Introduction to Gaussian Processes

Raquel Urtasun

TTI Chicago

August 2, 2013

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of
the universe, you won't
 see the original six!

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't
 see the original six!

Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't
 see the original six!

Simple Model of Digit

Rotate a 'Prototype'

MATLAB Demo

demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'sixnine')

Low Dimensional Manifolds

Pure Rotation is too Simple

- In practice the data may undergo several distortions.
- e.g. digits undergo 'thinning', translation and rotation.
- For data with 'structure':
- we expect fewer distortions than dimensions;
- we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional non-linear embedding.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are much reduced.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are much reduced.

Which Rotation?

- We need the rotation that will minimise residual error.
- Retain features/directions with maximum variance.

Which Rotation?

- We need the rotation that will minimise residual error.
- Retain features/directions with maximum variance.
- Error is then given by the sum of residual variances.

$$
E(\mathbf{X})=\frac{2}{p} \sum_{k=q+1}^{p} \sigma_{k}^{2} .
$$

Which Rotation?

- We need the rotation that will minimise residual error.
- Retain features/directions with maximum variance.
- Error is then given by the sum of residual variances.

$$
E(\mathbf{X})=\frac{2}{p} \sum_{k=q+1}^{p} \sigma_{k}^{2}
$$

- Rotations of data matrix do not effect this analysis.
- Rotate data so that largest variance directions are retained.

Which Rotation?

- We need the rotation that will minimise residual error.
- Retain features/directions with maximum variance.
- Error is then given by the sum of residual variances.

$$
E(\mathbf{X})=\frac{2}{p} \sum_{k=q+1}^{p} \sigma_{k}^{2} .
$$

- Rotations of data matrix do not effect this analysis.
- Rotate data so that largest variance directions are retained.

Reminder: Principal Component Analysis

- How do we find these directions?
- Find directions in data with maximal variance.
- That's what PCA does!
- PCA: rotate data to extract these directions.
- PCA: work on the sample covariance matrix $\mathbf{S}=n^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$.

Principal Coordinates Analysis

- The rotation which finds directions of maximum variance is the eigenvectors of the covariance matrix.
- The variance in each direction is given by the eigenvalues.
- Problem: working directly with the sample covariance, S, may be impossible.
- Why?

Equivalent Eigenvalue Problems

- Principal Coordinate Analysis operates on $\hat{\mathbf{Y}}^{T} \hat{\mathbf{Y}} \in \Re^{p \times p}$.
- Can we compute $\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\top}$ instead?
- When $p<n$ it is easier to solve for the rotation, \mathbf{R}_{q}. But when $p>n$ we solve for the embedding (principal coordinate analysis).
- Two eigenvalue problems are equivalent: One solves for the rotation, the other solves for the location of the rotated points.

The Covariance Interpretation

- $n^{-1} \hat{\mathbf{Y}}^{\top} \hat{\mathbf{Y}}$ is the data covariance.
- $\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\top}$ is a centred inner product matrix.
- Also has an interpretation as a covariance matrix (Gaussian processes).
- It expresses correlation and anti correlation between data points.
- Standard covariance expresses correlation and anti correlation between data dimensions.

Mapping of Points

- Mapping points to higher dimensions is easy.

Figure: Two dimensional Gaussian mapped to three dimensions.

Linear Dimensionality Reduction

Linear Latent Variable Model

- Represent data, Y, with a lower dimensional set of latent variables X.
- Assume a linear relationship of the form

$$
\mathbf{y}_{i,:}=\mathbf{W} \mathbf{x}_{i,:}+\boldsymbol{\epsilon}_{i,:},
$$

where

$$
\boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) .
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent variable

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent variable
 approach:
- Define Gaussian prior
over latent space, X.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{X}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{\left.i_{i,}, \mathbf{0}, \mathbf{I}\right)}\right.
\end{aligned}
$$

Linear Latent Variable Model

Probabilistic PCA

- Define linear-Gaussian
relationship between
 latent variables and data.
- Standard Latent variable approach:
- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out latent variables.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{X}) & =\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i_{i,:}, \mid \mathbf{0}, \mathbf{I}}\right)
\end{aligned}
$$

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable

approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable
 approach:
- Define Gaussian prior over parameters, W.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Novel Latent variable approach:
- Define Gaussian prior over parameters, W.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

- Integrate out parameters.

$$
p(\mathbf{W})=\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
$$

Linear Latent Variable Model III

Dual Probabilistic PCA

- Define linear-Gaussian relationship between
 latent variables and data.
- Novel Latent variable approach:
- Define Gaussian prior over parameters, W.
- Integrate out parameters.

