x;.,x; ), where

[[%i,: — X',:”2
k(Xi,:an,:) = aexp <—2€212 .
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Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

@ The EQ covariance has the form k; j = k (x;.,x; ), where

[[%i,: — X',:”2
k(Xi,:an,:) = aexp <—2€212 .

@ No longer possible to optimise wrt X via an eigenvalue problem.

@ Instead find gradients with respect to X, o, £ and o2 and optimise using
conjugate gradients

argmin g log |K(X, X) + o?l| + gtr (KX, X) +?1)71YYT)

X, b, 0
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Let's look at some applications
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1) GPLVM for Character Animation

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

@ Learn a GPLVM from a small mocap sequence

@ Smooth the latent space by adding noise in order to reduce the
number of local minima.

@ Let’s replay the same motion

Figure: Syle-IK

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 23 /59



1) GPLVM for Character Animation

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

@ Pose synthesis by solving an optimization problem
argmin — log p(y|x)
Xy

such that C(y) =0

@ Constraints from a user in an interactive session or from a mocap system

Figure: Syle-IK
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2) Shape Priors in Level Set Segmentation

@ Represent contours with elliptic Fourier descriptors
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2) Shape Priors in Level Set Segmentation

@ Represent contours with elliptic Fourier descriptors

@ Learn a GPLVM on the parameters of those descriptors
@ We can now generate closed contours from the latent space

@ Segmentation is done by non-linear minimization of an image-driven energy
which is a function of the latent space
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GPLVM on Contours

[ V. Prisacariu and I. Reid, ICCV 2011]
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Segmentation Results

[ V. Prisacariu and I. Reid, ICCV 2011]
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3) Non-rigid shape deformation

Monocular 3D shape recovery is severely under-constrained:
@ Complex deformations and low-texture objects.
@ Deformation models are required to disambiguate.
@ Building realistic physics-based models is very complex.

@ Learning the models is a popular alternative.
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Global deformation models

State-of-the-art techniques learn global models that
@ require large amounts of training data,

@ must be learned for each new object.
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Key observations

al G

@ Locally, all parts of a physically homogeneous surface obey the same
deformation rules.

@ Deformations of small patches are much simpler than those of a global
surface, and thus can be learned from fewer examples.

= Learn Local Deformation Models and combine them into a global one
representing the particular shape of the object of interest.
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Overview of the method

Generative Approach

model

Mocap Data Deformation Model Pose
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Combining the deformations

Use a Product of Experts (POE) paradigm (Hinton 99):
@ High dimensional data subject to low dimensional constraints.
@ A global deformation should be composed of highly probable local ones.

@ For homogeneous materials, all local patches follow the same deformation
rules.

@ Learn a single local model, and replicate it to cover the whole object.
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Combining the deformations

Use a Product of Experts (POE) paradigm (Hinton 99):
@ High dimensional data subject to low dimensional constraints.
@ A global deformation should be composed of highly probable local ones.

@ For homogeneous materials, all local patches follow the same deformation
rules.

@ Learn a single local model, and replicate it to cover the whole object.

= Same deformation model represents arbitrary shapes and topologies.
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For each image I; we have to estimate the state ¢¢ = (y, X¢).

Bayesian formulation of the tracking

p(Pelle, X, Y) o< p(le[pe) p(yelxe, X, Y)p(xt)

The image likelihood is composed of texture (template matching) and
edge information

p(ltlét) = p(Teldr)p(Et|¢t)

Tracking by minimizing the posterior
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Shape deformation estimation

[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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Incorporating dynamics

@ The mapping from latent space to high dimensional space as
yi. = Wi(x;.)+ n;., Where m;.~N (0,02|) .

@ We can augment the model with ARMA dynamics. This is called
Gaussian process dynamical models (GPDM) (Wang et al., 05).

Xt+1,: = Pd)(xt:t—v—,:) + '7[,:1 where Vi ™~ N (O>U(Zjl) .

;

GPLVM GPDM
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Model Learned for tracking

Model learned from 6 walking subjects,1 gait cycle each, on treadmill at
same speed with a 20 DOF joint parameterization (no global pose)

Figure: Randomly generated
trajectories

Figure: Density
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Tracking results

[ R. Urtasun, D. Fleet and P. Fua, CVPR 2006]
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Estimated latent trajectories

[ R. Urtasun, D. Fleet and P. Fua, CVPR 2006]

Figure: Estimated latent trajectories. (cian) - training data, (black) - exaggerated
walk, (blue) - occlusion.
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Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)
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Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)
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Does it work all the time?