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{W})=\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{I}\right) \\
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}\right)
\end{gathered}
$$

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}(\mathbf{y}:, j \mathbf{0}, \mathbf{K}), \quad \mathbf{K}=\mathbf{X} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{X})=-\frac{p}{2} \log |\mathbf{K}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\top}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q}^{\prime} are first q principal eigenvectors of $p^{-1} \mathbf{Y} \mathbf{Y}^{\top}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{X}=\mathbf{U}_{q}^{\prime} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{n}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\top} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $n^{-1} \mathbf{Y}^{\top} \mathbf{Y}$ and the corresponding eigenvalues are $\boldsymbol{\Lambda}_{q}$,

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\top}, \quad \mathbf{L}=\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

- Solution for Probabilistic PCA (solves for the mapping)

$$
\mathbf{Y}^{\top} \mathbf{Y} \mathbf{U}_{q}=\mathbf{U}_{q} \mathbf{\Lambda}_{q} \quad \mathbf{W}=\mathbf{U}_{q} \mathbf{L R}^{\top}
$$

- Solution for Dual Probabilistic PCA (solves for the latent positions)

$$
\mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_{q}^{\prime}=\mathbf{U}_{q}^{\prime} \mathbf{\Lambda}_{q} \quad \mathbf{X}=\mathbf{U}_{q}^{\prime} \mathbf{L \mathbf { R } ^ { \top }}
$$

- Equivalence is from

$$
\mathbf{U}_{q}=\mathbf{Y}^{\top} \mathbf{U}_{q}^{\prime} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- You have probably used this trick to compute PCA efficiently when number of dimensions is much higher than number of points.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Define linear-Gaussian relationship between
 latent variables and data.
- Novel Latent variable approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

- Define Gaussian prior over parameteters, W.
- Integrate out parameters.

$$
\begin{gathered}
p(\mathbf{W})=\prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{I}\right) \\
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{i, j} \mid \mathbf{0}, \mathbf{x X}^{\top}+\sigma^{2} \mathbf{I}\right)
\end{gathered}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X X}^{\top}+\sigma^{2} \mathbf{l}\right)
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}) & =\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{: j, j} \mid \mathbf{0}, \mathbf{K}\right) \\
\mathbf{K} & =\mathbf{X X}^{\top}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.
- We call this the

Gaussian Process
Latent Variable model (GP-LVM).

$$
\begin{aligned}
& p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right) \\
& \mathbf{K}=\mathbf{X X X}^{\top}+\sigma^{2} \mathbf{I} \\
& \text { This is a product of Gaussian processes } \\
& \text { with linear kernels. }
\end{aligned}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.
- We call this the

Gaussian Process
Latent Variable model (GP-LVM).

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right)
$$

Replace linear kernel with non-linear kernel for non-linear model.

Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

- The EQ covariance has the form $k_{i, j}=k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)$, where

$$
k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right\|_{2}^{2}}{2 \ell^{2}}\right) .
$$

- No longer possible to optimise wrt X via an eigenvalue problem.

Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

- The EQ covariance has the form $k_{i, j}=k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)$, where

$$
k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right\|_{2}^{2}}{2 \ell^{2}}\right) .
$$

- No longer possible to optimise wrt \mathbf{X} via an eigenvalue problem.
- Instead find gradients with respect to \mathbf{X}, α, ℓ and σ^{2} and optimise using conjugate gradients

$$
\left.\underset{X, \alpha, \ell, \sigma}{\operatorname{argmin}} \frac{p}{2} \log \left|K(\mathbf{X}, \mathbf{X})+\sigma^{2}\right| \right\rvert\,+\frac{p}{2} \operatorname{tr}\left(\left(K(\mathbf{X}, \mathbf{X})+\sigma^{2} \mid\right)^{-1} \mathbf{Y} \mathbf{Y}^{\top}\right)
$$

Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

- The EQ covariance has the form $k_{i, j}=k\left(\mathbf{x}_{i, i}, \mathbf{x}_{j,:}\right)$, where

$$
k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)=\alpha \exp \left(-\frac{\left\|\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right\|_{2}^{2}}{2 \ell^{2}}\right) .
$$

- No longer possible to optimise wrt \mathbf{X} via an eigenvalue problem.
- Instead find gradients with respect to \mathbf{X}, α, ℓ and σ^{2} and optimise using conjugate gradients

$$
\underset{\mathbf{x}, \alpha, \ell, \sigma}{\operatorname{argmin}} \frac{p}{2} \log \left|K(\mathbf{X}, \mathbf{X})+\sigma^{2} \mathbf{I}\right|+\frac{p}{2} \operatorname{tr}\left(\left(K(\mathbf{X}, \mathbf{X})+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{Y} \mathbf{Y}^{T}\right)
$$

Let's look at some applications

1) GPLVM for Character Animation

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

- Learn a GPLVM from a small mocap sequence
- Smooth the latent space by adding noise in order to reduce the number of local minima.
- Let's replay the same motion

Figure: Syle-IK

1) GPLVM for Character Animation

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

- Pose synthesis by solving an optimization problem

$$
\begin{aligned}
& \underset{\mathbf{x}, \mathbf{y}}{\operatorname{argmin}}-\log p(\mathbf{y} \mid \mathbf{x}) \\
& \text { such that } C(\mathbf{y})=0
\end{aligned}
$$

- Constraints from a user in an interactive session or from a mocap system

Figure: Syle-IK

2) Shape Priors in Level Set Segmentation

- Represent contours with elliptic Fourier descriptors

- Learn a GPLVM on the parameters of those descriptors

2) Shape Priors in Level Set Segmentation

- Represent contours with elliptic Fourier descriptors

- Learn a GPLVM on the parameters of those descriptors
- We can now generate closed contours from the latent space

2) Shape Priors in Level Set Segmentation

- Represent contours with elliptic Fourier descriptors

- Learn a GPLVM on the parameters of those descriptors
- We can now generate closed contours from the latent space
- Segmentation is done by non-linear minimization of an image-driven energy which is a function of the latent space

2) Shape Priors in Level Set Segmentation

- Represent contours with elliptic Fourier descriptors

- Learn a GPLVM on the parameters of those descriptors
- We can now generate closed contours from the latent space
- Segmentation is done by non-linear minimization of an image-driven energy which is a function of the latent space

GPLVM on Contours

[V. Prisacariu and I. Reid, ICCV 2011]

Segmentation Results

[V. Prisacariu and I. Reid, ICCV 2011]

3) Non-rigid shape deformation

Monocular 3D shape recovery is severely under-constrained:

- Complex deformations and low-texture objects.
- Deformation models are required to disambiguate.
- Building realistic physics-based models is very complex.
- Learning the models is a popular alternative.

Global deformation models

State-of-the-art techniques learn global models that

- require large amounts of training data,
- must be learned for each new object.

Key observations

(1) Locally, all parts of a physically homogeneous surface obey the same deformation rules.
(2) Deformations of small patches are much simpler than those of a global surface, and thus can be learned from fewer examples.
\Rightarrow Learn Local Deformation Models and combine them into a global one representing the particular shape of the object of interest.

Overview of the method

Combining the deformations

Use a Product of Experts (POE) paradigm (Hinton 99):

- High dimensional data subject to low dimensional constraints.
- A global deformation should be composed of highly probable local ones.
- For homogeneous materials, all local patches follow the same deformation rules.
- Learn a single local model, and replicate it to cover the whole object.