Is training with so little data a bug or a feature?
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Problems with the GPLVM

@ It relies on the optimization of a non-convex function

L= g In K| + gtr(K_lYYT) .
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Problems with GPLVM

@ It relies on the optimization of a non-convex function
L= g In K| + gtr(K*YYT) .

@ Even with the right dimensionality, they can result in poor representations if
initialized far from the optimum.

@ This is even worst if the dimensionality of the latent space is small.

@ As a consequence these models have only been applied to small databases of
a single activity.
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@ Back-constraints: Constrain the inverse mapping to be smooth [Lawrence
et al. 06]
@ Topologies: Add smoothness and topological priors, e.g., style content

separation [Urtasun et al. 08]
@ Dynamics: to smooth the latent space [Wang et al. 06]

@ Continuous dimensionality reduction: Add rank priors and reduce the
dimensionality as you do the optimization [Geiger et al. 09]

@ Stochastic: learning algorithms [Lawrence et al. 09]

@ etc
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Continuous dimensionality reduction

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

GPLVM + LLE our method
: 2
converged tQ

local minimum
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ochastic Algorithms

[ A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

Distance Matrix PCA GPLVM stochastic GPLVM

Walking

Jumping

Exercise
Stretching

Signals

;
{
¥
K

Basketball
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Humaneva Results

[ A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

C1,Frame30  C1,Frame60  C3, Frame30  C3, Frame 60

C1,Frame27  Cl,Frame72 (3, Frame27  C3,Frame72

S1 Boxing

[ Train [ Test [ [Xu07] ] [Li10] [ GPLVM [ CRBM [ imCRBM ] Ours |
S1 S1 - - 57.6 = 11.6 48.8 £ 3.7 58.6 + 3.9 44.0 £ 1.8
S1,2,3 S1 140.3 - 64.3 +19.2 55.4 + 0.8 54.3+ 0.5 41.6 £0.8
S2 S2 - 68.7 + 24.7 98.2 +15.8 47.4+£29 67.0 £ 0.7 54.44+1.8
S1,2,3 S2 149.4 - 155.9 + 48.8 99.1 4 23.0 69.3 + 3.3 64.0 +£2.9
S3 S3 - 69.6 £+ 22.2 71.6 +10.0 49.8 +2.2 51.44+0.9 454 +1.1
S$1,2,3 S3 156.3 - 123.8. + 16.7 70.9 + 2.1 43.4+4.1 46.5 + 1.4
[ Model [ Tracking Error |
[Pavlovic00] as reported in [Li07] 569.90 £ 209.18
[Lin06] as reported in [Li07] 380.02 £ 74.97
GPLVM 121.44 + 30.7
TCi07] 117.0£55
Best CRBM [Taylor10] 75.4 £ 9.7
Ours 74.1 £33
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Other extensions
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1) Priors for supervised learning

@ We introduce a prior that is based on the Fisher criteria

p(X) ox exp {12tr (swlsb)} ,
Gd

with S;, the between class matrix and S,, the within class matrix
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1) Priors for supervised learning

@ We introduce a prior that is based on the Fisher criteria

p(X) o exp {—O_lztr (s;lsb)} ;

d

with S the between class matrix and S,, the within class matrix

L
n;
— Z 7 (Mi = Mo)(M; — Mo)”

where X() [x

mean of the eIements of class i/, and My is the mean of all the training
points of all classes.

-, Xp] are the n; training points of class /, M; is the
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1) Priors for supervised learning

@ We introduce a prior that is based on the Fisher criteria

p(X) o exp {—12tr (Swlsb)} .
G4

with S the between class matrix and S,, the within class matrix
L

2 n;
Sy = ; 7 (M = Mo)(M; — Mo)"

N.
ni |1, i
Se=25 [ () —Mi)(x) - M,-)T]

where X() = [xg")7 e ,xg,';,)] are the n; training points of class i, M; is the
mean of the elements of class i, and My is the mean of all the training
points of all classes.