Combining the deformations

Use a Product of Experts (POE) paradigm (Hinton 99):

- High dimensional data subject to low dimensional constraints.
- A global deformation should be composed of highly probable local ones.
- For homogeneous materials, all local patches follow the same deformation rules.
- Learn a single local model, and replicate it to cover the whole object.

Combining the deformations

Use a Product of Experts (POE) paradigm (Hinton 99):

- High dimensional data subject to low dimensional constraints.
- A global deformation should be composed of highly probable local ones.
- For homogeneous materials, all local patches follow the same deformation rules.
- Learn a single local model, and replicate it to cover the whole object.

Combining the deformations

Use a Product of Experts (POE) paradigm (Hinton 99):

- High dimensional data subject to low dimensional constraints.
- A global deformation should be composed of highly probable local ones.
- For homogeneous materials, all local patches follow the same deformation rules.
- Learn a single local model, and replicate it to cover the whole object.

\Rightarrow Same deformation model represents arbitrary shapes and topologies.

Tracking

- For each image I_{t} we have to estimate the state $\phi_{t}=\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)$.
- Bayesian formulation of the tracking

$$
p\left(\phi_{t} \mid \mathbf{I}_{t}, \mathbf{X}, \mathbf{Y}\right) \propto p\left(\mathbf{I}_{t} \mid \phi_{t}\right) p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}, \mathbf{X}, \mathbf{Y}\right) p\left(\mathbf{x}_{t}\right)
$$

- The image likelihood is composed of texture (template matching) and edge information

$$
p\left(\mathbf{I}_{t} \mid \phi_{t}\right)=p\left(\mathbf{T}_{t} \mid \phi_{t}\right) p\left(\mathbf{E}_{t} \mid \phi_{t}\right)
$$

- Tracking by minimizing the posterior

Shape deformation estimation

[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]

Incorporating dynamics

- The mapping from latent space to high dimensional space as

$$
\mathbf{y}_{i,:}=\mathbf{W} \psi\left(\mathbf{x}_{i,:}\right)+\boldsymbol{\eta}_{i,:}, \quad \text { where } \quad \eta_{i,:} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) .
$$

- We can augment the model with ARMA dynamics. This is called Gaussian process dynamical models (GPDM) (Wang et al., 05).

$$
\mathbf{x}_{t+1,:}=\mathbf{P} \phi\left(\mathbf{x}_{t: t-\tau,:}\right)+\gamma_{i,:}, \quad \text { where } \quad \gamma_{i,:} \sim N\left(\mathbf{0}, \sigma_{d}^{2} \mathbf{I}\right)
$$

Model Learned for tracking

Model learned from 6 walking subjects, 1 gait cycle each, on treadmill at same speed with a 20 DOF joint parameterization (no global pose)

Figure: Density

Figure: Randomly generated trajectories

Tracking results

[R. Urtasun, D. Fleet and P. Fua, CVPR 2006]

Estimated latent trajectories

Figure: Estimated latent trajectories. (cian) - training data, (black) - exaggerated walk, (blue) - occlusion.

Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)

Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)

Two subjects with a knee pathology.

Does it work all the time?

Is training with so little data a bug or a feature?

Problems with the GPLVM

- It relies on the optimization of a non-convex function

$$
\mathcal{L}=\frac{p}{2} \ln |\mathbf{K}|+\frac{p}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\top}\right) .
$$

Problems with the GPLVM

- It relies on the optimization of a non-convex function

$$
\mathcal{L}=\frac{p}{2} \ln |\mathbf{K}|+\frac{p}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}\right) .
$$

- Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

Problems with the GPLVM

- It relies on the optimization of a non-convex function

$$
\mathcal{L}=\frac{p}{2} \ln |\mathbf{K}|+\frac{p}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}\right) .
$$

- Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

- This is even worst if the dimensionality of the latent space is small.

Problems with the GPLVM

- It relies on the optimization of a non-convex function

$$
\mathcal{L}=\frac{p}{2} \ln |\mathbf{K}|+\frac{p}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\boldsymbol{T}}\right) .
$$

- Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

- This is even worst if the dimensionality of the latent space is small.
- As a consequence these models have only been applied to small databases of a single activity.

Solutions

- Back-constraints: Constrain the inverse mapping to be smooth [Lawrence et al. 06]
- Topologies: Add smoothness and topological priors, e.g., style content separation [Urtasun et al. 08]
- Dynamics: to smooth the latent space [Wang et al. 06]
- Continuous dimensionality reduction: Add rank priors and reduce the dimensionality as you do the optimization [Geiger et al. 09]
- Stochastic: learning algorithms [Lawrence et al. 09]
- etc

Continuous dimensionality reduction

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

Stochastic Algorithms

[A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

Humaneva Results

[A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

Train	Test	$[$ Xu07 $]$	$[$ Li10	GPLVM	CRBM	imCRBM	Ours
S1	S1	-	-	57.6 ± 11.6	48.8 ± 3.7	58.6 ± 3.9	$\mathbf{4 4 . 0} \pm \mathbf{1 . 8}$
S1,2,3	S1	140.3	-	64.3 ± 19.2	55.4 ± 0.8	54.3 ± 0.5	$\mathbf{4 1 . 6} \pm \mathbf{0 . 8}$
S2	S2	-	68.7 ± 24.7	98.2 ± 15.8	$47.4 \pm \mathbf{2 . 9}$	67.0 ± 0.7	54.4 ± 1.8
S1,2,3	S2	149.4	-	155.9 ± 48.8	99.1 ± 23.0	69.3 ± 3.3	$\mathbf{6 4 . 0} \pm \mathbf{2 . 9}$
S3	S3	-	69.6 ± 22.2	71.6 ± 10.0	49.8 ± 2.2	51.4 ± 0.9	$45.4 \pm \mathbf{1 . 1}$
S1,2,3	S3	156.3	-	$123.8 . \pm 16.7$	70.9 ± 2.1	$\mathbf{4 3 . 4} \pm \mathbf{4 . 1}$	46.5 ± 1.4

Model	Tracking Error
[Pavlovic00] as reported in [Li07]	569.90 ± 209.18
[Lin06] as reported in [Li07]	380.02 ± 74.97
GPLVM	121.44 ± 30.7
[Li07]	117.0 ± 5.5
Best CRBM [Taylor10]	75.4 ± 9.7
Ours	$\mathbf{7 4 . 1} \pm \mathbf{3 . 3}$

Other extensions

1) Priors for supervised learning

- We introduce a prior that is based on the Fisher criteria

$$
p(\mathbf{X}) \propto \exp \left\{-\frac{1}{\sigma_{d}^{2}} \operatorname{tr}\left(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\right)\right\},
$$

with \mathbf{S}_{b} the between class matrix and \mathbf{S}_{w} the within class matrix

1) Priors for supervised learning

- We introduce a prior that is based on the Fisher criteria

$$
p(\mathbf{X}) \propto \exp \left\{-\frac{1}{\sigma_{d}^{2}} \operatorname{tr}\left(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\right)\right\},
$$

with \mathbf{S}_{b} the between class matrix and \mathbf{S}_{w} the within class matrix

$$
\mathbf{S}_{b}=\sum_{i=1}^{L} \frac{n_{i}}{N}\left(\mathbf{M}_{i}-\mathbf{M}_{0}\right)\left(\mathbf{M}_{i}-\mathbf{M}_{0}\right)^{T}
$$

where $\mathbf{X}^{(i)}=\left[\mathbf{x}_{1}^{(i)}, \cdots, \mathbf{x}_{n_{i}}^{(i)}\right]$ are the n_{i} training points of class i, \mathbf{M}_{i} is the mean of the elements of class i, and \mathbf{M}_{0} is the mean of all the training points of all classes.