@ As before the model is learned by maximizing p(Y|X)p(X).
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1) Priors for supervised learning

@ We introduce a prior that is based on the Fisher criteria

p(X) o exp {12tr (swlsb)} ,
94

with S, the between class matrix and S,, the within class matrix

-08 -06 -04 -02 0 02 04

Figure: 2D latent spaces learned by D-GPLVM on the oil dataset for different
values of o4 [Urtasun et al. 07].
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2) Hierarchical GP-LVM

Stacking Gaussian Processes
@ Regressive dynamics provides a simple hierarchy.

e The input space of the GP is governed by another GP.

Intesaction

@ By stacking GPs we can consider more complex hierarchies.
o ldeally we should marginalise latent spaces

o In practice we seek MAP solutions.
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Within Subject Hierarchy

Decomposition of Body

P N

N

head

aht abdomen
right arm
left arm g leftleg right leg

Figure: Decomposition of a subject.
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Single Subject Run/Walk

[N. Lawrence and A. Moore, ICML 2007]

Run Walk

; Y A B c

e e

x - g <§ $ %\
D E F

ight Arm @ ﬂ ’X\

Figure: Hierarchical model of a walk and a run.
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3) Style Content Separation and Multi-linear models

Multiple aspects that affect the input signal, interesting to factorize them
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Multilinear models

@ Style-Content Separation (Tenenbaum & Freeman 00)

y = ZW,‘ja,'bj-i-E

y

@ Multi-linear analysis (Vasilescu & Terzopoulous 02)

y= E Wijk...aibjck - -+ + €
ik

@ Non-linear basis functions (Elgammal & Lee, 2004)

y= Z W,J'B,'(ﬁj(b) +e
i
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Multi (non)-linear models with GPs

@ In the GPLVM
y=> widj(x) +e=wd(x)+e
J
with
Ely,y'] = ®(x)"®(y) + 3716 = k(x,x') + 716
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Multi (non)-linear models with GPs

@ In the GPLVM
y= Z wjdi(x) + e =w'd(x) + e
J
with
Ely,y'] = &(x)"®(y) + 5710 = k(x,x') + 5715

@ Multifactor Gaussian process

y = Z Wijk...¢§1)¢>1(-1)¢$(1) o t€
ik,
with o _ N
Ely,y]=[[ @ o0 + 375 = [ ki(x,x7) 4 8715
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Multi (non)-linear models with GPs

@ In the GPLVM
y= Z wjdi(x) + e =w'd(x) + e
J
with
Ely,y'] = &(x)"®(y) + 5710 = k(x,x') + 5715

@ Multifactor Gaussian process

y= 3 wied{ oot

ik,

with
Ely,y] = [Jo@ 60 + 5715 = [ k(x?,x) + 515

@ Learning in this model is the same, just the kernel changes.
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Each training motion is a collection of poses, sharing the same combination of
subject (s) and gait (g).

Siylistic factors

subject 1 subject 2 subject 3

stride

walk

Training data, 6 sequences, 314 frames in total
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Results

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Interpolating between gaits Various style parameters
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4) Continuous Character Control

@ When employing GPLVM, different motions get too far apart
@ Difficult to generate animations where we transition between motions
@ Back-constraints or topologies are not enough

@ New prior that enforces connectivity in the graph

In p(X) = w, Z In K,-j-"
isj

with the graph diffusion kernel K¢ obtain from
K{ =exp(BH)  with ~H=-T 12T/

the graph Laplacian, and T is a diagonal matrix with T; = 3. w(x;, x;),

j
{Zk w(x;,xg) ifi=j
Lj=

—w(xi,X;) otherwise.
and w(x;,x;) = ||x; — x;|| P measures similarity.
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Embeddings: Walking

(b)

Figure: Walking embeddings learned (a) without the connectivity term, (b) with
we = 0:1, and (c) with w. = 1:0.
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Embeddings: Punching

(b)

Figure: Embeddings for the punching task (a) with and (b) without the
connectivity term.

R. Urtasun (TTIC) Gaussian Processes August 2, 2013 58 / 59



Video Results

[ S. Levine, J. Wang, A. Haraux, Z. Popovic and V. Koltun, Siggraph 2012]
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