1) Priors for supervised learning

- We introduce a prior that is based on the Fisher criteria

$$
p(\mathbf{X}) \propto \exp \left\{-\frac{1}{\sigma_{d}^{2}} \operatorname{tr}\left(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\right)\right\},
$$

with \mathbf{S}_{b} the between class matrix and \mathbf{S}_{w} the within class matrix

$$
\begin{gathered}
\mathbf{S}_{b}=\sum_{i=1}^{L} \frac{n_{i}}{N}\left(\mathbf{M}_{i}-\mathbf{M}_{0}\right)\left(\mathbf{M}_{i}-\mathbf{M}_{0}\right)^{T} \\
\mathbf{S}_{w}=\sum_{i=1}^{L} \frac{n_{i}}{n}\left[\frac{1}{n_{i}} \sum_{k=1}^{N_{i}}\left(\mathbf{x}_{k}^{(i)}-\mathbf{M}_{i}\right)\left(\mathbf{x}_{k}^{(i)}-\mathbf{M}_{i}\right)^{T}\right]
\end{gathered}
$$

where $\mathbf{X}^{(i)}=\left[\mathbf{x}_{1}^{(i)}, \cdots, \mathbf{x}_{n_{i}}^{(i)}\right]$ are the n_{i} training points of class i, \mathbf{M}_{i} is the mean of the elements of class i, and \mathbf{M}_{0} is the mean of all the training points of all classes.

- As before the model is learned by maximizing $p(\mathbf{Y} \mid \mathbf{X}) p(\mathbf{X})$.

1) Priors for supervised learning

- We introduce a prior that is based on the Fisher criteria

$$
p(\mathbf{X}) \propto \exp \left\{-\frac{1}{\sigma_{d}^{2}} \operatorname{tr}\left(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\right)\right\},
$$

with \mathbf{S}_{b} the between class matrix and \mathbf{S}_{w} the within class matrix

Figure: 2D latent spaces learned by D-GPLVM on the oil dataset for different values of σ_{d} [Urtasun et al. 07].

2) Hierarchical GP-LVM

Stacking Gaussian Processes

- Regressive dynamics provides a simple hierarchy.
- The input space of the GP is governed by another GP.

- By stacking GPs we can consider more complex hierarchies.
- Ideally we should marginalise latent spaces
- In practice we seek MAP solutions.

Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.

Single Subject Run/Walk

Figure: Hierarchical model of a walk and a run.

3) Style Content Separation and Multi-linear models

Multiple aspects that affect the input signal, interesting to factorize them

Multilinear models

- Style-Content Separation (Tenenbaum \& Freeman 00)

$$
\mathbf{y}=\sum_{i j} w_{i j} a_{i} b_{j}+\epsilon
$$

- Multi-linear analysis (Vasilescu \& Terzopoulous 02)

$$
\mathbf{y}=\sum_{i j k \cdots} w_{i j k \ldots} \ldots a_{i} b_{j} c_{k} \cdots+\epsilon
$$

- Non-linear basis functions (Elgammal \& Lee, 2004)

$$
\mathbf{y}=\sum_{i j} w_{i j} a_{i} \phi_{j}(b)+\epsilon
$$

Multi (non)-linear models with GPs

- In the GPLVM

$$
\mathbf{y}=\sum_{j} w_{j} \phi_{j}(\mathbf{x})+\epsilon=\mathbf{w}^{\top} \Phi(\mathbf{x})+\epsilon
$$

with

$$
\mathbb{E}\left[\mathbf{y}, \mathbf{y}^{\prime}\right]=\Phi(\mathbf{x})^{T} \Phi(\mathbf{y})+\beta^{-1} \delta=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\beta^{-1} \delta
$$

- Multifactor Gaussian process

$$
\mathrm{y}=\sum_{i, j, k, \ldots} w_{i j k \ldots} \phi_{i}^{(1)} \phi_{j}^{(1)} \phi_{k}^{(1)} .
$$

with

$$
\mathbb{E}\left[\mathbf{y}, \mathbf{y}^{\prime}\right]=\prod_{i} \Phi^{(i)^{T}} \Phi^{(i)}+\beta^{-1} \delta=\prod_{i} k_{i}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(i)^{\prime}}\right)+\beta^{-1} \delta
$$

Multi (non)-linear models with GPs

- In the GPLVM

$$
\mathbf{y}=\sum_{j} w_{j} \phi_{j}(\mathbf{x})+\epsilon=\mathbf{w}^{T} \Phi(\mathbf{x})+\epsilon
$$

with

$$
\mathbb{E}\left[\mathbf{y}, \mathbf{y}^{\prime}\right]=\Phi(\mathbf{x})^{T} \Phi(\mathbf{y})+\beta^{-1} \delta=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\beta^{-1} \delta
$$

- Multifactor Gaussian process

$$
\mathbf{y}=\sum_{i, j, k, \ldots} w_{i j k \ldots} \phi_{i}^{(1)} \phi_{j}^{(1)} \phi_{k}^{(1)} \cdots+\epsilon
$$

with

$$
\mathbb{E}\left[\mathbf{y}, \mathbf{y}^{\prime}\right]=\prod_{i} \Phi^{(i)^{T}} \Phi^{(i)}+\beta^{-1} \delta=\prod_{i} k_{i}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(i)^{\prime}}\right)+\beta^{-1} \delta
$$

- Learning in this model is the same, just the kernel changes.

Multi (non)-linear models with GPs

- In the GPLVM

$$
\mathbf{y}=\sum_{j} w_{j} \phi_{j}(\mathbf{x})+\epsilon=\mathbf{w}^{T} \Phi(\mathbf{x})+\epsilon
$$

with

$$
\mathbb{E}\left[\mathbf{y}, \mathbf{y}^{\prime}\right]=\Phi(\mathbf{x})^{T} \Phi(\mathbf{y})+\beta^{-1} \delta=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\beta^{-1} \delta
$$

- Multifactor Gaussian process

$$
\mathbf{y}=\sum_{i, j, k, \ldots} w_{i j k \ldots} \phi_{i}^{(1)} \phi_{j}^{(1)} \phi_{k}^{(1)} \cdots+\epsilon
$$

with

$$
\mathbb{E}\left[\mathbf{y}, \mathbf{y}^{\prime}\right]=\prod_{i} \Phi^{(i)^{T}} \Phi^{(i)}+\beta^{-1} \delta=\prod_{i} k_{i}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(i)^{\prime}}\right)+\beta^{-1} \delta
$$

- Learning in this model is the same, just the kernel changes.

Training Data

Each training motion is a collection of poses, sharing the same combination of subject (s) and gait (g).

Stylistic factors

$$
\text { subject } 1 \quad \text { subject } 2 \quad \text { subject } 3
$$

stride

run

walk

Training data, 6 sequences, 314 frames in total

Results

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Interpolating between gaits

Various style parameters

4) Continuous Character Control

- When employing GPLVM, different motions get too far apart
- Difficult to generate animations where we transition between motions
- Back-constraints or topologies are not enough
- New prior that enforces connectivity in the graph

$$
\ln p(\mathbf{X})=w_{c} \sum_{i, j} \ln K_{i j}^{d}
$$

with the graph diffusion kernel \mathbf{K}^{d} obtain from

$$
K_{i j}^{d}=\exp (\beta \mathbf{H}) \quad \text { with } \quad \mathbf{H}=-\mathbf{T}^{-1 / 2} \mathbf{L} \mathbf{T}^{-1 / 2}
$$

the graph Laplacian, and \mathbf{T} is a diagonal matrix with $T_{i i}=\sum_{j} w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$,

$$
L_{i j}= \begin{cases}\sum_{k} w\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right) & \text { if } i=j \\ -w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & \text { otherwise }\end{cases}
$$

and $w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{-p}$ measures similarity.

Embeddings: Walking

Figure: Walking embeddings learned (a) without the connectivity term, (b) with $w_{c}=0: 1$, and (c) with $w_{c}=1: 0$.

Embeddings: Punching

Figure: Embeddings for the punching task (a) with and (b) without the connectivity term.

Video Results

[S. Levine, J. Wang, A. Haraux, Z. Popovic and V. Koltun, Siggraph 2012]

